
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 272, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

PULLBACK ATTRACTOR OF A NONAUTONOMOUS
FOURTH-ORDER PARABOLIC EQUATION MODELING

EPITAXIAL THIN FILM GROWTH

NING DUAN, XIAOPENG ZHAO

Abstract. We study a nonautonomous fourth-order parabolic equation mod-
eling epitaxial thin film growth. It is shown that a pullback attractor of the

model exists when the external force has exponential growth.

1. Introduction

The study of pullback attractors for nonautonomous infinite dimensional dynam-
ical systems has attracted much attention and made fast progress in recent years;
see for instance, [1, 3, 4, 10, 19]. Recently, Caraballo et al [2] introduced the notion
of the pullback D-attractor for nonautonomous dynamical systems and gave a gen-
eral method to prove the existence of pullback D-attractor. In [12], Li and Zhong
proposed the concept of norm-to-weak continuous process and proved the existence
of pullback attractors for the nonautonomous reaction-diffusion equation. The au-
thors in [17] considered the existence of pullback attractor for a nonautonomous
modified Swift-Hohenberg equation when its external force has exponential growth.

Suppose that Ω is an open connected bounded domain in R3 with a smooth
boundary ∂Ω, p ∈]2, 10

3 [. We are concerned with the existence of pullback attractor
for the following non-autonomous equation

ut + ∆2u−∇ ·
(
|∇u|p−2∇u−∇u

)
= g(x, t), in Ω× [τ,∞), (1.1)

with the boundary value conditions

u =
∂u

∂n
= 0, on ∂Ω× [τ,∞), (1.2)

and the initial condition
u(x, τ) = uτ (x), in Ω. (1.3)

Equation (1.1) arises in epitaxial growth of nanoscale thin films (see [8, 22]),
where u(x, t) denotes the height from the surface of the film in epitaxial growth, the
term ∆2u denotes the capillarity-driven surface diffusion (see [16]), ∇·(|∇u|p−2∇u)
corresponding to the upward hopping of atoms (see [5]) and ∆u denotes the diffusion
due to the evaporation-condensation (see [7]). Recently, Equation (1.1) was studied
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by several authors. By numerical simulations and heuristic arguments, Kohn and
Yan [9] proved that the standard deviation of u in Equation (1.1) with g ≡ 0
grows as t−

1
3 , and the energy per unit area decays as t−

1
3 . Based on Schauder type

estimates and Campanato spaces, Liu [13, 14] Studied the regularity of solutions
for Equation (1.1) with nonlinear principal part and g ≡ 0 in 1D and 2D case. The
analysis of the long-time behavior of Equation (1.1) with g ≡ 0 has been developed
by [6, 23]. There are also some papers which has done with the numerical analysis
for the discrete scheme of Equation (1.1), such as [15, 18, 21] and so on. However,
the existence of pullback attractor for the fourth-order evolution equation modeling
epitaxial thin film growth has not been considered yet.

In this article, we are interested in the existence of pullback attractor for the
nonautonomous problem (1.1)-(1.3). This article is organized as follows. In Section
2, we recall some abstract results on pullback attractors and give the main result.
In Section 3, we prove the existence of pullback attractor for problem (1.1)-(1.3).

Throughout this paper, we denote (·, ·) as the inner product of L2(Ω) and ‖ · ‖
as the induced norm. ‖ · ‖X denotes the norm of a Banach space X. For simplicity,
we denote ‖ · ‖Lp(Ω) by ‖ · ‖p, respectively. In the following, c will represent generic
positive constants that may change from line to line even if in the same inequality.

2. Preliminaries

In this section, we give some basic definitions and results on the existence of
pullback attractor. Suppose that X is a complete metric space and {U(t, τ)} =
{U(t, τ) : t ≥ τ, τ ∈ R} is a two-parameter family of mappings act on X: U(t, τ) :
X → X, t ≥ τ, τ ∈ R.

Definition 2.1 ([11]). A two-parameter family of mappings {U(t, τ)} is said to be
norm-to-weak continuous process in X if

• U(t, s)U(s, τ) = U(t, τ) for all t ≥ s ≥ τ ,
• for all τ ∈ R, U(t, τ) = Id is the identity operator,
• U(t, τ)xn ⇀ U(t, τ)x, if xn ⇀ x in X.

Let B be a bounded subset of X. The Kuratowski measure of noncompactness
α(B) of B is defined by

α(B) = inf{δ > 0 : B has a finite open cover of sets of diameter ≤ δ}.

Suppose D is a nonempty class of parameterised sets D̂ = {D(t) : t ∈ R} ⊂ B(X).

Definition 2.2 ([12]). A process {U(t, τ)} is called pullback ω-D-limit compact if
for any ε > 0 and D̂ ∈ D, there exists a τ0(t, D̂ ≤ t such that α(Uτ≥τ0U(t, τ)D(τ)) ≤
ε.

Definition 2.3 ([12]). The family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a
pullback D-attractor for U(t, τ) if

• for all t ∈ R, A(t) is compact,
• Â is invariant, i.e., U(t, τ)A(τ) = A(τ) for all t ≥ τ ,
• Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0, ∀D̂ ∈ D, t ∈ R.

• if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t)
for all t ∈ R.
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In the following, we give the result on the existence of pullback D-attractor for
nonautonomous systems which can be seen in [12].

Lemma 2.4. Let {U(t, τ)}τ≤t be a norm-to-weak continuous process such that
{U(t, τ)}τ≤t is pullback ω-D-limit compact. If there exists a family of pullback D-
absorbing sets {B(t) : t ∈ R} ∈ D, i.e., for any t ∈ R and D̂ ∈ D there is a
τ0(t, D̂) ≤ t such that U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0. Then, there is a pullback
D-attractor {A(t) : t ∈ R} and

A(t) = ∩s≤t∪τ≤sU(t, τ)D(τ).

To study the existence of pullback attractor for problem (1.1)-(1.3), we suppose
that g(x, t) is translation bounded in L2

loc(R;L2(Ω)); that is,

g(x, t) ∈ L2
loc(R;L2(Ω)) and sup

t∈R

∫ t+1

t

|g(x, t)|2ds <∞.

We also suppose that, for any t ∈ R, there exist β ≥ 0 and 0 ≤ α <
(

20−6p
6p−4

)2
λ,

such that

‖g(t)‖2 ≤ βeα|t|, (2.1)

where λ is the first eigenvalue of A = ∆2. By (2.1), we have the following properties:

G1(t) :=
∫ t

−∞
eλs‖g(s)‖2ds <∞, ∀t ∈ R,

G2(t) :=
∫ t

−∞

∫ s

−∞
eλr‖g(r)‖2 dr ds <∞, ∀t ∈ R,∫ t

−∞
e

24−12p
20−6p λs

[
[G1(s)]

6p−4
20−6p + [G2(s)]

6p−4
20−6p

]
ds <∞, ∀t ∈ R.

Using a slight modification of the classical results in the autonomous framework,
mainly of the Faedo-Galerkin method (see [20]), we obtain the following result on
the existence and uniqueness of solutions for problem (1.1)-(1.3) (see [8, 23]).

Lemma 2.5. Suppose that g ∈ L2
loc(R;L2(Ω)). There is a unique solution u(x, t)

such that

• if u0 = uτ ∈ L2(Ω)⇒ u(x, t) ∈ C0([τ,∞);L2(Ω));
• if u0 = u(τ) ∈ H2

0 (Ω)⇒ u(x, t) ∈ C0([τ,∞);H2
0 (Ω)).

Based on Lemma 2.5, we obtain that the solution u(x, t) is continuous with
respect to the initial value condition uτ in the space H2

0 (Ω). In order to construct
a process {U(t, τ)} for problem (1.1)-(1.3), we define U(t, τ) : H2

0 (Ω)→ H2
0 (Ω) by

U(t, τ)uτ . Thus, the process {U(t, τ)} is a norm-to-weak continuous process in the
space H2

0 (Ω).
Now, we give the main result of this article, which will be proved in the next

section.

Theorem 2.6. The process corresponding to problem (1.1)-(1.3) possesses a unique
pullback D-attractor in the space H2

0 (Ω).
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3. Proof of main results

In this section, we study the existence of pullbackD-attractors for non-autonomous
problem (1.1)-(1.3). First of all, we derive uniform estimates of solutions for prob-
lem (1.1)-(1.3), which are necessary for proving the existence of absorbing set of
{u(t, τ)} associated with the problem.

Lemma 3.1. Consider the problem (1.1)-(1.3), for all t ≥ τ , we have

‖u(t)‖2 ≤ e−λ(t−τ)‖uτ‖2 +
2M
λ

+
1
λ
e−λtG1(t),

and∫ t

τ

eλs‖∆u(s)‖2ds ≤ [1 + λ(t− τ)]eλτ‖uτ‖2 +
4M
λ
eλt +

1
λ
G1(t) +G2(t), (3.1)

where M = p
p−2 (p2 )

−2
p−2 is a positive constant.

Proof. Multiplying (1.1) by u, integrating it over Ω, using Young’s inequality, we
obtain

1
2
d

dt
‖u(t)‖2 + ‖∆u(t)‖2 + ‖∇u(t)‖pp

= ‖∇u(t)‖2 + (g(t), u(t))

≤ 1
2
‖∇u(t)‖pp +M + ‖g(t)‖‖u(t)‖

≤ 1
2
‖∇u(t)‖pp +M +

1
2λ
‖g(t)‖2 +

1
2
‖∆u(t)‖2,

(3.2)

where M = 2p
p−2 (p2 )

−2
p−2 . It then follows from (3.2) that

d

dt
‖u(t)‖2 + ‖∆u(t)‖2 + ‖∇u(t)‖pp ≤ 2M +

‖g(t)‖2

λ
, (3.3)

d

dt
‖u(t)‖2 + λ‖u(t)‖2 ≤ 2M +

‖g(t)‖2

λ
, (3.4)

Multiplying (3.4) by eλ(t−τ) and integrating it over (τ, t), we derive that

‖u(t)‖2 ≤ e−λ(t−τ)‖uτ‖2 +
2M
λ

+
1
λ
e−λt

∫ t

−∞
eδs‖g(s)‖2ds. (3.5)

Multiplying (3.5) by eλt and integrating it over (τ, t), we deduce that∫ t

τ

eλs‖u(s)‖2ds ≤ (t− τ)eλτ‖uτ‖2 +
2M
λ2

eλt +
1
λ

∫ t

−∞

∫ s

−∞
eλr‖g(r)‖2 dr ds. (3.6)

Similarly, multiplying (3.3) by eλt and integrating it over (τ, t), we obtain∫ t

τ

eλs‖∆u(s)‖2ds+
∫ t

τ

eλs‖∇u(s)‖ppds

≤ eλτ‖uτ‖2 +
2M
λ
eλt + λ

∫ t

τ

eλs‖u(s)‖2ds+
1
λ

∫ t

−∞
eλs‖g(s)‖2ds

≤ [1 + λ(t− τ)] eλτ‖uτ‖2 +
4M
λ
eλt +

∫ t

−∞

∫ s

−∞
eλr‖g(r)‖2 dr ds

+
1
λ

∫ t

−∞
eλs‖g(s)‖2ds.

(3.7)
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The proof is complete. �

Lemma 3.2. In problem (1.1)-(1.3), for all t ≥ τ , we have

‖∇u(t)‖2

≤ c
{
e−λ(t−τ)(‖uτ‖2 + ‖∇uτ‖2) +

2M
λ2

+ e−λt
[ 1
λ
G2(t) +G1(t)

]}
.

(3.8)

Proof. Multiplying (1.1) by ∆u, integrating it over Ω, we derive that

1
2
d

dt
‖∇u(t)‖2 + ‖∇∆u(t)‖2 + (∇ · (|∇u(t)|p−2∇u(t),∆u(t))

= ‖∆u(t)‖2 − (g(t),∆u(t)).
(3.9)

Note that

(∇ · (|∇u(t)|p−2∇u(t),∆u(t))

=
∫

Ω

|∇u|p−2|∆u|2dx+
∫

Ω

∇u(|∇u|p−2)∆udx

=
∫

Ω

|∇u|p−2|∆u|2dx+
p− 2

2

∫
Ω

∇u(|∇u|2)|∇u|p−4∆u dx

=
∫

Ω

|∇u|p−2|∆u|2dx+ (p− 2)
∫

Ω

(
3∑

i,j=1

uijuiuj)(
3∑
k=1

ukk)|∇u|p−4 dx

=
∫

Ω

|∇u|p−2|∆u|2dx+ (p− 2)
∫

Ω

(
3∑
i=1

uiiu
2
i )(

3∑
k=1

ukk)|∇u|p−4dx

+ (p− 2)
∫

Ω

(
3∑

i,j=1,i6=j

uijuiuj)(
3∑
k=1

ukk)|∇u|p−4dx

=
∫

Ω

|∇u|p−2|∆u|2dx+ (p− 2)
3∑
i=1

∫
Ω

|∇u|p−4u2
iu

2
iidx

+ (p− 2)
3∑

i,j=1,i6=j

∫
Ω

|∇u|p−4u2
iuiiujjdx

+ (p− 2)
∫

Ω

|∇u|p−4∆u(
3∑

i,j=1,i6=j

uijuiuj)dx .

(3.10)

Using Hölder’s inequality, we have

(p− 2)
3∑

i,j=1,i6=j

∫
Ω

|∇u|p−4u2
iuiiujjdx

≥ −p− 2
2

3∑
i,j=1,i6=j

∫
Ω

|∇u|p−4u2
i (u

2
ii + u2

jj)dx

= −p− 2
2

3∑
i=1

∫
Ω

|∇u|p−4u2
iu

2
iidx−

p− 2
2

3∑
i,j=1,i6=j

∫
Ω

|∇u|p−4u2
iu

2
jjdx.

(3.11)
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Based on the regularity theorem of elliptic equation, we have

(p− 2)
∫

Ω

|∇u|p−4∆u
( 3∑
i,j=1,i6=j

uijuiuj

)
dx

≥ −p− 2
2

∫
Ω

|∇u|p−2|∆u|2dx.

(3.12)

Combining (3.10), (3.11) and (3.12) together gives

(∇ · (|∇u(t)|p−2∇u(t),∆u(t))

≥
∫

Ω

|∇u|p−2|∆u|2dx+
p− 2

2

3∑
i=1

∫
Ω

|∇u|p−4u2
iu

2
iidx

− p− 2
2

∫
Ω

|∇u|p−2|∆u|2dx ≥ 0.

(3.13)

By Nirenberg’s inequality, we obtain

‖∆u(t)‖ ≤ c‖∇∆u(t)‖2/3‖u(t)‖1/3. (3.14)

It then follows from (3.9), (3.13) and (3.14) that
1
2
d

dt
‖∇u(t)‖2 + ‖∇∆u(t)‖2

≤ ‖∆u(t)‖2 + ‖g(t)‖‖∆u(t)‖

≤ c‖∇∆u(t)‖ 4
3 ‖u(t)‖2/3 + c‖g(t)‖‖∇∆u(t)‖2/3‖u(t)‖1/3

≤ 1
2
‖∇∆u(t)‖2 + c(‖u(t)‖2 + ‖g(t)‖2);

(3.15)

that is,
d

dt
‖∇u(t)‖2 + ‖∇∆u(t)‖2 ≤ c(‖u(t)‖2 + ‖g(t)‖2), (3.16)

and
d

dt
‖∇u(t)‖2 + λ‖∇u(t)‖2 ≤ c(‖u(t)‖2 + ‖g(t)‖2). (3.17)

Multiplying (3.17) by eλ(t−τ) and integrating over (τ, t), we derive that

‖∇u(t)‖2

≤ e−λ(t−τ)‖∇uτ‖2 + ce−λt
∫ t

τ

eλs‖u(s)‖2ds+ ce−λt
∫ t

τ

eλs‖g(s)‖2ds
(3.18)

Combining (3.6) and (3.18) gives

‖∇u(t)‖2 ≤ c
{
e−λ(t−τ)(‖uτ‖2 + ‖∇uτ‖2) +

2M
λ2

+ e−λt
[ 1
λ
G2(t) +G1(t)

]}
.

Hence, the proof is complete. �

Lemma 3.3. Consider the problem (1.1)-(1.3), for all t ≥ τ , we have

‖∆u(t)‖2 ≤ c
{(

1 + (t− τ) +
1

t− τ
)
e−λ(t−τ)

[
‖uτ‖2 + ‖uτ‖

6p−4
10−3p + ‖∇uτ‖

6p−4
10−3p

]
+
(
1 +

1
t− τ

)
{1 + e−λt[G1(t) +G2(t)]}

+ e−λt
∫ t

−∞
e

24−12p
20−6p λs

[
[G1(s)]

6p−4
20−6p + [G2(s)]

6p−4
20−6p

]
ds
}
.
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Proof. Multiplying (1.1) by ∆2u, integrating it over Ω, using Nirenberg’s inequality
and Young’s inequality, we derive that

1
2
d

dt
‖∆u(t)‖2 + ‖∆2u(t)‖2

=
(
∇ · (|∇u(t)|p−2∇u(t)),∆2u(t)

)
+ (g(t),∆2u(t))− (∆u(t),∆2u(t))

≤ 1
4
‖∆2u(t)‖2 + c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∇ · (|∇u(t)|p−2∇u(t))‖2)

≤ 1
4
‖∆2u(t)‖2 + c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∆u(t)‖2∞‖∇u(t)‖2p−4

2p−4)

≤ 1
2
‖∆2u(t)‖2 + c(‖∆u(t)‖2 + ‖g(t)‖2

+ ‖∆2u(t)‖ 5
3 ‖∇u(t)‖1/3‖∆2u(t)‖p−3‖∇u(t)‖p−1)

≤ 1
2
‖∆u(t)‖2 + c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∇u(t)‖

6p−4
10−3p );

(3.19)

that is,

d

dt
‖∆u(t)‖2 + ‖∆2u(t)‖2 ≤ c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∇u(t)‖

6p−4
10−3p ), (3.20)

and

d

dt
‖∆u(t)‖2 + λ‖∆u(t)‖2 ≤ c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∇u(t)‖

6p−4
10−3p ), (3.21)

Multiplying this by (t− τ)eλt and integrating it over (τ, t), we obtain

(t− τ)eλt‖∆u(t)‖2

≤ c
[ ∫ t

τ

[1 + (s− τ)]eλs‖∆u(s)‖2ds+
∫ t

τ

(s− τ)eλs‖g(s)‖2ds

+
∫ t

τ

(s− τ)eλs‖∇u(t)‖
6p−4
10−3p

]
.

Therefore,

‖∆u(t)‖2 ≤ c
(

1 +
1

t− τ

)
e−λt

∫ t

τ

eλs‖∆u(s)‖2ds+ ce−λtG1(t)

+ ce−λt
∫ t

τ

eλs‖∇u(t)‖
6p−4
10−3p ds

=: I1 + I2 + I3.

(3.22)

It then follows from (3.1) that

I1 ≤ c
(

1 +
1

t− τ

)
e−λt

[
[1 + λ(t− τ)]eλτ‖uτ‖2 +

4M
λ
eλt +

1
λ
G1(t) +G2(t)

]
≤ c
(

1 + (t− τ) +
1

t− τ

)
e−λ(t−τ)‖uτ‖2 + c

(
1 +

1
t− τ

)
+ c
(

1 +
1

t− τ

)
e−λt[G1(t) +G2(t)].

(3.23)
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On the other hand, using Hölder’s inequality and (3.8) for sum, we obtain

I3 ≤ ce−λt
∫ t

τ

eλs
{
e−λ(t−τ)(‖uτ‖2 + ‖∇uτ‖2) +

2M
λ2

+ e−λs
[ 1
λ
G2(s) +G1(s)

]} 6p−4
20−6p

ds

≤ ce−λt
∫ t

τ

eλsds+ ce−λt
∫ t

τ

eλse−
6p−4
20−6pλ(s−τ)(‖uτ‖2 + ‖∇uτ‖2)

6p−4
20−6p ds

+ ce−λt
∫ t

τ

eλse−
6p−4
20−6pλs{[G1(t)]

6p−4
20−6p + [G2(t)]

6p−4
20−6p }ds

≤ ce−λt[eλt − eλτ ] + ce−λ(t−τ)(‖uτ‖
6p−4
10−3p

+ ‖∇uτ‖
6p−4
10−3p )

∫ t

τ

e−
6p−4
20−6pλ(s−τ)ds

+ ce−λt
∫ t

τ

e
24−12p
20−6p λs{[G1(t)]

6p−4
20−6p + [G2(t)]

6p−4
20−6p }ds

≤ c+ c(t− τ)e−λ(t−τ)(‖uτ‖
6p−4
10−3p + ‖∇uτ‖

6p−4
10−3p )

+ ce−λt
∫ t

τ

e
24−12p
20−6p λs{[G1(t)]

6p−4
20−6p + [G2(t)]

6p−4
20−6p }ds.

(3.24)

Combining (3.23) and (3.24) with (3.22), we complete the proof. �

Remark 3.4. In this article, motivated by the ideas in [12, 17], we establish the
existence of pullback attractors for the nonautomous fourth-order parabolic prob-
lem (1.1)-(1.3) in 3D case. To overcome the difficulty caused by the nonlinearity
term ∇ · (|∇u|p−2∇u), we impose the exponential growth condition (2.1) on the
external forcing term g(x, t). On the other hand, in order to obtain the suitable
a prior estimates, we have to restrict the parameter p and take advantage of the
Nirenberg’s inequality more times. For example, in the six line of (3.19), the ex-
ponent of ‖∆2u(t)‖ is 5

3 + p − 3, which should be less than 2, so we have to let
the parameter p ∈]2, 10

3 [. Furthermore, if the problem is studied in nD case, where
n ≤ 3, we need only restrict the parameter p ∈]2, 2 + 4

n [. Using the same method
as this article, we can obtain the result on the existence of pullback attractor for
nD problem (1.1)-(1.3) when p ∈]2, 2 + 4

n [ and n ≤ 3.

Let R be the set of all function r : R→ (0,∞) such that

lim
t→−∞

teδtr
6p−4
10−3p (t) = 0.

Denote by D the class of all families D̂ := {D(t) : t ∈ R} ⊂ B(H2
0 (Ω)) such that

D(t) ⊂ B0(r(t)) for some r(t) ∈ R, B0(r(t)) denote the closed ball in H2
0 (Ω) with

radius r(t). Let

r2
0(t) = 2c

[
1 + e−λtG1(t) + e−λtG2(t)

+ e−λt
∫ t

−∞
e

24−12p
20−6p λs

[
[G1(s)]

6p−4
20−6p + [G2(s)]

6p−4
20−6p

]
ds
]
.
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Using the continuity of embedding H2
0 (Ω) ↪→ L2(Ω), for any D̂ ∈ D and t ∈ R there

exists τ0(D̂, t) < t such that

‖∆u(t)‖ ≤ r0(t), ∀τ < τ0. (3.25)

Furthermore, since 0 ≤ α <
(

20−6p
6p−4

)2
λ, we obtain B0(r0(t)) ∈ D. Therefore,

B0(r0(t)) is a family of bounded pullback D-absorbing sets in H2
0 (Ω).

Now, we present the proof of the main result.

Proof of Theorem 2.6. To prove the existence of pullback attractor for problem
(1.1)-(1.3), we need only prove that the process {u(t, τ)} is pullback ω − D-limit
compact (PDC). Thanks to A−1 is a continuous compact operator in L2(Ω), there
is a sequence {λj}∞j=1 satisfying

λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . , λj →∞, as j →∞,

and a family of elements {wj}∞j=1 of H2
0 (Ω) which are orthonormal in L2(Ω) such

that

Awj = λjwj , for j = 1, 2, . . . .

Write Xn = span{w1, w2, . . . , wn} ⊂ H2
0 (Ω) and Pn : H2

0 (Ω)→ Xn is an orthogonal
projector. Hence

u = Pnu+ (I − Pn)u := u1 + u2.

Taking the scalar product of (1.1) with ∆2u2, using Young’s inequality, we obtain

1
2
d

dt
‖∆u2(t)‖2+‖∆2u2(t)‖2 ≤ 1

2
‖∆2u2(t)‖2+c(‖∆u(t)‖2+‖g(t)‖2+‖∇u(t)‖

6p−4
10−3p ),

which means

d

dt
‖∆u2(t)‖2 + λn‖∆u2(t)‖2 ≤ c(‖∆u(t)‖2 + ‖g(t)‖2 + ‖∇u(t)‖

6p−4
10−3p ). (3.26)

Multiplying (3.26) by (t− τ)eλnt and integrating it over (τ, t), we deduce that

(t− τ)eλnt‖∆u2(t)‖2

≤
∫ t

τ

eλns‖∆u2(s)‖2dx+ c

∫ t

τ

(s− τ)eλns‖∆u(s)‖2ds

+ c

∫ t

τ

(s− τ)eλns‖g(s)‖2ds+ c

∫ t

τ

(s− τ)eλns‖∇u(s)‖
6p−4
10−3p ds

≤
∫ t

τ

eλns‖∆u(s)‖2dx+ c(t− τ)
∫ t

τ

eλns‖∆u(s)‖2ds

+ c(t− τ)
∫ t

τ

eλns‖g(s)‖2ds+ c

∫ t

τ

(s− τ)eλns‖∇u(s)‖
6p−4
10−3p ds.

(3.27)
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It then follows from (3.25) and (3.27) that

‖∆u2(t)‖2

≤ (t− τ)−1e−λnt
∫ t

τ

eλns‖∆u(s)‖2dx+ ce−λnt
∫ t

τ

eλns‖∆u(s)‖2ds

+ ce−λnt
∫ t

τ

eλns‖g(s)‖2ds+ ce−λnt
∫ t

τ

eλns‖∇u(s)‖
6p−4
10−3p ds

≤ c(t− τ)−1e−λnt
∫ t

τ

eλnsr2
0(s)dx+ ce−λnt

∫ t

τ

eλnsr2
0(s)ds

+ ce−λnt
∫ t

τ

eλns‖g(s)‖2ds+ ce−λnt
∫ t

τ

eλnsr
6p−4
10−3p
0 (s)ds, ∀τ ≤ τ0.

(3.28)

Note that

e−λnt
∫ t

τ

eλnsr2
0(s)dx = ce−λnt

∫ t

τ

eλns[1 + e−λsG1(s) + e−λsG2(s)]ds

≤ cλ−1
n + c(λn − λ)−1e−λt[G1(t) +G2(t)].

(3.29)

and

e−λnt
∫ t

τ

eλnsr
6p−4
10−3p
0 (s)ds

= ce−λnt
∫ t

τ

eλns
[
1 + e−λsG1(s) + e−λsG2(s)

+ e−λs
∫ s

−∞
e

24−12p
20−6p λr

[
[G1(r)]

6p−4
20−6p + [G2(r)]

6p−4
20−6p

]
dr
] 6p−4

20−6p
ds

≤ cλ−1
n + c

(
λn −

6p− 4
20− 6p

λ
)−1

e−
6p−4
20−6pλt

{
[G1(t)]

6p−4
20−6p + [G2(t)]

6p−4
20−6p

}
+ c
(
λn −

6p− 4
20− 6p

λ
)−1

e−
6p−4
20−6pλt

[( ∫ t

−∞
e

24−12p
20−6p λs[G1(s)]

6p−4
20−6p

) 6p−4
20−6p

+
(∫ t

−∞
e

24−12p
20−6p λs[G2(s)]

6p−4
20−6p

) 6p−4
20−6p

]
.

(3.30)

On the other hand, simple calculations show that

e−λnt
∫ t

τ

eλns‖g(s)‖2ds ≤

{
βe−λnt

∫ t
τ
eλnse−αsds, t ≤ 0,

βe−λnt
∫ t
τ
eλnseα|s|ds, t ≥ 0,

≤


βe−λnt

λn−α , t ≤ 0,
βe−λnt

λn−α + βeαt

λn+α , t ≥ 0.

(3.31)

Adding (3.28), (3.29), (3.30) and (3.31), we can obtain for any ε > 0, there exist
τ0 < t and N ∈ N such that

‖∆u2(t)‖ ≤ ε, ∀τ < τ0.

It indicates that the process {U(t, τ)} is pullback ω − D-limit compact. Then, by
Lemma 2.4, the process corresponding to problem (1.1)-(1.3) possesses a unique
pullback D-attractor in H2

0 (Ω). �
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