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POSITIVE GROUND STATE SOLUTION FOR KIRCHHOFF
EQUATIONS WITH SUBCRITICAL GROWTH AND ZERO MASS

YU DUAN, JIU LIU, CHUN-LEI TANG

Abstract. In this article, we study the Kirchhoff equation

−
“
a + b

Z
RN
|∇u|2dx

”
∆u = K(x)f(u), x ∈ RN ,

u ∈ D1,2(RN ),

where a > 0, b > 0 and N ≥ 3. Under suitable conditions on K and f , we
obtain four existence results and two nonexistence results, using variational

methods.

1. Introduction and statement of main results

We consider the Kirchhoff equation with zero mass

−
(
a+ b

∫
RN
|∇u|2dx

)
∆u = K(x)f(u), x ∈ RN ,

u ∈ D1,2(RN ),
(1.1)

where a > 0, b > 0 and N ≥ 3. The potential function K : RN → R satisfies:

(K1) K be a nonnegative function and K ∈ Lr(RN )\{0}, where r = 2∗

2∗−p ,
2∗ = 2N

N−2 and 2 < p < 2∗;
(K2) |(∇K(x), x)| ≤ K(x) for a.e. x ∈ RN , where (·, ·) denotes the scalar product

in RN .
The nonlinear term f ∈ C(R+,R+) satisfies:

(F1) lim sups→0+
f(s)
sp−1 < +∞;

(F2) lim sups→+∞
f(s)
sp−1 < +∞;

(F3) lims→+∞
f(s)
s = +∞.

When Ω ⊂ RN is a smooth bounded domain, the equation

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)
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is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u) (1.3)

which was proposed by Kirchhoff [11] in 1883 as an extension of the classical
D’Alembert wave equation for free vibrations of elastic strings. Kirchhoff’s model
takes into account the changes in length of the string produced by transverse vibra-
tions. Some early classical studies of Kirchhoff equations were those of Bernstein
[4] and Pohozaev [18]. However, equation (1.3) received great attention only af-
ter Lions [16] proposed an abstract framework for the problem. Some interesting
results can be found in [1], [5], [6] and the references therein.

There are many recent articles studying the Kirchhoff equations with subcritical
growth in RN , see for example [7, 8, 9, 12, 13, 15, 17, 20, 21] and so on. But for the
Kirchhoff equations with subcritical growth and zero mass, to our best knowledge,
there are very few results up to now except [2] and [14]. Azzollini [2] obtained the
existence of positive radial solution under K = 1 and f satisfies the Berestycki-
Lions conditions [3]. In [14], Li et al. obtain a positive solution for b > 0 small
enough when the potential K satisfies

(K3) K ∈ L∞(RN ),
and other conditions similar to (K1), (K3), and the nonlinear term f satisfies (F3),
and

(F5) lims→+∞
f(s)
s2∗−1 = 0,

(F6) lims→0+
f(s)
s2∗−1 = 0.

Obviously, condition (F6) is stronger than (F1) and there exist functions which
satisfy (F1), but do not satisfy (F6), such as f(s) = sp−1. Thus, in the present
paper, we will remove the assumption (F6) to study equation (1.1). Inspired by
[14], we will use the monotonicity trick to investigate it. Set F (s) =

∫ s
0
f(τ)dτ .

Our results read as follows.

Theorem 1.1. Assume that a > 0 and b > 0. Suppose that (F1)–(F3) hold. Then
there exists b0 > 0 such that for any b ∈ (0, b0), equation (1.1) has a positive ground
state solution, under one of the following conditions:

(1) N ≥ 4 and (K1) holds,
(2) N = 3, 2 < p < 4 and (K1) holds,
(3) N = 3, 4 ≤ p < 6, (K1) and (K2) hold.

Theorem 1.2. Assume that a > 0, b > 0 and N = 3. Suppose that (K1) with
4 ≤ p < 6, (F1) and (F2) hold. In addition, f satisfies

(F4) lims→+∞
F (s)
s4 = +∞ and sf(s) ≥ 4F (s) for all s ≥ 0.

Then equation (1.1) has a positive ground state solution.

Theorem 1.3. Assume that a > 0 and b > 0. Suppose that (F1), (F3), (F5) hold.
Then there exists b0 > 0 such that for any b ∈ (0, b0), equation (1.1) has a positive
ground state solution, under one of the following conditions:

(1) N ≥ 4, (K1) and (K3) hold,
(2) N = 3, (K1)–(K3) hold.

Theorem 1.4. Assume that a > 0, b > 0 and N = 3. Suppose that (K1) with
4 ≤ p < 6, (K3), (F1), (F4), (F5) hold. Then (1.1) has a positive ground state
solution.
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Remark 1.5. Just like the example which was given by Li et al. in [14], when
p ∈ (max{2, 22∗

3 }, 2
∗), one can easily verify that the function K(x) = 1

1+|x|α , α ∈
( 32∗−3p

2∗ , 1] satisfies (K1)− (K3).

For equation (1.1) with b > 0 large enough, we have the following nonexistence
results.

Theorem 1.6. Assume that a > 0, b > 0, N ≥ 3 and f satisfies (F1) and (F2).
Suppose that when N = 3, (K1) with 2 < p < 4 holds and when N ≥ 4, (K1) holds.
Then there exists B > 0 such that for any b > B, equation (1.1) has only zero
solution.

Theorem 1.7. Assume that a > 0, b > 0 and N ≥ 4. Suppose that (K1), (K3),
(F1), (F5) hold. Then there exists B > 0 such that for any b > B, equation (1.1)
has only zero solution.

Theorems 1.1–1.4 and 1.6–1.7 can be seen as an extension of the results in [14].
This article is organized as follows. In Section 2 we give some preliminary knowl-
edge. Section 3 is devoted to the proofs of Theorem 1.1 and 1.2. Finally, in Section
4 we complete the proofs of Theorems 1.3, 1.4, 1.6, and 1.7.

2. Preliminaries

In what follows, we use the following notation.
• E := D1,2(RN ) is the closure of the compactly supported smooth functions with
respect to the norm

‖u‖ =
(∫

RN
|∇u|2dx

)1/2

.

• Ls(RN ) is the usual Lebesgue space endowed with the norm

|u|s =
(∫

RN
|u|sdx

)1/s

, ∀s ∈ [1,+∞), |u|∞ = ess supx∈RN |u(x)|.

• S denotes the best constant of Sobolev embedding D1,2(RN ) ↪→ L2∗(RN ), that
is,

S|u|22∗ ≤ ‖u‖2, for all u ∈ D1,2(RN ). (2.1)

• 〈·, ·〉 denotes the dual pairing.
• E∗ is the dual space of E.
• C, Ci denote various positive constants.

Since we are looking for positive solution, we assume that f(s) = 0 for all s ≤ 0.
By (F1) and (F2), there exists C1 > 0 such that

|f(s)| ≤ C1|s|p−1, for all s ∈ R, (2.2)

|F (s)| ≤ C1

p
|s|p, for all s ∈ R. (2.3)

By (F1) and (F5), for any ε > 0, there exists Cε > 0 such that

|f(s)| ≤ ε|s|2
∗−1 + Cε|s|p−1, for all s ∈ R, (2.4)

|F (s)| ≤ ε

2∗
|s|2

∗
+ Cε|t|p, for all s ∈ R. (2.5)
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By f ∈ C(R+,R+) and (F3), for any L > 0, there exists CL > 0 such that

F (s) ≥ L|s|2 − CL, for all s ∈ R+. (2.6)

By (F4), one has

F (s) ≥ L|s|4 − CL, for all s ∈ R+. (2.7)

The energy functional I : E → R defined by

I(u) =
a

2

∫
RN
|∇u|2dx+

b

4

(∫
RN
|∇u|2dx

)2

−
∫

RN
K(x)F (u)dx.

Obvious, I is of class C1 and has the derivative given by

〈I ′(u), v〉 =
(
a+ b

∫
RN
|∇u|2dx

)∫
RN

(∇u,∇v)dx−
∫

RN
K(x)f(u)vdx,

for all u, v ∈ E. As well known, the critical point of the functional I is solution of
equation (1.1). For proving our theorems, we need the following proposition.

Proposition 2.1. Let X be a Banach space equipped with a norm ‖ · ‖X and let
J ⊂ R+ be an interval. We consider a family {Φλ}λ∈J of C1-functionals on X of
the form

Φλ(u) = A(u)− λB(u), ∀λ ∈ J,

where B(u) ≥ 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞,
as ‖u‖X → +∞. We assume that there are two points v1, v2 in X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)}

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then for almost every λ ∈ J , there is a bounded (PS)cλ sequence for Φλ, that is,
there exists a sequence {un} ⊂ X such that

(i) {un} is bounded in X,
(ii) Φλ(un)→ cλ,
(iii) Φ′λ(un)→ 0 in X∗, where X∗ is the dual of X.

Remark 2.2. The above result corresponds to [10, Theorem 1.1] which is reminis-
cent of Struwe’s monotonicity trick (see [19]) and can be viewed as its generalization.
In [10, Lemma 2.3] it is also proved that under the assumptions of Proposition 2.1,
the map λ→ cλ is continuous from the left.

Let X := E, J := [1/2, 1] and Φλ(u) := Iλ(u) = A(u)− λB(u), where

A(u) =
a

2

∫
RN
|∇u|2dx+

b

4

(∫
RN
|∇u|2dx

)2

,

B(u) =
∫

RN
K(x)F (u)dx.

Then I1(u) = I(u). It is obvious that B(u) ≥ 0 for all u ∈ E and A(u) → +∞ as
‖u‖ → +∞.



EJDE-2015/262 POSITIVE GROUND STATE SOLUTION 5

3. Proofs of Theorem 1.1 and Theorem 1.2

First we give some lemmas.

Lemma 3.1. Assume that a > 0, b > 0 and N ≥ 3. Suppose that (K1), (F1),
(F2) hold. Then there exist ρ > 0 and α > 0 such that Iλ(u)|‖u‖=ρ ≥ α for all
λ ∈ [1/2, 1].

Proof. By (2.3), the Hölder and Sobolev inequalities, for all u ∈ E and all λ ∈
[1/2, 1], we have

Iλ(u) ≥ a

2

∫
RN
|∇u|2dx−

∫
RN

K(x)F (u)dx

≥ a

2
‖u‖2 − C1

p

∫
RN

K(x)|u|pdx

≥ a

2
‖u‖2 − C1

p
|K|r

(∫
RN
|u|2

∗
dx
)p/2∗

≥ C2‖u‖2 − C3‖u‖p

= ‖u‖2(C2 − C3‖u‖p−2).

Since p > 2, we can choose ρ =
(
C2
2C3

) 1
p−2 . Then Iλ(u) ≥ C2

2

(
C2
2C3

) 2
p−2 := α for all

‖u‖ = ρ. The proof is complete. �

For cλ in Proposition 2.1, we have the following lemma.

Lemma 3.2. Assume that a > 0, b > 0 and N ≥ 3. Suppose that (K1) and (F1)–
(F3) hold. Then there exists b0 > 0 such that for any b ∈ (0, b0), there are two
points v1, v2 in E such that cλ > max{Iλ(v1), Iλ(v2)} for all λ ∈ [1/2, 1].

Proof. Choose a nonnegative function ϕ ∈ C∞0 (RN ) such that ‖ϕ‖ = 1, anf∫
suppϕ

K(x)ϕ2dx 6= 0,
∫

suppϕ

K(x)dx 6= 0.

Let

L =
2a∫

suppϕ
K(x)ϕ2dx

in (2.6) and take

t0 =
√

2 max
{
ρ,
(CL
a

∫
suppϕ

K(x)dx
)1/2}

,

where ρ is given by Lemma 3.1. Then ‖t0ϕ‖ > ρ and for all λ ∈ [1/2, 1], one has

Iλ(t0ϕ) =
at20
2

+
bt40
4
− λ

∫
suppϕ

K(x)F (t0ϕ)dx

≤ at20
2

+
bt40
4
− 1

2

∫
suppϕ

K(x)(Lt20ϕ
2 − CL)dx

=
at20
2

+
bt40
4

+
CL
2

∫
suppϕ

K(x)dx− Lt20
2

∫
suppϕ

K(x)ϕ2dx

=
bt40
4

+
CL
2

∫
suppϕ

K(x)dx− a

2
t20
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≤ bt40
4
− CL

2

∫
suppϕ

K(x)dx,

which implies that there exists b0 > 0 such that for any b ∈ (0, b0), one has Iλ(t0ϕ) <
0. Thus letting v1 = 0 and v2 = t0ϕ, by Lemma 3.1 and definition of cλ, we have

0 < α ≤ c1 ≤ cλ ≤ c 1
2
< +∞.

and then cλ > Iλ(v1) > Iλ(v2). �

Lemma 3.3. Assume that a > 0, b > 0 and N = 3. Suppose that (K1) with
4 ≤ p < 6, (F1), (F2), (F4) hold. Then there are two points v1, v2 in E such that
cλ > max{Iλ(v1), Iλ(v2)} for all λ ∈ [1/2, 1].

Proof. Choose a nonnegative function ϕ ∈ C∞0 (R3) such that ‖ϕ‖ = 1, and∫
suppϕ

K(x)ϕ4dx 6= 0,
∫

suppϕ

K(x)dx 6= 0.

Let L = bR
suppϕK(x)ϕ4dx

in (2.7). Then for any t > 0 and for all λ ∈ [1/2, 1], one

has

Iλ(tϕ) =
at2

2
+
bt4

4
− λ

∫
suppϕ

K(x)F (tϕ)dx

≤ at2

2
+
bt4

4
− 1

2

∫
suppϕ

K(x)(Lt4ϕ4 − CL)dx

=
at2

2
+
bt4

4
+
CL
2

∫
suppϕ

K(x)dx− Lt4

2

∫
suppϕ

K(x)ϕ4dx

=
at2

2
+
CL
2

∫
suppϕ

K(x)dx− bt4

4
,

which indicates that there exists t0 > 0 such that ‖t0ϕ‖ > ρ and Iλ(t0ϕ) < 0. Thus
letting v1 = 0 and v2 = t0ϕ, by Lemma 3.1 and definition of cλ, we have

0 < α ≤ c1 ≤ cλ ≤ c 1
2
< +∞.

and then cλ > Iλ(v1) > Iλ(v2). �

Lemma 3.4. Assume that {un} is bounded in Ls(RN ), where 1 < s < +∞. Sup-
pose that un(x)→ u(x) a.e. in RN . Then up to a subsequence, un ⇀ u in Ls(RN ).

Proof. Suppose that |un|s ≤ M and v ∈ L
s
s−1 (RN ) is fixed. Then for any ε > 0,

there exists r > 0 such that∣∣∣ ∫
|x|≥r

unvdx
∣∣∣ ≤ |un|s(∫

|x|≥r
|v|

s
s−1 dx

) s−1
s ≤Mε.

Similarly, combining the Fatou’s lemma, we have∣∣∣ ∫
|x|≥r

uvdx
∣∣∣s ≤ |u|ss(∫

|x|≥r
|v|

s
s−1 dx

)s−1

=
∫

RN
lim inf
n→∞

|un|sdx
(∫
|x|≥r

|v|
s
s−1 dx

)s−1

≤ lim inf
n→∞

∫
RN
|un|sdx

(∫
|x|≥r

|v|
s
s−1 dx

)s−1
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≤Msεs.

Since v ∈ L
s
s−1 (Br(0)) with Br(0) := {x ∈ RN : |x| < r}, there exists δ > 0 such

that for any A ⊂ Br(0), when measA < δ, one has
( ∫

A
|v|

s
s−1 dx

) s−1
s < ε. Thus for

all n, we have ∣∣∣ ∫
A

unvdx
∣∣∣ ≤ |un|s(∫

A

|v|
s
s−1 dx

) s−1
s

< Mε.

By Vitali’s theorem, one gets∫
Br(0)

unvdx =
∫
Br(0)

uvdx+ o(1).

Hence we have∣∣∣ ∫
RN

(un − u)vdx
∣∣∣ ≤ ∣∣∣ ∫

|x|≥r
(un − u)vdx

∣∣∣+
∣∣∣ ∫
Br(0)

(un − u)vdx
∣∣∣ ≤ 2Mε+ o(1).

By the arbitrariness of ε, we complete the proof. �

Lemma 3.5. For any λ ∈ [1/2, 1], if {un} ⊂ E is a bounded and nonnegative
Palais-Smale sequence of the function Iλ, there exists a nonnegative function u ∈ E
such that, up to a subsequence, un → u in E.

Proof. Since {un} is bounded and nonnegative in E, up to a subsequence, there
exists a nonnegative function u ∈ E such that un ⇀ u in E, un(x) → u(x) a.e. in
RN and there exists d ≥ 0 such that d =

∫
RN |∇un|

2dx + o(1). By (2.2) and the
Hölder inequality, one has∫

RN
|f(un)(un − u)|

2∗
p dx ≤ C1

∫
RN
|un|

2∗(p−1)
p |un − u|

2∗
p dx

≤ C1

(∫
RN
|un|2

∗
dx
) p−1

p
(∫

RN
|un − u|2

∗
dx
)1/p

≤ C.

Combining f(un(x))(un(x) − u(x)) → 0 a.e. in RN with Lemma 3.4, up to a
subsequence, we get f(un)(un − u) ⇀ 0 in L

2∗
p (RN ). Since K ∈ Lr(RN ), we have∫

RN
K(x)f(un)(un − u)dx = o(1).

Thus by I ′λ(un)→ 0 in E∗, one has

0 = 〈I ′λ(un), un − u〉+ o(1)

= a

∫
RN

(∇un,∇(un − u))dx+ b

∫
RN
|∇un|2dx

∫
RN

(∇un,∇(un − u))dx

− λ
∫

RN
K(x)f(un)(un − u)dx+ o(1)

= a(‖un‖2 − ‖u‖2) + bd(‖un‖2 − ‖u‖2) + o(1),

which implies ‖un‖ → ‖u‖. Combining un ⇀ u in E, we get un → u in E. The
proof is complete. �
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Remark 3.6. According to Proposition 2.1 and Lemma 3.2, for almost every λ ∈
[1/2, 1], there exists a bounded sequence {un} ⊂ E such that Iλ(un) → cλ and
I ′λ(un)→ 0 in E∗. Define u± = max{±u, 0}, then

o(1) = 〈I ′λ(un), u−n 〉

=
(
a+ b

∫
RN
|∇un|2dx

)∫
RN

(∇un,∇u−n )dx− λ
∫

RN
K(x)f(un)u−n dx

= −
(
a+ b

∫
RN
|∇un|2dx

)∫
RN
|∇u−n |2dx,

which implies u−n → 0 in E. Thus one has

cλ = Iλ(un) + o(1)

=
a

2

∫
RN
|∇un|2dx+

b

4

(∫
RN
|∇un|2dx

)2

− λ
∫

RN
K(x)F (un)dx+ o(1)

=
a

2

(∫
RN
|∇u+

n |2dx+
∫

RN
|∇u−n |2dx

)
+
b

4

(∫
RN
|∇u+

n |2dx+
∫

RN
|∇u−n |2dx

)2

− λ
∫

RN
K(x)F (u+

n )dx+ o(1)

=
a

2

∫
RN
|∇u+

n |2dx+
b

4

(∫
RN
|∇u+

n |2dx
)2

− λ
∫

RN
K(x)F (u+

n )dx+ o(1)

= Iλ(u+
n ) + o(1)

and

0 = 〈I ′λ(un), ϕ〉+ o(1)

=
(
a+ b

∫
RN
|∇un|2dx

)∫
RN

(∇un,∇ϕ)dx− λ
∫

RN
K(x)f(un)ϕdx+ o(1)

=
(
a+ b

∫
RN
|∇u+

n |2dx+ b

∫
RN
|∇u−n |2dx

)(∫
RN

(∇u+
n ,∇ϕ)dx

−
∫

RN
(∇u−n ,∇ϕ)dx

)
− λ

∫
RN

K(x)f(u+
n )ϕdx+ o(1)

=
(
a+ b

∫
RN
|∇u+

n |2dx
)∫

RN
(∇u+

n ,∇ϕ)dx− λ
∫

RN
K(x)f(u+

n )ϕdx+ o(1)

= 〈I ′λ(u+
n ), ϕ〉+ o(1),

uniformly for all ϕ ∈ E and ‖ϕ‖ = 1. That is, {u+
n } is a bounded Palais-Smale

sequence of Iλ. By Lemma 3.5, there exists a nonnegative function u ∈ E such
that, up to a subsequence, u+

n → u in E. Thus Iλ(u) = cλ and I ′λ(u) = 0 in E∗.

Proof of Theorem 1.1. Set λj ∈ [1/2, 1] and λj → 1−. Then there exists a sequence
nonnegative functions uj ∈ E such that Iλj (uj) = cλj and I ′λj (uj) = 0. If N ≥ 4,
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2 < p < 2∗ ≤ 4. By (K1), (2.2) and 〈I ′λj (uj), uj〉 = 0, we have

a‖uj‖2 + b‖uj‖4 = λj

∫
RN

K(x)f(uj)ujdx

≤ C1

∫
RN

K(x)|uj |pdx

≤ C1|K|r|uj |p2∗
≤ C‖uj‖p,

(3.1)

which implies ‖uj‖ ≤ C. If N = 3 and 2 < p < 4, by (3.1) with N = 3, we have
‖uj‖ ≤ C. If N = 3 and 4 ≤ p < 6, by (K1), (K2), I ′λj (uj) = 0, one has the
following Pohozaev equality (see [14, Lemma 2.2])

a

2
‖uj‖2 +

b

2
‖uj‖4 = 3λj

∫
R3
K(x)F (uj)dx+ λj

∫
R3

(∇K(x), x)F (uj)dx.

Combining (K2) with Iλj (uj) = cλj , we have

a

2
‖uj‖2 +

b

2
‖uj‖4 = 3λj

∫
R3
K(x)F (uj)dx+ λj

∫
R3

(∇K(x), x)F (uj)dx

≥ 2λj
∫

R3
K(x)F (uj)dx

= a‖uj‖2 +
b

2
‖uj‖4 − 2cλj ,

which implies that

2cλj ≥
a

2
‖uj‖2.

Hence ‖uj‖ ≤ C. Since I(uj) = Iλj (uj) + o(1) = cλj + o(1) = c + o(1) and
I ′(uj) = I ′λj (uj) + o(1) = o(1) in E∗, according to Lemma 3.5, there exists a
nonnegative function u ∈ E such that uj → u in E. Thereby I(uj) → I(u) = c
and I ′(uj) → I ′(u) = 0 in E∗. That is, u is a nonnegative solution of equation
(1.1). To obtain the ground state solution, we set π = infu∈Π I(u), where Π =
{u ∈ E\{0}|I ′(u) = 0, u ≥ 0} and then π ≤ c. Obviously, π > −∞. Since
Π 6= ∅, there exist a nonnegative sequence un ∈ E such that I ′(un) = 0 and
I(un) → π. With the same method, we can obtain {un} is bounded in E and
then there exists a nonnegative function u ∈ E such that un → u in E. Hence we
have I(un) → I(u) = π, I ′(un) → I ′(u) = 0. Because of the strongly maximum
principle, we know u > 0. So we complete the proof of Theorem 1.1. �

Proof of Theorem 1.2. By Lemma 3.1, Lemma 3.3 and the mountain pass theorem,
there exists a sequence {un} ⊂ E such that I(un) → c and I ′(un) → 0 in E∗. By
(F4), for n large enough, we have

c+ 1 + ‖un‖ = I(un)− 1
4
〈I ′(un), un〉

=
a

4
‖un‖2 +

∫
R3
K(x)[

1
4
f(un)un − F (un)]dx

≥ a

4
‖un‖2.

Thus {un} is bounded in E. By Remark 3.6, {u+
n } is a bounded sequence satisfying

I(u+
n ) → c and I ′(u+

n ) → 0 in E∗. By Lemma 3.5, there exists a nonnegative
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function u ∈ E such that, up to a subsequence, u+
n → u in E. Thus I(u) = c

and I ′(u) = 0 in E∗. The rest of proof is the same as Theorem 1.1. The proof is
complete. �

4. Proofs of Theorem 1.3, 1.4, 1.6 and 1.7

We establish parallel steps as Lemmas 3.1, 3.2, 3.3 and 3.5.

Lemma 4.1. Assume that a > 0, b > 0 and N ≥ 3. Suppose that (K1), (K3),
(F1), (F5) hold. Then there exist ρ > 0 and α > 0 such that Iλ(u)|‖u‖=ρ ≥ α for
all λ ∈ [1/2, 1].

Proof. By (2.5) with ε = 1, the Hölder and Sobolev inequalities, for all u ∈ E and
all λ ∈ [1/2, 1], we have

Iλ(u) ≥ a

2

∫
RN
|∇u|2dx−

∫
RN

K(x)F (u)dx

≥ a

2
‖u‖2 − 1

2∗

∫
RN

K(x)|u|2
∗
dx− C

∫
RN

K(x)|u|pdx

≥ a

2
‖u‖2 − 1

2∗
|K|∞

∫
RN
|u|2

∗
dx− C|K|r|u|p2∗

≥ C2‖u‖2 − C3‖u‖2
∗
− C4‖u‖p

= ‖u‖2(C2 − C3‖u‖2
∗−2 − C4‖u‖p−2).

Since p > 2, we can choose ρ > 0 small enough such that C2−C3ρ
2∗−2−C4ρ

p−2 > 0.
Then there exists α > 0 such that Iλ(u) ≥ α for all ‖u‖ = ρ. The proof is
complete. �

The proofs of the following two lemmas are the same as Lemma 3.2 and 3.3.

Lemma 4.2. Assume that a > 0, b > 0 and N ≥ 3. Suppose that (K1), (K3),
(F1), (F3), (F5) hold. Then there exists b0 > 0 such that for any b ∈ (0, b0), there
are two points v1, v2 in E such that cλ > max{Iλ(v1), Iλ(v2)} for all λ ∈ [1/2, 1].

Lemma 4.3. Assume that a > 0, b > 0 and N = 3. Suppose that (K1) with
4 ≤ p < 6, (K3), (F1), (F4), (F5) hold. Then there are two points v1, v2 in E such
that cλ > max{Iλ(v1), Iλ(v2)} for all λ ∈ [1/2, 1].

Lemma 4.4. For any λ ∈ [1/2, 1], if {un} ⊂ E is a bounded and nonnegative
Palais-Smale sequence of the function Iλ, there exists a nonnegative function u ∈ E
such that, up to a subsequence, un → u in E.

Proof. Since {un} is bounded and nonnegative in E, up to a subsequence, there
exists a nonnegative function u ∈ E such that un ⇀ u in E, un(x) → u(x) a.e. in
RN and there exists d ≥ 0 such that d =

∫
RN |∇un|

2dx+ o(1). Since {|un|p−1|un−
u|} is bounded in L

2∗
p (RN ) and |un(x)|p−1|un(x) − u(x)| → 0 a.e. in RN , by

Lemma 3.4, up to a subsequence, we have |un|p−1|un−u|⇀ 0 in L
2∗
p (RN ). In view

of K ∈ Lr(RN ), one has∫
RN

K(x)|un|p−1|un − u|dx = o(1).
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Combining this with (2.4), we have∣∣∣ ∫
RN

K(x)f(un)(un − u)dx
∣∣∣

≤ ε
∫

RN
K(x)|un|2

∗−1|un − u|dx+ Cε

∫
RN

K(x)|un|p−1|un − u|dx

≤ ε|K|∞|un|2
∗−1

2∗ |un − u|2∗ + o(1) = Cε+ o(1).

Hence by I ′λ(un)→ 0 in E∗, we deduce that

0 = 〈I ′λ(un), un − u〉+ o(1)

= a

∫
RN

(∇un,∇(un − u))dx+ b

∫
RN
|∇un|2dx

∫
RN

(∇un,∇(un − u))dx

− λ
∫

RN
K(x)f(un)(un − u)dx+ o(1)

= a(‖un‖2 − ‖u‖2) + bd(‖un‖2 − ‖u‖2) + o(1),

which implies ‖un‖ → ‖u‖. Combining un ⇀ u in E, we get un → u in E. The
proof is complete. �

According to Proposition 2.1 and Lemma 4.2, for almost every λ ∈ [1/2, 1], there
exists a bounded sequence {un} ⊂ E such that Iλ(un)→ cλ and I ′λ(un)→ 0 in E∗.
By Remark 3.6, we can assume that un is nonnegative. Thus from Lemma 4.4, we
know that there exists a nonnegative function u ∈ E such that un → u in E and
then for almost every λ ∈ [1/2, 1], Iλ(u) = cλ and I ′λ(u) = 0.

Proof of Theorem 1.3. Set λj ∈ [1/2, 1] and λj → 1−. T hen there exists a non-
negative sequence {uj} ⊂ E such that Iλj (uj) = cλj and I ′λj (uj) = 0. If N ≥ 4,
2 < p < 2∗ ≤ 4. By (K1), (K3), (2.4) and 〈I ′λj (uj), uj〉 = 0, we have

a‖uj‖2 + b‖uj‖4 = λj

∫
RN

K(x)f(uj)ujdx

≤ ε
∫

RN
K(x)|uj |2

∗
dx+ Cε

∫
RN

K(x)|uj |pdx

≤ ε|K|∞
∫

RN
|uj |2

∗
dx+ Cε|K|r|uj |p2∗

≤ Cε‖uj‖2
∗

+ Cε‖uj‖p,

which implies ‖uj‖ ≤ C, for ε = b
2C . If N = 3, by (K1), (K2), I ′λj (uj) = 0, one has

the Pohozaev equality
a

2
‖uj‖2 +

b

2
‖uj‖4 = 3λj

∫
R3
K(x)F (uj)dx+ λj

∫
R3

(∇K(x), x)F (uj)dx.

Combining Iλj (uj) = cλj , we have

a

2
‖uj‖2 +

b

2
‖uj‖4 = 3λj

∫
R3
K(x)F (uj)dx+ λj

∫
R3

(∇K(x), x)F (uj)dx

≥ 2λj
∫

R3
K(x)F (uj)dx

= a‖uj‖2 +
b

2
‖uj‖4 − 2cλj



12 Y. DUAN, J. LIU, C.-L. TANG EJDE-2015/262

which implies

2cλj ≥
a

2
‖uj‖2.

Hence ‖uj‖ ≤ C. The rest of the proof is similar with Theorem 1.1. �

The proof of Theorem 1.4 is same as that of Theorem 1.2 and it is omitted.

Proof of Theorem 1.6. Suppose that u ∈ E is a nonzero solution of (1.1). Then
combining (2.1), (2.2), the Hölder and Young inequalities, we have

a‖u‖2 + b‖u‖4 =
∫

RN
K(x)f(u)udx

≤ C1

∫
RN

K(x)|u|pdx

≤ C1|K|r|u|p2∗
≤ C1S

− p2 |K|r‖u‖p

=
( 2a

4− p
) 4−p

2 ‖u‖4−pC1S
− p2 |K|r

(4− p
2a

) 4−p
2 ‖u‖2p−4

≤ a‖u‖2 +
p− 2

2
[
C1S

− p2 |K|r
(4− p

2a
) 4−p

2
] 2
p−2 ‖u‖4

< a‖u‖2 + b‖u‖4,

for any b > B := p−2
2 [C1S

− p2 |K|r( 4−p
2a )

4−p
2 ]

2
p−2 , which is a contradiction. The proof

is complete. �

Proof of Theorem 1.7. Suppose that u ∈ E is a nonzero solution of (1.1). Then
combining (2.1), (2.4) and Hölder’s inequality, we have

a‖u‖2 + b‖u‖4 =
∫

RN
K(x)f(u)udx

≤ ε
∫

RN
K(x)|u|2

∗
dx+ Cε

∫
RN

K(x)|u|pdx

≤ ε|K|∞S−
2∗
2 ‖u‖2

∗
+ Cε|K|rS−

p
2 ‖u‖p.

(4.1)

When N = 4, 2∗ = 4. Choose ε = b

2|K|∞S−
2∗
2

. Using (4.1) and the Young

inequality, one has

a‖u‖2 +
b

2
‖u‖4 ≤ C|K|rS−

p
2 ‖u‖p

=
( 2a

4− p
) 4−p

2 ‖u‖4−pCS−
p
2 |K|r

(4− p
2a

) 4−p
2 ‖u‖2p−4

≤ a‖u‖2 +
p− 2

2
[
CS−

p
2 |K|r

(4− p
2a

) 4−p
2
] 2
p−2 ‖u‖4

< a‖u‖2 +
b

2
‖u‖4,

for any b > B := (p− 2)
[
CS−

p
2 |K|r

(
4−p
2a

) 4−p
2
] 2
p−2 , which is a contradiction. When

N > 4, 2 < 2∗ < 4. Choose ε = 1. Using (4.1) and the Young inequality, one has

a‖u‖2 + b‖u‖4 ≤ |K|∞S−
2∗
2 ‖u‖2

∗
+ C|K|rS−

p
2 ‖u‖p
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=
( a

4− 2∗
) 4−2∗

2 ‖u‖4−2∗ |K|∞S−
2∗
2
(4− 2∗

a

) 4−2∗
2 ‖u‖22∗−4

+
( a

4− p
) 4−p

2 ‖u‖4−pCS−
p
2 |K|r

(4− p
a

) 4−p
2 ‖u‖2p−4

≤ a‖u‖2 +
2∗ − 2

2
[
|K|∞S−

2∗
2
(4− 2∗

a

) 4−2∗
2
] 2

2∗−2 ‖u‖4

+
p− 2

2
[
CS−

p
2 |K|r

(4− p
a

) 4−p
2
] 2
p−2 ‖u‖4

< a‖u‖2 + b‖u‖4,

for any b > B := 2∗−2
2

[
|K|∞S−

2∗
2
(

4−2∗

a

) 4−2∗
2
] 2

2∗−2 + p−2
2

[
CS−

p
2 |K|r

(
4−p
a

) 4−p
2
] 2
p−2 ,

which is a contradiction. The proof is complete. �
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