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WELL-POSEDNESS AND BLOWUP CRITERION OF
GENERALIZED POROUS MEDIUM EQUATION IN
BESOV SPACES

XUHUAN ZHOU, WEILIANG XIAO, TAOTAO ZHENG

ABSTRACT. We study the generalized porous medium equation of the form
ut +vAPu = V- (uV Pu) where P is an abstract operator. We obtain the local
well-posedness in Besov spaces for large initial data, and show the solution
becomes global if the initial data is small. Also, we prove a blowup criterion
for the solution.

1. INTRODUCTION
In this article, we study the equation in R™ of the form

uy + vAPu = V - (uV Pu);

u(0, ) = ug. (L)

Here u = u(t,z) ia a real-valued function, represents a density or concentration.
The dissipative coefficient v > 0 corresponds to the viscous case, while v = 0
corresponds to the inviscid case. The fractional operator A? is defined by Fourier
transform as (A%u)" = |¢|%4, and P is an abstract operator.

The general form of equation has good suitability in many cases. The
simplest case v = 0, Pu = wu comes from a model in groundwater infiltration,
that is, uy = Au? (see [2,33]). We call generalized porous medium equation
(GPME) inspired by Caffarelli and Vézquez [12], in which they introduced the
fractional porous medium flow (FPME) when v = 0 and Pu = A=%%4,0 < s < 1.
When Pu = A~2u, it is the mean field equation, which is first studied by Lin and
Zhang [28]. Some results on the well-posedness and regularity on those equations
can be seen [7, 8] T3], 14, B0} BT, B4}, B9] and the references therein.

Another similar model occurs in the aggregation equation, which is an important
equation arising in physics, biology, chemistry, population dynamics, etc.([I5] [I0L
211 32]). In this model, the operator P is a convolution operator with kernel K;
that is, Pu = K *u. The typical kernels are |z|7, see [9, 22, 27], and —e~ %I, see
[3 6, 25| 26]. For more results on this equation, we refer to [4, Bl [IT], 23] 24] and
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the references therein. Besides, if we rewrite the equation (1.1)) with same initial
data as
uy + vAPu + v - Vu = —u(V - v);

1.2
v = —VPu, (12)

then it is a kind of special transport type equation. Furthermore, if we assume that
v is divergence-free vector function (V-v = 0), the form can contain the 2—D
quasi-geostrophic (Q-G) equation [I7, 18| 19, [35].

In this article we study the well-posedness of equation in homogenerous
Besov spaces under a general condition

IVPull, < Cllull s (13)

It is widespread adopted in the case of FPME, Q-G equation, or aggregation equa-
tion with its usual kernel |z|” and it plays somewhat key role in the well-posedness
and regularity of those equations in Besov spaces or Sobolev spaces. Based on the
ideas used in [29] 36 [37, B8], we prove the following theorem.

Theorem 1.1. Assume P satisfies (1.3] ., 8 € (O 2] p>lando+1 < B <

oc+nmin(2/p,1). Then for any initial data ug € B” ﬁﬂB”JrU o , the Cauchy
problem (L.1)) admits a unique solution
2io—p3 2to—B+1 p+0+1

we (0,1 B2 n By, )N L0, 1) B2 n BT,

Moreover, if T* denotes the mazimal time of existence of u,

(i) there exists a constant Cy > 0 such that if ||u0|| nio-pi1 < Cp, then T* =
p 1
005

(il) of T* < o0, then fo [lu(t HBn/p+a+1dt

Remark 1.2. In the case of aggregation equation, Wu and Zhang [36] proved a
similar result under the condition VK € Wt 3 € (0,1). Corresponding to their
case we prove same result for o = 0, that is VK € L, 3 € (1,2), and also a similar
result for 0 = —1; that is, VK € Wl g e (0,1).

Throughout this article, C' denotes a positive constant that may differ line by
line, the notation A < B means A < CB, and A ~ B denotes A < B and B < A.

2. PRELIMINARIES

Let us recall some basic knowledge on Littlewood-Paley theory and Besov spaces.
Let .#(R™) be the Schwartz class and .7 be its dual space. Given f € .Z(R"), we

use its Fourier transform F f = f as

f=(@m)"? / ) e f () da

Let ¢ € C2°(R™) be a radial real-valued smooth function such that 0 < ¢(£) <1
and

ng ~I¢) =1 for any £ # 0.

Jj€Z

suppp C {£ € R":

»Mw
oo\oo



EJDE-2015/261 POROUS MEDIUM EQUATION IN BESOV SPACES 3

We denote ¢, (§) = p(277¢) and P the set of all polynomials. Setting h = F~ ¢,
we define the frequency localization operators as follows:

Byu=p2 Dy =2" [ W@yl - gy, $;f = 3 A
R E<j—1

Definition 2.1. For s € R,p,q € [1, 00|, we define the homogeneous Besov space
B, , as

. . 1/q

By ={f e Pillfls, = (D2 aIL) " < oo}

JEL

Here the norm changes normally when p = oo or ¢ = oo.
Definition 2.2. In this paper, we need two kinds of mixed time-space norm defined

as follows: For s € R,1 < p,q < 00, =[0,T),T € (0,00], and X a Banach space
with norm | - || x where

1/r
It = ([ 156 xar) "
I
1 ey = (302N 1 ripmy) ™

JEZ
By Minkowski’ inequality, there holds
L'(I;Bs,) — L(I; Bs ), ifr<q, 21)
L7(T; B;’q) — L"(I; B;’q), ifr >gq. .

Now we state some basic properties about the homogeneous Besov spaces.

Proposition 2.3 ([1]). For s € R,1 < p,q < oo, the following hold:
(i) Let B € R, we have the equivalence of norms: |[A°f| g.  ~ || f| go+s-

(i) If p1 < po,aqr < go, then BS s By al/m=1/pe),
(iii) Let 1 < p,q < 00, 81,82 < % when g > 1 (or s1,82 <

$1 + s9 > 0, there holds

n

% when ¢ =1), and

luwv]l oren-n < Cllul

p,q

sy, [0l s3z,
where C' > 0 be a constant depending on s1,S2,p,q,Nn.

Lemma 2.4 (Bernstein’s inequalities [I7]). Set B to be a ball and C to be an
annulus, and let 1 < p < g < oo, a € ({0}UN)", then the following estimates hold:

(i) Ifsuppfe 2B, B+ |a| >0, then
HAﬁDO‘fHLq < 02/ (Btlal+n(1/p=1/q)) [Filres
(ii) If supp f € 29C, then
2D fllpy < APD fl 1o < C'27EFD] £y,
where C < C' are positive constants independent of 7.

Lemma 2.5 ([1]). Let C ba an annulus. If supp f C 29C, then positive constant
¢ > 0 exists such that for any t > 0, there holds

_+AB _ iB
le™*" fllze < Ce™ 7 fll 1.
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Lemma 2.6 ([29]). Let s € R and 1 < p < p; < co. Set R; := (Sj_1v —v) -
VAju—[Aj,v-V]u. There exists a constant C = C(n, s) such that

2 Ryller < C( D2 1Sy-1 Vol 1A ullzs
li—3"1<4
+ Y A Vol =2 Al
Jj'2j—3

+ 0 2T A Vol 27| A gl o

Iy —j| <4
i"<i’-2

N Z (i =3")(stnmin(gh, ) o 7+ (273" 1A Vol e

J'>5-3
I3 —35"1<1

+ ||AJ/V . ’UHLm )Qj/,s||Aj"u||L”)'

Now we recall a priori estimates needed in our proof. Consider the transport-
diffusion equation

du+v-Vu+vAPu=f, u0,z)=mu(z). (2.2)
Lemma 2.7 ([29]). Let 1 <7 <r<o00,1<p<p; < oo and 1< g < oo. Assume
s € R satisfies the following conditions:
s<1+£ (or s < ﬁ,ifqzl),
n p1

n n n n
s> —min(—, — or s > —1 —min(—, —),ifdivu = 0).
2 ) )

There exists a positive constant C = C(n, 3,s,p,p1,q) such that for any smooth
solution u of (2.2)) with v > 0, the following a priori estimate holds:

Vl/r”“”g;fg;j;ff/r < CeCZ(T) (HUOHBZ,q + 1/1/r171||f||L;1 B;:J[3+ﬁ/r1),

where Z(T) = fOT IVo(t) dt.

lsp/ms e

3. LOCAL AND GLOBAL WELL-POSEDNESS
In this section we prove our main theorem. We first rewrite as
uy + APu+ v - Vu = u(APu);
v = —VPu;
u(0,x) = uo.

Step 1: Approximate solutions. In this step we construct approximate equa-

tions, and prove the boundedness of the approximate solutions. Set u° = e~ th” uo(x)

and let u™*! be the solution of the linear equation
w4 AP o™ V™ = o™ (APU™);
™" = —-VPu™; (3.1)

u™ (0, ) = ug.
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n n 1 . n
Set X = B"JFU’GQB”JFJ o ndY:B; ﬂB"JﬂH It is easy to show

u’ € L2RT; X)NLYRT;Y).

Now by induction, we deduce u™ belongs to the same spaces. In fact, by Lemma

27

'rn-‘,—lH‘C1

H’LLm+1 ‘lﬁan/p+U—ﬁ+1 + Hu n/p+o+1

cf Vo™

Ol .
n/i"mLf>C> (H?,I,O||Bn,/lp+a—5+l
P,

+ ||um(AP’U/m)HE%BS,/IPJrofﬁJrl)

e TNV O onypdt
e’ By (HUOHB"“’*”*B“ (3'2)

~

+||U ||L00Bn/p+a ﬁ+1||APu ”Ll n/p)
cllw™l 1 gn/ptot
et (||U0||Bn/1p+a—ﬁ+1

p,

+ ||um||L%oB;/1p+a—ﬁ+1 ||um||£1TB;1/1p+a+1)-

Similarly, we conclude that

m+1 ||/:1

||um+1||£oo]'3n/p+a—6 + [|u g/t
T p,1

€CHumHL%‘B§,/1p+U+1 ( (33)

~

HUOHBZ/IIH»Ufﬁ + ‘lum‘|ﬁ%oB:,/1p+07ﬁ ||um||L%Bgy/lp+a+1).

Thus for all m € N, we have u™ € L (R*; X) N LY(RF;Y).

Step 2: Uniform estimates. We prove the key uniform estimates during this
step. Set u; := Aju, f; = A;(w™APu™). Then we can obtain

Claim 3.1. There exists Ty < T, such that for all t € [0,T1]

—etr2BN1/T
™ gy gasorr S 3 (1= €74 ) 727 g |
" €z
3 [ 2 Ul + 1)
JEZ
where Rj := (S;_qo™ —v™) - Vu" — [Aj 0™ V]umt
We postpone the proof of this claim to the appendix. Taking s = % +o—-0+1

and p large enough such that o + 1+ 3/p < 8. Then by Proposition with
si=n/p+o+1—pF+48/r,sa =n/p— B/r, there holds

Z/ 9i(n/p+o+1-p ||fJ||LPdT< Hum||Lan/P+f’+1 siaso|lu™ HL,, Br/preti=ple:
JEZL

Taking p large enough and using Lemma ﬁ withs=n/p+1+0c—0,p1=p

> [ e i

JEZ

,S ||Um—"_1 ||L§B;11/lp+a+1—ﬂ+8/p ||Um||Lf’ B;y/1p+a+1fﬁ/p-
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Hence for » > 1 and p large enough, we have
[

- Hn/pro+1-6+3/r
LyB"Te

SY (1 e il =0y
jGZ (34)

+ Hum HLfB;’/lPJrUJrlfﬁJrﬁ/P Hum HL;J,B;L’/IP‘FUi»lfﬁ/p
+ Hum—'—l ||Lan/lp+o+lfﬁ+B/p HumHLf’B”/IP+”+1*5/P'
LD, P
. ’ i
Now by (3.4) with » = p and the fact that (1 — e_Ct”/QJB)l/p <(1- e_Ctpzm)l/p
for p large,
||Um+1 ||L$Bn/1p+u+1—/3+ﬁ/p + ||Um+1 ”Lf'B”/l"*”“*B/”
Lt P, D,

Cetp23B\1/poi(n/ptodl—
SO (1= emer ) Pt et g
JEZ

v

+ Hum|‘£f]3:,/lp+0+1*5+ﬂ/f> [u™ H[;f’ Br/ptoti=sle
+ Hum—H H[;fB:’/leroJrlfﬁ+B/p HumHEf’ B;l’/lp+u+175/p~
By Lebesgue dominated convergence theorem, for p < oo, we have

lim 37 (1= ety /Poitn/mrot =B g 1, = 0.

t—0+
jez

Now we set
T=sup{t>0: CZ (1- e*Ct”zjﬂ)1/p2j(”/”+‘7+176)||u0,j||Lp <n},
JEZ
for some 7 > 0 sufficiently small. By definition of u°, V¥t < T, we have
||UO||££B;/1p+a+1—B+ﬂ/p <, ||UO\\£;7/B;L’/1p+o+176/p <.
Choosing 1 small enough such that cn < 1/2,
||u1||£;13;11/1p+0+17,6+6/0 + ||u1||Lf'B;/1p+o+1—5/a < 3n. (3.5)

If we assume that (3.5) holds for «™ and further take 7 small enough such that
3en < 1/3, we obtain

||um+1||£€B;L’/1p+0+1*5+ﬁ/ﬁ + ||um+1||[zf/B;/lp+”“’B/" < 3n- (3.6)
Thus by induction, we prove the uniform boundedness for some suitable 1 and
vt < T. Let r =1 in (3.4), since (1 — e*CtQjﬁ) <(1- e*Ct”Q'm)l/'D, we have
[ gy g S D (1= €Y PO g
JEL
+ HumHng;/lwﬁl—ﬁJrﬁ/P HumHLf'B;‘/IP+G+17ﬂ/P
+ Jlu™H HLQ)B;’/lerUJrlfﬁJrﬁ/p HumHﬁf/ pr/preti=ole:
This and imply
||Um+1||£%3;zy/lp+a+1 <n+ 180772 < 3n. (3.7)
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1—
Next we prove that u™ are uniformly bounded in EOOBn/ ProtI=0 1y fact, by (3-2)

1
6™ e gy gemsa < e Plhuolgprasaa 3¢ Nl e gy smsics
By induction, we conclude
R
1— (161/3) m/3

2 1/3||U()|\Bn/p+a+1 B+ —— 3m

0
= W [l poe gy rpeosi-s (3.8)

IN

(3061/3 =+ 1)Hu0||Bn/lp+a+l—[j.

Thus approximate solutions are umformly bounded in the space E"OB"/ pro+i=Fp

LLB "/p+0+1 Now we return to and by the uniform estimate

m+1||£1 n/p+o

Humﬂnmww +lu
T p,1

C”um” sn/pto+1
FrPpl (||uo||Bn/p+g,ﬁ+||um|\£oTcB;/lp+afa||um||£1TB;/1p+a+l) (3.9)

< Cel/3|\U0HBn/p+ff s+ 561/3||Um||g<;<>3;/f+”*‘*'

Hence, similarly to , by induction again,

HumecB;/{’“—ﬁ < (3ce'? + 1) |uo] Brpro=o:

Substituting this into (3.9) we conclude
1/3
[ ey e < (4 + Dl oo
Thus we conclude that (u™),en is uniformly bounded in £ X N LLY

Step 3: Strong convergence. Let (m,k) € N2 m > k and ™% = u™ —

uP, v™F = ™ — ¥ Then u™* satisfies the equation

1 1
U?H_ Jk+ + Aﬁum+1,k+1 + Uk . vum+1,k+1

= u™F(APU™) + uF(APu™F) — o™k vyt
vk = Vv Py™F,
u™ TR0, 2) = 0.
Set U+ H(T) = ||Um+1’k+1||£p Brpte- o/p [ kHH ol gripte=8/e: Applying
Lemma with s =n/p+o0— 0, there holds
ymHLk+L()

c||Vvk\| B
5 B P (Hum k(APu )HL‘;B:/IP+07B (310)

+ ||Uk(AP’le’k)HL%B;;/117+0—6 + va’k . Vum+1H£1TB;;/1p+o—ﬁ).

Now applying Proposition with sy =n/p—8/p,s2 =n/p+0o—5/p,

[y prgoees SN gyt ggpa-aro 0™ M g pgiea—ror
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Similarly, for p large enough such that o + 1+ 8/p < 3, we conclude

Vol ) ny
griT) S e e ([ut Ia’}'BZ/l””’B/”H“mHHc%B"/leroﬂ—ﬁ/p'
’ P
+ ||uk||L%B§,/f'+"+l‘f’/P’ ||“m’kHc"T/BZ/1P+a7a/p

+ ||Um’k||£PT’B:r‘/lp+dfﬁ/p||um||[;pTB;,/lp+a+1—ﬂ/p’)
< enU™H(T).
Choosing 1 small enough such that ¢n < 1 and by induction, we conclude that {u™}

is a Cauchy sequence in L;B;Qﬁg*ﬁ/p N E’}/B;L7/1p+07’8/p. So u™ hence converges

strongly to some u in it. Now by taking » = 1 and r = oo in (3.4]), respectively,
and by passing to the limit into the approximation equation, we can get a solution
toin LXX NLLY.

Step 4: Uniqueness. Let uj,us € L X N LLY be two solutions of (1.1]) with

the same initial data. Let uq 2 = u1 — ug, then

8tU172 + Aﬁul,g + vo - V’UJLQ = ’LLLQ(AP’LLl) + UQ(APULQ) — V1,2 Vul;
v1,2 = —VPuy 2;
ul,g(O, .Z‘) = O
According to Lemma [2.7]

[w1,2]l goo sy roo—s

e

Ty ——
b
~Y

llw1,2(APuy) H@B;’/ppw—zmﬁm
+ ||U2(APU1,2)||£fBgy/pp+a—2ﬁ+e/p + vz - Vg Hﬁfgg’/ppw—zmmp)-
By a similar argument as in Step 3, we have

||U1,2||Z?QB;//JP+VB

cplluz|| 1 pn/pto+1 t
S P AR PHC
0 T PP D;p

+ [luz(7) HpB:./Pp+a+1—ﬁ+B/p)dT'

Since the inclusion B;,l C B;)p holds for any p € [1,00]. Thus the Minkowski’s
inequality and Gronwall’s inequality give that u; = ug, Vt € [0, T).

Step 5: Continuity in time. For all ¢,t' € [0,T), we have
/
lu®) = (@)l gn/p+os

<Y PP (8) — i () e +2 D 2P | o o
j<N j>N

Since u € L%B%p 70 for any € > 0, we can choose N large enough such that

Z 9i(n/p+o—p) sl LseLe <
>N

€
4.
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On the other hand,

D OO () — () e < e8] Y 2P0y e o
J<N Jj<N

< ‘t — t’|2Nﬁ||(9tu||£%<,B;/lp+afzﬁ.
Now write
uy = —APu —v-Vu+u(APu) and v=—VPu.
Obviously, we have
B
I8Pl g < o oo
Applying Proposition with 1 =n/p— B,82 =n/p+ 0 — f,
||’U . VU||L§'$’B;/1P+°725 S ||u||£’109B;L1/1p+075 ||’U/||£§.—?B;Lv/lp+a+175-
Similarly, we have
||’LL(APU)H£%CB:,/1,,+0725 < Hu||£%oB;,7/lp+ofﬁ ||u||£%oB;L,/1p+a+lfﬁ.
Thus for |t —t'| < (QNB||8tu\\£%cB:,/lp+ofzg)_1§, we conclude
Ju(t) — u(t')]

Hence u € C([0,T); B;’/lp-i-a—ﬁ)' Similarly we obtain u € C([0,T); B;/lp'*“"*‘l_ﬁ)_

on/pro—B8 < €.
prl

Step 6: Blowup criterion. We give a blowup criterion as follows:

Proposition 3.2. Let T denote the mazimal time of existence of a solution u in
C([0,T*); X) N LY([0,T%);Y). If T* < oo, then

.
[ 10y = .
0 p,1

Proof. Supposing T* < oo and fOT* [lw($)]] gn/pro+1dt < oo, and using Lemma [2.7]
1

5o
with p = oo, we have

T
cfo ||u(t)”B-n/p+g+1dt
p,1

”uHL;?* Br/ptoti=f € (||U0||B;Y/1p+a+1—/a

—
+ / Hu(t)HBn/eroJrl—ﬁ||u(t)||Bn/P+a+ldt).
0 p;1 p,1
Hence by Gronwall’s inequality we have

e fT7 |ut dt

Jo u®Il n/ptor

||u||[j°° Bn/1p+a+1—,8 ,S e 0 BhP ||UOHBn/1p+U+1—B < 0. (3.11)
T* ~p, P

By a similar argument there also holds

o N o /protrdt
lll o, grsmso-s S ’ BT luoll g rp+e-n < o0. (3.12)
*p, P,

From Step 5, for all ¢,¢' € [0,T*), we have
|lu(t) —u)||x — 0 as t—t.

This means that u(t) satisfies the Cauchy criterion at 7*. So there exists an element
u* in X such that u(¢t) — w* in X as t — T*. Now set u(T™) = u™ and consider the
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equation with initial data u*. By the well-posedness we obtain a solution existing
on a larger time interval than [0,7*), which is a contradiction. (]

Step 7: Global solution. To obtain global well-posedness for small initial data,
it is sufficient to bound

t
F(t) ::/ lu(T)l gn/ptosrdr.
0 ?.1

Lemma [2.7] gives
t
||’LLH£%BZ,/1p+a+1 ,S eCF(t) (||U0||B;,/1P+U+1fﬁ + /0 ||u(7) HBsy/leraﬂfa ||’u(7‘) ||B;L,/1p+a+1 dT) .

A similar argument with (3.11) gives

Hu||L$OB;/1p+U+1_B S eCF(t)||u0||B;‘/1p+a+l—[5-

Hence we conclude
F(t) < Ce“FM(1+ E@)luoll gnrprosi-s.
Since F(t) is continuous and F'(0) = 0, we obtain that: if the initial data satisfies
lwoll gnspsoss < ¢ 7, then
F(t) < Ce® (14 C)Juoll gopsasi-s.

By the blow-up criterion, the solution is global.

4. APPENDIX

We now give the proof of Claim We list some lemmas which will be used in
our proof.

Lemma 4.1 ([20]). Let v be a smooth vector field, and 1y be the solution to

t
Yi(x) = +/ (T, ¥, (x))dT.
0
Then for all t € RY, the flow vy is a C* diffeomorphism over R™ and there holds

[Vt | < VP,
IVyE! — Id|| e < eV —1,

t
V20 e < ¥ / IV20(r) ¥ P,
0

where V (t) = fot |Vo(7)|| LedT.

Lemma 4.2 ([20]). Let x € #(R™). There exists a constant C = C(x,n) such
that for all C? diffeomorphism v over R™ with inverse ¢, and for all u € ',p €
[]'7 +Oo]7 (j7j/) e Zz’

X277 D) (Ajuo ) e
< CllTpll P2 NA jull 1o (279 | DIl L= | Ty | e + 27 77| Db v ).
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Lemma 4.3 ([I6]). Let v € L} (R™T; Lip) be a fized vector field. For j € 7, set

loc

u; = Aju, ¥; be the flow of the reqularized vector field S;_1v. Then for u € Bg,oo
with 8 € 10,2), p € [1,00], there holds

_8 ;
1A (uj 0 5) = (Auy) 0 gyl e < CeVOVITZ ()29 uy | 1o,
and when 8 = 2,
102 (uj 0 95) = (A%uz) 0 4yl Lo < Ce®V OV (£)2%7|u]| o,
where V(t) = [o [Vo(7)||z=dr and C = C(3,p) > 0.
Proof of Claim[31 Applying A; to (3.1)) we have
6tu;71+1 +S5;_0™ - Vu}""'l + Agu;-"+1 = f; + R;, (4.1)

where R; := (5 10™ —v™)- V"t — [Aj, 0™ - V]u™ 1. Let ¢; be the flow of the
regularized vector field S;_1v™. Denote @; := u; o 1)}, then (4.1) becomes

Oty + AP = i+ Ry + Gy, (4.2)
where G := Aﬁ(u}’“r1 o;) — (Aﬁu;"H) 0.
Applying Ay on the equivalent integral equation of (4.2), we have
1ART ()] 2o

—ct2kP
<e

[ Aguo ;| e (4.3)

¢
—c(t—7)2"8 r D,
+/O e—elt=m)2 (1ARfillLe + 1ARR; || e + | AG]| L) dT.
Lemma [4.3| implies
1AKG; ()| Lr S eV OV ()27 [+ | 1o,

with V() = fot [IVu™(7)|| Lo d7. From Bernstein inequality and Lemma

1Ak Fllze S 275V ALSlle S 27V F5) 0 il e [Vl S 275V O £ o
A similarly argument implies

IAKR; (B)[|e < 27 *eV DRy o

Taking the L™ norm over [0,¢] on (4.3) and plugging the above estimates give

I Ay e € 20708 (1 = )2 A | s

+ 248/ U=RIB eV O YI=BI2 (1) ||+ |y (4.4)

t
20OV [ (11 4 Ry )
0
Let My € Z to be fixed later. Decomposing
G = S oy Y A oy
k>j—Mo
For all ¢t € [0, 77, there holds

e epe S eV O USan @ e+ > AT M lipre).  (45)
k>j—Mo
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By Lemma [£.1] and Lemma [£.2]
18— ns @7 [ pyre S eV @ (e — 14 27 M) |0 Ly . (4.6)

Since Ajug ; = 0 for |k —j| > 2 and eV —1427Mo < e~ ¢'V()o=Mo myltiplying
[@5) by 27(s+8/7) and using ([#.4) and (&.6)), we obtain
i(s r m c r —ctr2P\1/7 555
9i(s+8/ )||Uj +1||L;Lp < ¢V (0)9MoB/ (1—e 2 ) /™9 ol Le

4 V(1) 9i(s+8/7) (Q*M" + 2M°'8V1’ﬂ/2(t)) ||UT+1||LILP

t
4 e VOB [t (1 4 | By )
0

Now we choose My to be the unique integer such that 2c2=Me € (1/8,1/4] and
Ty < T be the largest real number such that

9—MoB

¢V (Ty) < min (In2, (W)m)

Thus for ¢ € [0, T3],
t
(s - m —ctr2iB 1/ is | S
23 /) |l e g S (1— €27 ) 7208 lug 5 Lo +/ 2° (|1 fillze + || Rl Lo ) dr.
0

Taking the {'-norm we conclude that

||um+1 ||£;B;ﬁ8/7

szaﬁﬂWWWme+Z/wwmmwwmw.
JEZ jez V0
O
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