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INVERSE SPECTRAL AND INVERSE NODAL PROBLEMS FOR
ENERGY-DEPENDENT STURM-LIOUVILLE EQUATIONS WITH
-INTERACTION

MANAF DZH. MANAFOV, ABDULLAH KABLAN

In memory of M. G. Gasymov

ABSTRACT. In this article, we study the inverse spectral and inverse nodal
problems for energy-dependent Sturm-Liouville equations with d-interaction.
We obtain uniqueness, reconstruction and stability using the nodal set of eigen-
functions for the given problem.

1. INTRODUCTION

We consider the boundary value problem (BVP) generated by the differential
equation

Y e
—y”+q((1?)y:/\2y, T e (07§>U(577T) (11)

with the boundary conditions

Uly) :==y(0) =0, V(y)=y'(r)=0 (1.2)

s

and at the point x = 7 satisfying
T

9;5‘*‘0):97(?—0):@(2);? 13)
y’(§ +0) - y’(§ —-0)= 204)\9(5)

where ¢(z) is a nonnegative real valued function in L2 (0, 7), oo # £1 is real number
and A is spectral parameter. Without loss of generality we assume that

/F q(z)dx = 0. (1.4)
0

We denote the BVP (1.1)), (1.2)) and (1.3 by L = L(q, «).
Notice that, we can understand problem (1.1]) and (1.3)) as studying the equation

Y’ + (A2 = 2X\p(x) — q(x))y =0, =€ (0,7) (1.5)

when p(z) = ad(z — §), where §(z) is the Dirac function (see [2]).
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We consider the inverse problems of recovering ¢(x) and « from the given spectral
and nodal characteristics. Such problems play an important role in mathematics
and have many applications in natural sciences (see, for example, monographs [T,
16l 19 24]). Inverse nodal problems consist in constructing operators from the
given nodes (zeros) of eigenfunctions (see [5], [12], 15, 20, 27]). Discontinuous inverse
problems (in various formulations) have been considered in [3] [8 14 26} 28] 29] [30].

Sturm-Liouville spectral problems with potentials depending on the spectral pa-
rameter arise in various models quantum and classical mechanics. There A\? is
related to the energy of the system, this explaining the term “energy-dependent”
in . The non-linear dependence of equation on the spectral parame-
ter A\ should be regarded as a spectral problem for a quadratic operator pencil.
The inverse spectral and nodal problems for energy-dependent Schrodinger oper-
ators with p(z) € W3(0,1) and g(z) € L2[0,1] and with Robin boundary condi-
tions was discussed in [4], [I0]. Such problems for separated and nonseparated
boundary conditions were considered (see [T, @, [32] and the references therein).
The inverse scattering problem for equation with eigenparameter-dependent
boundary condition on the half line solved in [I7].

In this article we obtain some results on inverse spectral and inverse nodal prob-
lems and establish connections between them.

2. INVERSE SPECTRAL PROBLEMS

In this section we study so-called incomplete inverse problem of recovering the
potential g(x) from a part of the spectrum BVP L. The technique employed is
similar to those used in [T}, 25]. Similar problems for the Sturm-Liouville and
Dirac operators were formulated and studied in [22] 23].

Let y(z) and z(x) be continuously differentiable functions on the intervals (0, 7/2)
and (7w /2, 7). Denote (y, z) := yz’ —y'z. If y(x) and z(z) satisfy the matching con-
ditions , then

<ya2>x=g—o = (ya2>x=g+o (2.1)
i.e. the function (y, z) is continuous on (0, 7).

Let ¢(x, \) be solution of equation satisfying the initial conditions ¢(0, ) =

0, ¢'(0,A) = 1 and the matching condition (L.3). Then U(yp) = 0. Denote

AN = =V (p) = —¢'(m, \). (2.2)

By (2.1) and the Liouville’s formula (see [0, p.83]), A(XA) does not depend on .
The function A()) is called characteristic function on L.

Lemma 2.1. The eigenvalues of the BVP L are real, nonzero and simple.
Proof. Suppose that A is an eigenvalue BVP L and that y(x, \) is a corresponding
cigenfunction such that [ [y(z,A)[*dz = 1. Multiplying both sides of (L.I) by
y(z, A) and integrate the result with respect to x from 0 to =

- [ e+ [ @l Pde =3 [Pl (23

0 0 0

Using the formula of integration by parts and the conditions (|1.2)) and (1.3]) we
obtain

/ (a0, Ny Nder = —2a[y(0, 1) — / () .
0 0
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It follows from this and (2.3) that
M+ BMA+C(N) =0, (2.4)
where

B() = —20.Jy(0. V)2,
c) = - / 4(@) |y (. N) P — / (2, V).

Thus the eigenvalue A\ of the BVP L is a root of the quadratic equation .
Therefore, B?(\) — 4C()\) > 0. Consequently, the equation has only real
roots.

Let us show that \g is a simple eigenvalue. Assume that this is not true. Suppose
that y1(x) and ya(z) are linearly independent eigenfunctions corresponding to the
eigenvalue \g. Then for a given value of Ay, each solution yo(z) of will be
given as linear combination of solutions y;(x) and ya(z). Moreover it will satisfy
boundary conditions and conditions at the point = w/2. However it is
impossible. (I

Lemma 2.2. The BVP L has a countable set of eigenvalues {\, }n>1. Moreover,
as n — oo,

), (2.5)

1 1
Api=n—— 4+ —(wo + (=1)""twy) + O(ﬁ

7w 2(mn—0)

where

tan g = é wo = /Oﬂ q(t)dt, wy = \/1(_):_7(/()”/2q(t)dt/ﬂ; q(t)dt). (2.6)

Proof. Let 7 :=Im A. For |A\] — oo uniformly in « one has (see [3I, Chapter 1])

sin\x  cosAx [“ 1 T
ol X) = 2555 - W/0 aWdt+o(zexplrla), w<Z.  (27)
o(x, A)
1 Si *
=5 (\/ 1+ a?cos(Ax + 0) + acos A(m — x)) +V1i+ aQW / q(t)dt
0
sin\N(m —z) / [™/? v 1
QT(/O q(t)dt — /Tr/2 q(t)dt) + 0(? exp(\ﬂm))7 x> -
(2.8)
, _ sin \x [ 1 m
@' (z,\) = cos Az + ) /o q(t)dt + 0()\ exp(\ﬂx))7 <3 (2.9)
¢'(,A)
=—vV1+a?sin(Ax+60) +asin\(r —z) +V1+ oﬂw / q(t)dt
0
cos A(m — x) /”/2 /T 1 T
-—q——= q(t)dt — qt)dt) + ol —exp(|T|x)), x> =
o (, a0a= [ aa) +o(Se(ria). e> 3

(2.10)
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It follows from (2.10]) that as |A\| — oo

A(N) = msin()m +6)— mw /7r q(t)dt
0

2\

- [ o) ol i)

Using (2.11) and Rouché’s theorem, by the well-known method (see [7]) one has
that as n — oo,

(2.11)

(]

Together with L we consider a BVP L = L(§, ) of the same form but with
different coefficient §. The following theorem has been proved in [13] for the Sturm-
Liouville equation. We show it also holds for (1.1))-(1.3).

Theorem 2.3. If for any n € NU {0},
Ap = ;\m <yn7§n>w:g—0 =0,
then q(x) = ¢(z) almost everywhere (a.e) on (0,7).
Proof. Since
—y" (2, 0) +q(@)y(a,N) = Ny(z, ), —5" (@A) +§(@)g(z, ) = Mgz, ),
y(0,A) =0, ¢ (0,A) =1, 7(0,A) =0, 7(0,\)=1,
it follows from that

w/2
/0 r@)y(, i Nz = (y, Faeg —o (2.12)

where r(z) = q(z) — §(). Since (yn,Jn)2=z 0 = 0 for n € NU {0}, it follows from

that
w/2
/ r(z)y(z, \p)g(z, Ap)de =0, n e NU{0}. (2.13)
0

For x < /2 the following representation holds (see [16 19]);

y(w,\) = sm}\)\m +/ K(z,1) Sln)\/\xdt,
0

where K (x,t) is a continuous function which does not depend on A\. Hence

x
22%y(x, \) (2, \) = 1 — cos 2\x — / V(z,t) cos 2)tdt, (2.14)
0

where V(x,t) is a continuous function which does not depend on A. Substituting

(2.14) into (2.13) and taking the relation (|1.4) into account, we calculate

/2 /2
/ (r(x) + / V(t, x)r(x)dt) cos2A,xdr =0, neNU{0},
0 T

which implies from the completeness of the function cosine, that

/2
r(zx) +/ V(t,z)r(x)dt =0 a.e. on [0, =].

vl 3
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But this equation is a homogeneous Volterra integral equation and has only the
zero solution, it follows that r(z) = 0 a.e. on [0, 5]. To prove that ¢(z) = ¢(z) a.e.

on [r/2, 7] we will consider the supplementary problem L;
T
—y" (@, N) + a1 (@)y(z, \) = Ny(z,\),  a(2) = gq(r — =), O<z<g,
Uly) :==y(0,A) =0,
T T L, ,T T
T —y(T T ' (Z —0) = 2a0y(Z — 0, ).
y(5 +0.0) =y(5 —0.A), ¥(5+0.A) —y (5 —0)=2ay(5 ~0,4)

It follows from that (Yn,Jn)e=z+0 = 0. A direct calculation implies that
In(x) := yn(m — x) is the solution to the supplementary problem L, the L and
Un(5 —0) = yn(5 +0). Thus for the supplementary problem L the assumption
conditions in Theorem [2.3] are still satisfied. If we repeat the above arguments then
yields r(m —x) =0 and 0 < z < 7/2, that is ¢(x) = §(z) a.e. on [7/2,7]. O

3. INVERSE NODAL PROBLEMS

In this section, we obtain uniqueness theorems and a procedure of recovering the
potential ¢(z) on the whole interval (0, 7) from a dense subset of nodal points.
The eigenfunctions of the BVP L have the form y,(z) = ¢(z, \,). We note that

yn(x) are real-valued functions. Substituting (2.5) into (2.7) and (2.8) we obtain
the following asymptotic formulae for n — oo uniformly in x:

L ) ( - 7r/0w q(t)dt + (wo + (71)”7111)1)33)

20 —6)

6 1
x cos(n — ;)a: + O(ﬁ)’ x <

0
Anyn(z) = sin(n — =)z +
T
il
2

Ann (2)

= cos((n — %)m +O)[VI+ a2+ (~1)"q]

1 T /2 T
o [77\/1 + a2/ q(t)dt + (—1)"_1a7r(/ q(t)dt —/ q(t)dt)
2(mn —0) 0 0 /2
~ (V¥ a2z + (-1 alr — a) (o + (~1)" )
0 1 m
i - = 0 = —.
x sin((n 7r)$+ ) +0<n)’ z> g
(3.2)
For the BVP L an analog of Sturm’s oscillation theorem is true. More precisely,
the eigenfunction y, (z) has exactly (n —1) (simple) zeros inside the interval (0, 7) :

0 <y, <z < - < apt < m The set Xp = {2]},5 jo17 is called

the set of nodal points of the BVP L. Denote X} := {xém,k}mzl,jzl,szkfl,

k = 0,1. Clearly, X? U X} = X. Denote p¥ := 0, u? = 1, pf, := ij;e7r2,
24207 - E

’7% = /1"21 ~ 2(7n—0)> J = 17” -1

Inverse nodal problems consist in recovering the problem ¢(z) from the given set
X1, of nodal points or from a certain part.

Taking — into account, we obtain the following asymptotic formulae for
nodal points as n — oo uniformly in j:
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for 27, € (0,%):

J
My,

(v / a0yt~ (wo + (1" wi)pd) +o(-),  (33)
0

. . T
J— i
Tn = Hn 2(mn — 6)2

for zf, € (5, m):

i ™ e n—1, \.j 1
=Tt S ) [W/O q(t)dt — ((wo + (—=1)" " w1), +dk)} +o(—), (3.4)

where k£ = 0 when n is odd and k£ = 1 when n is even in di, and

/2
dp = (V1+a2+(=1)""1a) {2(—1)"‘1a7r/0 q(t)dt+(—1)"am (wo+(—1)""tw)|.

(3.5)
Using these formulae we arrive at the following assertion.

Theorem 3.1. Fiz k € {0,1} and x € [0,7]. Let {xl} C X} be chosen such that
lim,, oo x{l = x. Then there exists a finite limit

g 2oy fim i € (0,5)
gr(@) = lim = [(m O)en {(j+§)7r+e, zfx;e(g,ir)}’ (36)

and

aie) = [aar - WEEIT, T (37)
0

s

B

x -1 k—1
ao) = [awa-2EE M s
0

SR

where dy and dy are defined by (3.5)).

Let us now formulate a uniqueness theorem and provide a constructive procedure
for the solution of the inverse nodal problem.

Theorem 3.2. Fix k =0V 1. Let X C Xf be a subset of nodal points which is
dense on (0,7). Let X = X. Then q(z) = §(z) a.e. on (0,7), @ = &. Thus the
specification of X uniquely determines the potential g(x) on (0,7) and the number
a. The function q(x) and the number « can be constructed via the formulae

() = (x) + ~ (gu(m) — 91(0)) (33)
_ KQQk(W) +49x(3) — 69k(0))2 B 1}*2
m(90(x) — 91(2))
where gi(x) is calculated by .

Proof. Formulae (3.8)), (3.9) follow from (3.7)), (1.4) and (2.6). Note that by (3.7),

(3.9)

we have
—1)*w, T T
@) =a) - 2V 0 DU, @)
hence
() = 91(0) = [ aladde = (un+ (10" M), wn = 5 li(e) — (o). (311
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Then (3.8) can be derived directly from (3.10) and (3.11)). Similarly, we can derive
(3.9). Note that if X = X, then (3.6) yields gx(z) = ¢x(z), x € [0,7]. By (3.8 .
(3.9)), we obtain gi(x) = Gr(z) a.e. on (0,7), a = a.

4. STABILITY OF INVERSE PROBLEM FOR OPERATOR L

Finally, we also solve the stability problem. Stability is about a continuity be-
tween two metric spaces. To show this continuity, we use a homeomorphism between
these two spaces. These type stability problems were studied in [15] [I8] 21, 30].

Definition 4.1. (i) Let N’ = N\{1}. We denote

T
Q:={qe Li(0,m): / q(z)dz = 0},
0
Y := the collection of all double sequences X, where
X = {x{l :jzl,n—l;neN/}
such that 0 < 2}, < a2 <--- <ah ' <ok < Z <okt < ... <an™! <7 for each
n.

We call  the space of discontinuous Sturm-Liouville operators and X the space
of all admissible sequences. Hence, when X is the nodal set associated with (@, a)
and X is close to X in X, then (7 «) is close to (g, ).

(ii) Let X € ¥ and deﬁne 20 = 0 2 =1, L) = 2™ — 2 and IJ = (2], 2it1)
for j = 0,n — 1. Note that, LY =z} and L't =7 —z"1 Wesay X is quasinodal
to some ¢g € Q if X is an admissible sequence and satisfies the conditions:

(I) As n — oo the limit of

(J+s)m+0, ifx) (5, m)

exists in R for all j =1,n —1;
(IT) X has the following asymptotic uniformity for j as n — oo,

ph +0(5), it ), €(0,%)
"+ 0(Gs), i) €(5,m)
forj=1,n—1.

Definition 4.2. Suppose that X, X € ¥ with L} and ZZ as their respective grid
lengths. Let

n—1
Su(X,X) = (wn = 0)* Y |L}. - L]
k=1
T\ 1 ba ) 1 Sn (X, X)
and do(X, X) = limsup,,_,., Sn (X, X) and ds(X, X) = limsup,,_, Tro. (X%
Since the function f(z) = {7, is monotonic, we have
< do(X, X)
ds(X,X)= ————~—— € [0, 7|,
X = ) €0
admitting that if do(X, X) = oo, then dx (X, X) = 1. Conversely,
— ds(X, X
do(X,X) = (X, X)

1—ds(X,X)



8 M. DZH. MANAFOV, A. KABLAN EJDE-2015/26

After the following theorem, we can say that inverse nodal problem for operator
L is stable.

Theorem 4.3. The matric spaces (2, - ||1) and (X/ ~,ds) are homeomorphic to
each other. Here, ~ is the equivalence relation induced by ds. Furthermore
_ 2ds (X, X)
le=dlh = ——==>
1—ds(X,X)

where ds (X, X) < 1.

Proof. According to Theorem [3.2] using the definition of norm on L, for the po-
tential functions, we obtain

0 T . 7
lg -l < 200 ;)3/ L — T da + o(1)
0

A o - (1)
<2(n— 7)3/|LZI ~ Tz + 2(n — 7)3/ I — T |de + o(1)
™ Y 0
0
Here, the integrals in the second and first terms can be written as
™ ) = 1
L — T |dz = o(—
| 1B =Tkt = o)
and
™ X 1 n—1
L —Tlde = —— S |p — T}
/O | n n|x (Wﬂ—@);| k k|’
respectively. If we consider these equalities in (4.1]), we obtain
n—1
llg = all < 2(7n = 0)* Y " |L} = Li| + o(1) = 25, (X, X) + o(1). (4.2)
k=1
Similarly, we can easily obtain
lg —alli > 25,(X, X) +o(1) (4.3)
The proof is complete after by taking limits in (4.2)) and (4.3)) as n — oc. O
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