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Lp ESTIMATES FOR DIRICHLET-TO-NEUMANN OPERATOR
AND APPLICATIONS

TOUFIC EL ARWADI, TONI SAYAH

Abstract. In this article, we consider the time dependent linear elliptic prob-
lem with dynamic boundary condition. We recall the corresponding Dirichlet-

to-Neumann operator on Γ denoted by −Λγ . Then we show that when γ = 1

near the boundary, Λγ −Λ1 is bounded by γ−1 in Lp(Ω) norm. This result is
a generalization of the bound with the L∞(Ω) norm and is applicable for com-

paring the Dirichlet to Neumann semigroup and the Lax semigroup. Finally,

we present numerical experiments for validation of our results.

1. Introduction

Let Ω ⊂ R2 be a bounded open set of class C2, with boundary Γ, and let ]0, T [ to
denote an interval in R where T ∈ (0,+∞) is a fixed final time. We denote by n(x)
the unit outward normal vector at x ∈ Γ. We intend to work with the following
time dependent linear elliptic problem with dynamic boundary condition:

−div γ(x)∇u(t, x) = 0 in ]0, T [×Ω,
∂u

∂t
(t, x) + γ(x)n(x) · ∇u(t, x) = 0 on ]0, T [×Γ,

u(0, x) = u0 on Γ,

(1.1)

where γ ∈ L∞+ (Ω) and u0 ∈ H1/2(Γ), and we suppose that there exists a real
positive number β such that

β−1 ≤ γ(x) ≤ β ∀x ∈ Ω.

The unknown is u while u0 is the initial condition at time t = 0.
The trace value of the solution u(t, x) on Γ is directly related to the elliptic

Dirichlet-to-Neumann map. In fact, for a given f , uγ solves the Dirichlet problem
div(γ∇uγ) = 0 in Ω,

uγ = f on Γ.
(1.2)

For any f ∈ H1/2(Γ), it is well known that the Dirichlet problem (1.2) is uniquely
solvable in H1(Ω). We denote by uγ = Lγf where the function uγ is called the γ-
harmonic lifting of f and the operator Lγ is called the γ-harmonic lifting operator.
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If uγ and γ are smooth, the Dirichlet-to-Neumann operator is defined by

Λγf = (n.γ∇uγ)|Γ . (1.3)

In another words Λγ = n · γ∇Lγ (see for instance [5]).
We can extend Λγ uniquely to an operator Λγ ∈ L(H1/2(Γ), H−

1
2 (Γ)). If we

denote its part in L2(Γ) again by Λγ , we define the Dirichlet-to-Neumann operator
as an unbounded operator with domain

D(Λγ) = {f ∈ H1/2(Γ); Λγf ∈ L2(Γ)}. (1.4)

The Dirichlet-to-Neumann operator Λγ is positive, self adjoint and a first order
pseudo-analytic operator (see for instance [11] and [12]). By Lummer-Phillips the-
orem, −Λγ generates a C0 semigroup denoted by e−tΛγ in L2(Γ) (see [13]).

For the existence and the uniqueness of the solution of problem (1.1), we refer
to [13, Theorem 1.1, page 169].

Theorem 1.1. If Γ is of class C2, γ is of class Cα (α > 2), and for each u0 ∈
L2(Γ), problem (1.1) has a unique solution u : [0,+∞)→ H1(Ω) satisfying:

(1) u ∈ C([0,+∞);H1(Ω)) ∩ L2([0,+∞);H1(Ω));
(2) u|Γ ∈ C([0,+∞);L2(Γ)) ∩ C1([0,+∞);L2(Γ));
(3) n.∇u ∈ C([0,+∞);L2(Γ)).

By taking the trace of the solution to (1.1) and denoting it by u(t, .)|Γ, the
Dirichlet-to-Neumann semigroup e−tΛγu0 is defined by

(e−tΛγu0)(x) = u(t, x)|Γ, x ∈ Γ . (1.5)

Remark 1.2. Lax introduced an explicit representation for the Dirichlet-to-Neu-
mann semigroup for γ = 1 and Ω = B(0, 1). The Lax semigroup is defined by

(e−tΛ1u0)(x) = u1(e−tx) for x ∈ ∂B(0, 1), (1.6)

where u1 = L1f is the harmonic lifting of f (see [7]).
For Ω 6= B(0, 1) there is no explicit representation of the Dirichlet to Neumann

semigroup (see [5]). This motivate several authors to construct families of approx-
imation via Chernoff’s theorem (see [5, 1]). Here an important question arises:
what is the effect of the support of γ on the comparison of the general Dirichlet-
to-Neumann semigroup e−tΛγ and the Lax semigroup?

In [2], the authors showed that for γ = 1 near the boundary, the distance ‖Λγ −
Λ1‖L(H1/2(Γ),Hs(Γ)) is bounded by ‖γ − 1‖L∞(Ω) for any s ∈ R. The assumption
γ = 1 near the boundary has multiple physical applications, in particular it is
usually used in the EIT (electrical Impedance Tomography) community (see [10]).

In this article, we compare the general Dirichlet-to-Neumann semigroup e−tΛγ to
the Lax semigroup. We start by comparing Λγ to Λ1 for γ = 1 near the boundary.
In particular we show that ‖Λγ − Λ1‖L(H1/2(Γ),Hs(Γ)) is bounded by ‖γ − 1‖Lp(Ω)

for all s ∈ R and p > 2. As a straightforward consequence, we show that for the
particular case where Ω = B(0, 1), ‖e−tΛγu0 − e−tΛ1u0‖L2(Γ) is also bounded by
‖γ− 1‖Lp(Ω). At the end we give a numerical example which justify our theoretical
results.
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We suppose that u0 ∈ H1/2(Γ) and introduce the following variational problem
in the sense of distributions on ]0, T [: Find u(t, .) ∈ H1(Ω) such that,

u(0) = u0 on Γ,∫
Ω

γ(x)∇u(t, x)∇v(x) dx+
d

dt

( ∫
Γ

u(t, s)v(s) ds
)

= 0, ∀v ∈ H1(Ω).
(1.7)

Theorem 1.3 ([4]). If u ∈ L2(0, T ;H1(Ω)) and u|Γ ∈ L∞(0, T ;L2(Γ)), then prob-
lem (1.1) is equivalent to the variational problem (1.7). Furthermore, we have the
bound

‖∇u‖2L2(0,τ,L2(Ω)2) + ‖u(τ, .)‖2L2(Γ) ≤ c‖u0‖2L2(Γ),

where c is a positive constant and τ ∈]0, T ].

2. Main result

To avoid the complexity of notations, we denote by ‖·‖1/2,s := ‖·‖L(H1/2(Γ),Hs(Γ)).
As it was proved in [1], the distance between the General Dirichlet-to-Neumann
semigroup e−tΛγ and the Lax semigroup e−tΛ1 with respect to the L2(Γ) topology
depends directly on the distance γ to 1 with respect to the L∞(Ω) topology. How-
ever, as it was proved in [3], the support of γ − 1 plays an important role in the
comparison of the Dirichlet-to-Neumann maps.

In this section, we show that when ‖γ − 1‖Lp(Ω), p > 2, tends to zero and
γ = 1 near Γ, the general Dirichlet-to-Neumann semigroup e−tΛγ tends to the Lax
semigroup e−tΛ1 . In particular for t ∈]0, T ], the following estimate holds,

‖e−tΛγu0 − e−tΛ1u0‖L2(Γ) ≤ C(T )‖γ − 1‖Lp(Ω)‖u0‖H1/2(Γ). (2.1)

Like the L∞ estimate (see [1]), it is clear that this estimate is a straightforward
consequence of the following lemma.

Lemma 2.1. Let γ ∈ L∞+ (Ω) be a positive conductivity satisfying γ = 1 near Γ.
Then for p > 2 and for all s ∈ R, the following estimate holds:

‖Λγ − Λ1‖1/2,s ≤ C2‖γ − 1‖Lp(Ω) (2.2)

where the constant C2 depends on s,Ω and β.

Proof. For γ = 1 near the boundary, the operator Λγ−Λ1 is a smoothing operator,
i.e. it acts from H1/2(Γ) to Hs(Γ) for all values of s ∈ R. Depending on the values
of s, the proof is divided into three steps.
Step 1: s ≤ − 1

2 . Since H−1/2(Γ) is continuously embedded in Hs(Γ),

‖(Λγ − Λ1)f‖Hs(Γ) ≤ C‖(Λγ − Λ1)f‖H−1/2(Γ). (2.3)

As shown in [3], the following estimate holds for p > 1,

‖(Λγ − Λ1)f‖H−1/2(Γ) ≤ C‖γ − 1‖L2p(Ω)‖f‖H1/2(Γ). (2.4)

The estimate (2.2) follows by combining (2.3) and (2.4).
Step 2: s ≥ 3

2 . First, we recall the following estimate (proved in [2] for m = 1
2 ):

‖(Λγ − Λ1)f‖H3/2(Γ) ≤ C‖uγ − u1‖H1(Ω). (2.5)

Since

div(γ∇uγ) = 0 in Ω,

∆u1 = 0 in Ω,
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uγ = u1 = f on Γ.

It is clear that (uγ − u1) ∈ H1
0 (Ω) solves the homogenous Dirichlet problem

div(γ∇(uγ − u1)) = −div((γ − 1)∇u1) in Ω,

uγ − u1 = 0 on Γ.

Since u1 ∈ H1(Ω) and (γ− 1) ∈ L∞+ (Ω), it follows that div((γ− 1)∇u1) ∈ H−1(Ω).
From standard estimates for linear elliptic boundary-value problems, the following
estimate holds

‖uγ − u1‖H1(Ω) ≤ C‖ div((γ − 1)∇u1)‖H−1(Ω). (2.6)

By denoting ρ = supp(γ − 1) and using the divergence theorem, one gets

‖ div((γ − 1)∇u1)‖H−1(Ω)

= sup
v∈H1

0 ;‖v‖H1(Ω)≤1

|〈div((γ − 1)∇u1), v〉|

= sup
v∈H1

0 ;‖v‖H1(Ω)≤1

∣∣ ∫
ρ

(γ − 1)∇u1∇vdx
∣∣

≤ sup
v∈H1

0 ;‖v‖H1(Ω)≤1

(∫
ρ

(γ − 1)2|∇u1|2dx
)1/2(∫

ρ

|∇v|2
)1/2

.

Since ‖v‖H1(Ω) ≤ 1 we get (see [3])∫
ρ

|∇v|2dx ≤ 1 ,∫
ρ

|∇u1|2q
′
dx <∞ for q′ > 1.

Now we are able to apply the Holder inequality and we deduce that for (p′, q′) ∈
]1,∞[2 such that 1/p′ + 1/q′ = 1,

‖ div((γ − 1)∇u1)‖H−1(Ω) ≤
(∫

ρ

(γ − 1)2p′
) 1

2p′
(∫

ρ

|∇u1|2q
′
) 1

2q′
. (2.7)

In [3], the following estimate was proved,(∫
ρ

|∇u1|2q
′
) 1

2q′ ≤ C‖u1‖H1(Ω). (2.8)

By denoting p = 2p′, combining the energy estimate ‖u1‖H1(Ω) ≤ C‖f‖H1/2(Γ) and
(2.8), we deduce

‖ div((γ − 1)∇u1)‖H−1(Ω) ≤ C‖γ − 1‖Lp(Ω)‖f‖H1/2(Γ).

Finally
‖(Λγ − Λ1)f‖ 3

2
≤ C‖γ − 1‖Lp(Ω)‖f‖H1/2(Γ).

Step 3: −1/2 < s ≤ 3/2. In this case we have s = (1−θ)(− 1
2 )+θ(3/2) for θ ∈]0, 1];

so the space Hs(Γ) is an interpolation space of H−1/2(Γ) and H3/2(Γ). In other
words, Hs(Γ) = [H−1/2(Γ), H3/2(Γ)]θ (See [8]). By applying the interpolation
inequality we deduce

‖(Λγ − Λ1)f‖Hs(Γ) ≤ C‖(Λγ − Λ1)f‖θ
H−

1
2 (Γ)
‖(Λγ − Λ1)f‖1−θ

H3/2(Γ)
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Finally, by using the estimates of step 1 and step 2, we deduce (2.2) for −1/2 <
s ≤ 3/2. �

Theorem 2.2. For γ = 1 near Γ such that γ ∈ C2(Ω), and u0 ∈ H1/2(Γ), there
exists a constant C(T ) depending on β, u0, and T such that :

‖e−tΛγu0 − e−tΛ1u0‖L2(Γ) ≤ C(T )‖γ − 1‖Lp(Ω). (2.9)

The estimate in the above theorem follows directly from (2.2), see [1]. We omit
its proof.

3. The discrete problem

For the rest of this article, we assume that ∂Ω is a polyhedron. To describe
the time discretization with an adaptive choice of local time steps, we introduce a
partition of the interval [0, T ] into equal subintervals In = [tn−1, tn], 1 ≤ n ≤ N ,
such that 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . We denote by τ the length of the subintervals
In.

Now, we describe the space discretization. Let (Th)h be a regular triangulation
of Ω. (Th)h is a set of non degenerate elements which satisfies:

• for each h, Ω̄ is the union of all elements of Th;
• the intersection of two distinct elements of Th, is either empty, a common

vertex, or an entire common edge;
• the ratio of the diameter of an element κ in Th to the diameter of its

inscribed circle is bounded by a constant independent of n and h.
As usual, h denotes the maximal diameter of the elements of all Th. For each κ
in Th, we denote by P1(κ) the space of restrictions to κ of polynomials with two
variables and total degree at most one.

For a given triangulation Th, we define by Xh a finite dimensional space of
functions such that their restrictions to any element κ of Th belong to a space of
polynomials of degree one. In other words,

Xh = {vhn ∈ C0(Ω), vhh|κ is affine for all κ ∈ Th}.
We note that for each h, Xh ⊂ H1(Ω).

The full discrete implicit scheme associated with the problem (1.7) is as follows:
Given un−1

h ∈ Xh, find unh with values in Xh such that for all vh ∈ Xh we have:∫
Ω

γ(x)∇unh∇vhdx+
∫

Γ

unh − u
n−1
h

τn
vhdσ = 0. (3.1)

by assuming that u0
h is an approximation of u(0) in Xh.

Remark 3.1. It is a simple exercise to prove existence and uniqueness of the
solution of problem (3.1) as a consequence of discrete problem of Poisson’s equation
with a Robin condition.

Theorem 3.2. For each m = 1, . . . , N , the solution umh of the problem (3.1) sat-
isfies

‖umh ‖20,Γ +
m∑
n=1

τn|unh|21,Ω ≤ c‖u0
h‖20,Γ, (3.2)

Remark 3.3. In [4], we establish optimal a priori and a posteriori error estimates
for the problem (3.1) an shown numerical results of validation.
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4. Numerical results

(a) Errnu with respect to the iteration num-
bers for γ1

5,3/4
, (Err4γ = 0.86)

(b) Errnu with respect to the iteration num-
bers for γ2

10,3/4
, (Err4γ = 1.14)

(c) Errnu with respect to the iteration num-

bers for γ3
e8,1/2

, (Err4γ = 0.84)

Figure 1. Errnu with respect to the iteration numbers for different
functions γiα,ρ, i = 1, 2, 3.

To validate the theoretical results, we present several numerical simulations using
the FreeFem++ software (see [6]). We choose T = 3,

u(0, x, y) =
x2 − y2

2
+ y +

1
2
,

and the function γ as (see [9])

γiα,ρ(x) = (αFi,ρ(|x|) + 1)2, i = 1, 2, 3, (4.1)

where the function Fi,ρ ∈ C4(R) satisfies Fi,ρ(x) = 0 for |x| > ρ and for |x| ≤ ρ
takes one of the following three forms:

F1,ρ(x) = (x2 − ρ2)4(1.5− cos
3πx
2ρ

), (4.2)

F2,ρ(x) = (x2 − ρ2)4 cos
3πx
2ρ

, (4.3)

F3,ρ(x) = e
− 2(x2+ρ2)

(x+ρ)2(x−ρ)2 . (4.4)
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We consider the two-dimensional unit circle. In fact, the mesh corresponding to
Ω is a polygon and we introduce here a geometrical approximation. Nevertheless,
the numerical results given in the end of this section show that this approximation
has not a major influence. The considered mesh contains 15542 triangles with
m = 300 segments on the boundary Γ. Thus, the mesh step size is h = 2π

m . We
choose a time step τ = h and we consider the numerical scheme (3.1).

We denote by unh,γ the solution of problem (3.1) for a given γ and unh,1 the
solution of the same problem for γ = 1. We define the errors

Errnu = ‖unh,γ − unh,1‖L2(Γ),

Erru = max
1≤i≤N

Erriu,

Errpγ = ‖γ − 1‖Lp(Ω).

We choose p = 4 and followed [9] for the choice of ρ and α. Figures 1(a)-(c) show the
evolution of Errnu with respect to the iteration numbers for the three cases of γ. It is
easy to check that all this curves are bounded and smaller than the corresponding
Err4

γ . For example, Figure 1(b) represents the error Erruγ for the second function
γ2

10,3/4 with a maximum of 0.0309 which is smaller the corresponding Err4
u = 1.14.

To show the dependency of this errors with ρ, in an other word where it equals
to 1 in a neighborhood of Γ (the neighborhood depends on ρ), table 1 shows Erru
and Err4

γ with respect to ρ for the functions γ1
5,ρ and γ2

10,ρ, and for T = 1 and p = 4.
We remark that Erru is always smaller than Err4

γ in all the considered cases.

Table 1. Erru and Err4
γ with respect to ρ for the three cases of

γ: γ1
5,ρ and γ2

10,ρ.

γ1
5,ρ

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Erru 0.002 0.005 0.012 0.026 0.053 0.098 0.169 0.267 0.391 0.537

Errγ 0.022 0.051 0.109 0.2232 0.44 0.855 1.65 3.23 6.37 12.72

γ2
10,ρ

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Erru 0.0002 0.0007 0.0018 0.0047 0.01182 0.02999 0.077 0.200 0.4833 0.5680

Errγ 0.0263 0.0601 0.1301 0.2716 0.5574 1.1440 2.3757 5.0105 10.6903 22.8861

To show the dependency with p, we consider for example the functions γ1
5,3/4 and

γ3
e8,1/2 and we study the errors for different values of p > 2. Figures 2(a) and 2(b)

show Errpγ with respect to p. We remark that the corresponding curves increase
with p starting from 0.75 for Figure 2(a) and from 0.34 for the Figure 2(b), whereas
the values of Erru are 0, 03 for the first case γ1

5,3/4 and 0.08 for the third one γ3
e8,1/2.

We remark that all the numerical results validate the theoretical estimates.

Acknowledgments. The authors want to thank the anonymous referees for their
careful reading of the orignal manuscript and for their suggestions.
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(a) Errpγ with respect to p for γ1
5,3/4

(b) Errpγ with respect to p γ3
e8,1/2

Figure 2. Errpγ with respect to p for the first and the third func-
tion γiα,ρ, i = 1, 3.
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