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MIXED BOUNDARY-VALUE PROBLEMS FOR MOTION
EQUATIONS OF A VISCOELASTIC MEDIUM

MIKHAIL A. ARTEMOV, EVGENII S. BARANOVSKII

Abstract. We study the mixed boundary-value problem for steady motion

equations of an incompressible viscoelastic medium of Jeffreys type in a fixed
three-dimensional domain. On one part of the boundary the no-slip condi-

tion is provided, while on the other one the impermeability condition and

non-homogeneous Dirichlet boundary conditions for tangential component of
the surface force is used. The existence of weak solutions of the formulated

boundary-value problem is proved. Some estimates for weak solutions are es-
tablished; it is shown that the set of weak solutions is sequentially weakly

closed.

1. Introduction

Mixed boundary problems play significant role in the modeling of fluid flows in
domains with a boundary which includes several parts, differing by their physical
properties. Mixed boundary conditions arise also when studying boundary flow
control problems and at the modeling of flows with free surface.

In this article, we study the nonlinear boundary-value problem for steady mo-
tion equations of an incompressible viscoelastic medium of Jeffreys type [13] in a
bounded three-dimensional domain with mixed boundary conditions. On a part of
the boundary the homogeneous Dirichlet boundary condition is formulated for the
field velocity v. This condition has the meaning of non-slip behavior of the vis-
coelastic medium on this part of the solid wall. On the other part of the boundary
we use the impermeability condition (v ·n = 0, where n is the outward unit normal
vector) and the non-homogeneous Dirichlet boundary condition for the tangential
component of the surface force. Obviously, these conditions allow slippage on the
corresponding part of the boundary.

This article is organized as follows. In Section 2, the weak formulation of the
boundary-value problem is presented. We use a nonstandard approach to definition
of weak solutions. The novelty is that the motion equations and the boundary
conditions are taken into account in a single integral identity. We use such approach
to overcome the difficulties associated with definition of the boundary trace for the
low regular extra-stress tensor. We show that a weak solution is well defined. In
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particular, if a weak solution is sufficiently smooth, then it is a classical solution, i.e.,
the corresponding vector functions satisfy the system of equations and the boundary
conditions in the usual sense. In Section 3, we prove the existence of weak solutions
and establish some estimates. The proof is based on the Galerkin method, the
method of introduction of auxiliary viscosity [10] and topological degree methods
[7]. We show also that the set of weak solutions is sequentially weakly closed. All
results are obtained without any restriction on the data values.

Note that homogeneous boundary-value problems for liquids described by Jef-
freys model and other similar non-Newtonian models were studied by many authors
(see e.g. [5, 6, 11, 14, 15] and the references therein). The solvability of the non-
homogeneous Dirichlet boundary-value problem for the Jeffreys model was proved
in [2]. Some existence results for the equations, describing viscoelastic fluid flows
with Navier type slip boundary conditions, were obtained in [3, 9].

2. Problem formulation

As it is well known, the steady motion of any incompressible medium is described
by the system of equations in Cauchy form

ρv · ∇v = div T + ρf , (2.1)

div v = 0, (2.2)

where ρ is the density, v = v(x) is the flow velocity at a point x ∈ R3, T = T(x)
is the Cauchy stress tensor, f = f(x) denotes the external force. The Cauchy stress
tensor is given by

T = −p I + S,

where the scalar p = p(x) is the hydrostatic pressure and S = S(x) is the extra-
stress tensor. The precise form of S is given by a constitutive law, which depends
on the medium. We will use the Jeffreys constitutive law:

S + λ1v · ∇S = 2η
(
D + λ2v · ∇D

)
, (2.3)

where D = D(v) is the strain velocity tensor,

D(v) =
1
2

(∇v + (∇v)T ),

η, λ1, and λ2 are positive constants. The rheological parameters of the Jeffreys
model follow the inequality λ2/λ1 < 1, which is explained by thermodynamic limi-
tations (see, for instance [4]).

Equation (2.3) can be rewritten as

E + λ1v · ∇E = 2εηD(v), (2.4)

where E is the elastic part of the extra-stress S,

E = S− 2ηλ2λ
−1
1 D(v), (2.5)

and ε = 1− λ2λ
−1
1 .

To write the equations in dimensionless form, choose a characteristic length l
and a characteristic speed V and define

x∗ = l−1x, v∗(x∗) = V −1v(x), E∗(x∗) = l(ηV )−1E(x),

S∗(x∗) = l(ηV )−1S(x), p∗(x∗) = l(ηV )−1p(x), f∗(x∗) = ρl2(ηV )−1f(x).
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Then, by writing system (2.1), (2.2), (2.4), (2.5) in terms of these dimensionless
quantities and omitting the asterisks, we obtain the dimensionless system

Re v · ∇v +∇p− div S = f , (2.6)

div v = 0, (2.7)

E + We v · ∇E = 2εD(v), (2.8)

S = E + 2(1− ε)D(v), (2.9)

where Re is the Reynolds number, Re = ρlV η−1, and We is the Weissenberg num-
ber, We = λ1V l

−1.
We will investigate the system of equations (2.6)–(2.9). One should of course

add suitable conditions at the boundary of the flow domain Ω. We assume that
Ω is a bounded domain in R3 with the boundary Γ ∈ C2, and the boundary is
impermeable. Thus

v · n = 0 on Γ, (2.10)

where n = n(x) is the outer unit normal on Γ at the point x, v · n is the scalar
product of the vectors v and n in space R3.

Moreover, we assume that the flow on the boundary is governed by the following
conditions

v = 0 on Γ0, (2.11)

[Sn]τ = g on Γ \ Γ0, (2.12)

where Γ0 is a part of Γ (the Lebesgue 2-dimensional measure of Γ0 is positive), g
is a given vector field such that g · n = 0, [·]τ denotes the tangential component of
the vector, i.e., uτ = u− (u · n) n.

The aim of this article is to prove the existence of weak solutions of problem
(2.6)–(2.12). We shall begin by giving the definition of a weak solution. To perform
our study, however, we need certain function spaces.

Let F be a finite-dimensional space. We use the standard notation

Lp(Ω,F), Hm(Ω,F) = Wm
2 (Ω,F)

for the Lebesgue and Sobolev spaces of functions with values in F. The scalar
product in L2 will be denoted (·, ·).

By C∞0 (Ω,F) denote the space of smooth functions with support in Ω and with
values in F.

By H2
0(Ω,F) denote the closure C∞0 (Ω,F) in H2(Ω,F). We will use the following

scalar product in H2
0(Ω,F)

(v,w)H2
0(Ω,F) = (∆v,∆w) .

It follows from the properties of the Laplace operator ∆ that the norm

‖v‖H2
0(Ω,F) = (v,v)1/2

H2
0(Ω,F)

is equivalent to the norm induced from H2(Ω,F).
We now introduce the main space

X(Ω,R3) = {v ∈ H1(Ω,R3) : div v = 0, v|Γ · n = 0, v|Γ0 = 0}.

Here the restriction of v ∈ H1(Ω,R3) to Γ is given by v|Γ = γ0v, where γ0 :
H1(Ω,R3)→ H1/2(Γ,R3) is the trace operator (see e.g. [1]).



4 M. A. ARTEMOV, E. S. BARANOVSKII EJDE-2015/252

We define the scalar product in X(Ω,R3) by the formula

(v,w)X(Ω,R3) =
(
D(v),D(w)

)
.

Let us show that the norm

‖v‖X(Ω,R3) = (v,v)1/2
X(Ω,R3)

is equivalent to the norm induced from the Sobolev space H1(Ω,R3).
First we recall an inequality of Korn’s type.

Lemma 2.1. Let a : H1(Ω,R3) × H1(Ω,R3) → R be a continuous symmetric
bilinear form such that

a(v,v) ≥ 0 for all v ∈ H1(Ω,R3)

and it follows from the conditions(
D(w),D(w)

)
= 0, a(w,w) = 0, w ∈ H1(Ω,R3)

that w = 0. Then there exists a positive constant C such that(
D(v),D(v)

)
+ a(v,v) ≥ C‖v‖2H1(Ω,R3)

for all v ∈ H1(Ω,R3).

A proof of the above lemma is found in [12]. Define the bilinear form a as

a(v,w) =
∫

Γ0

v ·w dσ, v,w ∈ H1(Ω,R3),

where σ denotes the Lebesgue 2-dimensional measure. The application of Lemma
2.1 yields

‖D(v)‖2L2(Ω,R3×3) +
∫

Γ0

‖v(x)‖2R3 dσ ≥ C‖v‖2H1(Ω,R3), v ∈ H1(Ω,R3).

Thus we have

‖v‖2H1(Ω,R3) ≥ ‖D(v)‖2L2(Ω,R3×3) ≥ C‖v‖
2
H1(Ω,R3)

for all v ∈ X(Ω,R3).
We now describe the concept of a weak solution. Assume that

f ∈ L2(Ω,R3), g ∈ L2(Γ \ Γ0,R3).

Denote by R3×3
s the space of 3× 3 symmetric matrices.

Definition. We shall say that a triplet

(v,E,S) ∈ X(Ω,R3)× L2(Ω,R3×3
s )× L2(Ω,R3×3

s )

is a weak solution of problem (2.6)–(2.12) if it satisfies equation (2.9) and if the
equalities

−Re
3∑
i=1

(
viv,

∂ϕ

∂xi

)
+
(
S,D(ϕ)

)
=
∫

Γ\Γ0

g ·ϕ dσ + (f ,ϕ), (2.13)

(E,Φ)−We
3∑
i=1

(
E, vi

∂Φ
∂xi

)
= 2ε

(
D(v),Φ

)
(2.14)

hold for all ϕ ∈ X(Ω,R3) and Φ ∈ C∞0 (Ω,R3×3
s ).
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Remark 2.2. Equalities (2.13) and (2.14) appear from the following reasoning. Let
us assume that (v,E,S, p) is a classical solution of problem (2.6)–(2.12). Taking
the scalar product of equality (2.6) with ϕ ∈ X(Ω,R3) and integrating over the
domain Ω, we obtain

Re
( 3∑
i=1

vi
∂v
∂xi

,ϕ
)

+ (∇p,ϕ)− (div S,ϕ) = (f ,ϕ). (2.15)

Integrating by parts,( 3∑
i=1

vi
∂v
∂xi

,ϕ
)

= −(v div v,ϕ)−
3∑
i=1

(
viv,

∂ϕ

∂xi

)
+
∫

Γ\Γ0

(v · n)(v ·ϕ) dσ

= −
3∑
i=1

(
viv,

∂ϕ

∂xi

)
,

(2.16)

(∇p,ϕ) = −(p,divϕ) +
∫

Γ\Γ0

p (ϕ · n) dσ = 0, (2.17)

(div S,ϕ) = − (S,D(ϕ)) +
∫

Γ\Γ0

Sn ·ϕ dσ. (2.18)

Combining (2.15), (2.16), (2.17), (2.18) and (2.12), we obtain equality (2.13).
Likewise, taking the L2-scalar product of (2.8) with a function Φ ∈ C∞0 (Ω,R3×3

s )
and integrating by parts, we obtain equality (2.14).

Remark 2.3. Let us check that if the weak solution (v,E,S) of problem (2.6)–
(2.12) is sufficiently smooth, then there exists a function p such that (v,E,S, p) is
a classical solution. In fact, multiplying (2.13) by −1 and integrating by parts, we
can rewrite (2.13) as follows:(

−Re
3∑
i=1

vi
∂v
∂xi

+ div S + f ,ϕ
)

=
∫

Γ\Γ0

([Sn]τ − g) ·ϕ dσ (2.19)

for all ϕ ∈ X(Ω,R3). Thus(
−Re

3∑
i=1

vi
∂v
∂xi

+ div S + f ,ψ
)

= 0

for all ψ ∈ H1(Ω,R3) such that divψ = 0 and ψ|Γ = 0. Hence (see e.g. [8]), there
exists a function p such that

− Re
3∑
i=1

vi
∂v
∂xi

+ div S + f = ∇p. (2.20)

This means that equation (2.6) holds. Also, it can be shown in the standard way
that the pair (v,E) satisfies equation (2.8). Moreover, by definition, equalities
(2.7), (2.9), (2.10), and (2.11) are valid.

It remains to check that boundary condition (2.12) holds. Substituting (2.20) in
(2.19), we obtain

(∇p,ϕ) =
∫

Γ\Γ0

([Sn]τ − g) ·ϕ dσ, ϕ ∈ X(Ω,R3). (2.21)
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Integrating by parts, we see that the left-hand side of (2.21) is equal to zero. Thus∫
Γ\Γ0

([Sn]τ − g) ·ϕ dσ = 0, ϕ ∈ X(Ω,R3). (2.22)

Since the set {ϕ|Γ\Γ0 : ϕ ∈ X(Ω,R3)} is dense in the space

{w ∈ L2(Γ \ Γ0,R3) : w · n = 0},
it follows that equality (2.22) still holds by continuity for any vector function
ϕ ∈ L2(Γ \ Γ0,R3) such that ϕ · n = 0. This implies that [Sn]τ − g = 0, i.e.,
condition (2.12) holds.

3. Existence of a weak solution

We formulate our main result as follows.

Theorem 3.1. Assume that f ∈ L2(Ω,R3), g ∈ L2(Γ \ Γ0,R3), and g · n = 0 on
Γ \ Γ0. Then

(a) problem (2.6)–(2.12) has at least one weak solution such that

‖E‖2
L2(Ω,R3×3

s )
+ 4ε(1− ε)‖D(v)‖2

L2(Ω,R3×3
s )

≤ C
ε(‖g‖L2(Γ\Γ0,R3) + ‖f‖L2(Ω,R3))2

1− ε
,

where C is a constant,
(b) the set of weak solutions of problem (2.6)–(2.12) is sequentially weakly closed

in the space X(Ω,R3)× L2(Ω,R3×3
s )× L2(Ω,R3×3

s ).

To prove the above Theorem, we need the following lemma.

Lemma 3.2. Let BR = {x ∈ Rn : ‖x‖Rn ≤ R} be a closed ball and let F :
BR × [0, 1]→ Rn be a continuous map such that

(i) F(x, ξ) 6= 0 for all (x, ξ) ∈ ∂BR × [0, 1],
(ii) F(x, 0) = Ax for all x ∈ BR,

where A : Rn → Rn is an isomorphism. Then for each ξ ∈ [0, 1] the equation
F(x, ξ) = 0 has at least one solution xξ ∈ BR.

This lemma can be proved by standard methods of topological degree theory
(see [7]).

Proof of Theorem 3.1. Suppose that {ϕj}∞j=1 is an orthonormal basis for the space
X(Ω,R3), and {Yj}∞j=1 is an orthonormal basis for H2

0(Ω,R3×3
s ) such that Yj ∈

C∞0 (Ω,R3×3
s ) for all j ∈ N. Let us fix n ∈ N.

Consider the auxiliary problem: Find a triplet (vn,En,Sn) such that

− ξRe
3∑
i=1

(
vni vn,

∂ϕj

∂xi

)
+ ξ
(
En,D(ϕj)

)
+ 2(1− ε)

(
D(vn),D(ϕj)

)
= ξ

∫
Γ\Γ0

g ·ϕj dσ + ξ
(
f ,ϕj

)
, j = 1, . . . , n,

(3.1)

(En,Yj) + ξWe
3∑
i=1

(∂En

∂xi
, vni Yj

)
+

1
n

(∆En,∆Yj)

= 2ξε
(
D(vn),Yj

)
, j = 1, . . . , n,

(3.2)
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vn =
n∑
j=1

αnjϕ
j , (3.3)

En =
n∑
j=1

βnjYj , (3.4)

Sn = En + 2(1− ε)D(vn), (3.5)

where αnj and βnj are unknown real numbers, ξ is a parameter, and ξ ∈ [0, 1].
First we prove some a priori estimates of solutions of (3.1)–(3.5). Let a triplet

(vn,En,Sn) satisfies (3.1)–(3.5). We multiply (3.1) by αnj and add these equalities
for j = 1, . . . , n. Taking into account( 3∑

i=1

vni
∂vn

∂xi
,vn

)
= 0,

we obtain

ξ (En,D(vn)) + 2(1− ε)
(
D(vn),D(vn)

)
= ξ

∫
Γ\Γ0

g · vn dσ + ξ (f ,vn) . (3.6)

Furthermore, we multiply (3.2) by βnj and add these equalities for j = 1, . . . , n.
Taking into account the equality( 3∑

i=1

vni
∂En

∂xi
,En

)
= 0,

we obtain

(Em,Em) +
1
n

(∆En,∆En) = 2ξε
(
D(vn),En

)
. (3.7)

We multiply (3.6) by 2ε and add it to (3.7); this gives

(Em,Em) +
1
n

(∆En,∆En) + 4ε(1− ε)
(
D(vn),D(vn)

)
= 2ξε

∫
Γ\Γ0

g · vn dσ + 2ξε (f ,vn) .

Thus we have

‖En‖2
L2(Ω,R3×3

s )
+

1
n
‖En‖2

H2
0(Ω,R3×3

s )
+ 4ε(1− ε)‖vn‖2X(Ω,R3)

= 2ξε
∫

Γ\Γ0

g · vn dσ + 2ξε (f ,vn) .

Hence

‖En‖2
L2(Ω,R3×3

s )
+

1
n
‖En‖2

H2
0(Ω,R3×3

s )
+ 4ε(1− ε)‖vn‖2X(Ω,R3)

≤ 2εC(‖g‖L2(Γ\Γ0,R3) + ‖f‖L2(Ω,R3))‖vn‖X(Ω,R3),
(3.8)

where C is a constant. This yields

‖vn‖X(Ω,R3) ≤
C(‖g‖L2(Γ\Γ0,R3) + ‖f‖L2(Ω,R3))

2(1− ε)
. (3.9)
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Combining (3.8) and (3.9), we obtain the estimate

‖En‖2
L2(Ω,R3×3

s )
+

1
n
‖En‖2

H2
0(Ω,R3×3

s )
+ 4ε(1− ε)‖vn‖2X(Ω,R3)

≤
εC2(‖g‖L2(Γ\Γ0,R3) + ‖f‖L2(Ω,R3))2

1− ε
.

(3.10)

An application of Lemma 3.2 yields that problem (3.1)–(3.5) is solvable for each
n ∈ N and ξ ∈ [0, 1].

Let (vn,En,Sn), n = 1, 2, . . . , be a sequence of solutions of problem (3.1)–
(3.5) with ξ = 1. It follows from estimate (3.10) that the norms ‖vn‖X(Ω,R3)

and ‖En‖L2(Ω,R3×3
s ) are uniformly bounded with respect to n. Since the closed

balls of Hilbert space are weakly compact, there exists a pair (ṽ, Ẽ) ∈ X(Ω,R3)×
L2(Ω,R3×3

s ) and a subsequence {nk}∞k=1 such that vnk → ṽ weakly in X(Ω,R3)
and Enk → Ẽ weakly in L2(Ω,R3×3

s ) as k →∞. Without loss of generality it can
be assumed that

vn → ṽ weakly in X(Ω,R3), En → Ẽ weakly in L2(Ω,R3×3
s ) (3.11)

as n→∞. Due to (3.11) and the compactness theorem (see [1]), we also have

vn → ṽ strongly in L4(Ω,R3) (3.12)

as n→∞.
Now define

S̃ = Ẽ + 2(1− ε)D(ṽ).

Let us show that the triplet
(
ṽ, Ẽ, S̃

)
is a weak solution of problem (2.6)–(2.12).

Using (3.11) and (3.12), we can pass to the limit n → ∞ in equality (3.1) (with
ξ = 1) and obtain

− Re
3∑
i=1

(
ṽiṽ,

∂ϕj

∂xi

)
+
(
S̃,D(ϕj)

)
=
∫

Γ\Γ0

g ·ϕj dσ +
(
f ,ϕj

)
(3.13)

for any j ∈ N. Recall that {ϕj}∞j=1 is a basis of X(Ω,R3) and thus equality (3.13)
remains valid if we replace ϕj with an arbitrary vector function ϕ ∈ X(Ω,R3).

Further, integrating by parts, we rewrite (3.2) (with ξ = 1) as

(
En,Yj

)
−We

3∑
i=1

(
En, vni

∂Yj

∂xi

)
+

1
n

(
En,∆(∆Yj)

)
= 2ε

(
D(vn),Yj

)
, j = 1, . . . , n.

(3.14)

Using (3.11) and (3.12), we can pass to the limit n → ∞ in equality (3.14). We
obtain

(Ẽ,Yj)−We
3∑
i=1

(
Ẽ, ṽi

∂Yj

∂xi

)
= 2ε

(
D(ṽ),Yj

) (3.15)

for any j ∈ N. Since {Yj}∞j=1 is a basis of the space H2
0(Ω,R3×3

s ), equality (3.14)
remains valid if we replace Yj with an arbitrary vector function Φ ∈ C∞0 (Ω,M3×3

s ).
Thus, we have proved that the triplet

(
ṽ, Ẽ, S̃

)
is a weak solution of problem

(2.6)–(2.12).
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From estimate (3.10) it follows that

‖Ẽ‖2
L2(Ω,M3×3

s )
+ 4ε(1− ε)‖D(ṽ)‖2

L2(Ω,R3×3
s )

≤
εC2(‖g‖L2(Γ\Γ0,R3) + ‖f‖L2(Ω,R3))2

1− ε
.

Arguing as above, we establish that the weak solution set is sequentially weakly
closed in the space X(Ω,R3)× L2(Ω,R3×3

s )× L2(Ω,R3×3
s ). �
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