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REGULARITY FOR THE AXISYMMETRIC NAVIER-STOKES
EQUATIONS

PENG WANG

ABSTRACT. In this article, we establish a regularity criterion for the Navier-
Stokes system with axisymmetric initial data. It is proved that if the local
axisymmetric smooth solution u satisfies ||u? HLQ(OyT;Lg) < oo, where %+% <
1, and 3 < 8 < 0o, then the strong solution keeps smoothness up to time 7.

1. INTRODUCTION

We study the following classic 3D incompressible Navier-Stokes equations in the
whole space,
Ou+ (u- Vu)u+ Vp = vAu,
V-u=0, (1.1)
u(z,t = 0) = uy,

where u(x,t) € R® and p(z,t) € R denote the unknowns, velocity and pressure
respectively, while v denotes the viscous coefficient of the system.

A lot of works have been devoted to study the above system, but global well-
posedness for with arbitrary large initial data is still a challenging open prob-
lem, see 3], Bl 8, 12], 13} [14].

Here, we are concerned with with axisymmetric initial data. If ug is ax-
isymmetric in system (L.1)), then the solution u(z,t) of system (L.I)is also axisym-
metric [0, [7]. So, it is convenient to write u(x,t) as in the form

w(z,t) =u"(r,z,t)e, + ug(r7 z,t)eg + u?(r, z,t)e,,

where e, eg and e, are the standard orthonormal unit vectors in cylindrical coor-
dinate system

T T2

er = ( i ,0) = (cosf,sinh,0),
€o = (—%7 %,0) = (—sin#,cos6,0),
€z = (07071)7
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with r = (22 4+ 23)"/2. By direct computations, it is easy to show the following
relations.

V= (8$178w2a82)T = Orer + %69 + 02z,
102 02

1
A = . — =
Vv raT(r@T)+r23g+8z2’
Oer _ o, 220 _
00 — " 99 — T

Accordingly, the system (|1.1)) can be rewritten equivalently as

D 2 2 1 Lo (UQ)Q _
it v(0: + 07 + raT . Ju +0,p=0,
D 0 9 9 1 1., uru? _
ppt ~ VO Ot S0 = Gt A == =0, (1.2)
D z 2 2 1 z
ki v(07 + 07 + ;&)u + 0.p =0,

r 6 z
Ulpmo = Ul - er +ug - eg +uf - e,

where % denotes the material derivative

D
Di = O +u" 0, +u?0,.

If u? = 0 (so-called without swirl), Ukhovskii and Yudovich [10] (see also [7])
proved the existence of generalized solutions, uniqueness and regularity. When
u? # 0 (with swirl), it is much complicated and difficult. For recent progress, one
can find results on regularity criteria or global existence with small initial data in
[2, B [7, IT]. In particular, very recently in [II], the following regularity criterion
was established:

.2 3
||u01r§§HL°‘((O,T);L5) < 00, with a + B < 1, ﬁ > 6, or (Oé,ﬂ) = (4,6)7 (13)

where ¢ > 0 is given.
The aim of this paper is to give a regularity criteria in terms of u’. More precisely,
we have the following theorem.

Theorem 1.1. Let ug € H?, and u € C([0,T); H*(R®)) N L7,
the solution of . If it satisfies

2 3
||u9HLoc(0,T;LB) < 0o, where " +—-=1, and 3 < < o0, (1.4)

B

([0,T); H*(R?)) be

then u(z,t) can be continued beyond T.

In Section 2 some key lemmas are given. Then Section 3 is devoted to the proof
of the main result.

2. KEY LEMMAS

Before going to the details, let us introduce some notation. LP>? norm be defined
by

t p 1/p .
|7 d7 if 1 <p<oo,
|ull Lo = (Jo lrfzdr) b (2.1)

essSupPg., ¢ |[ullre if ¢ = oo.
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And we define V = (9, 9.).
Next, let us introduce the vorticity field and the corresponding equation,

10u*  ouf ou”  O0u® 10,4 10u”
w=Vxu=Cgp ot Gy g e g ) L)
or equivalently,
o’
w=w"e, + UJG@@ +w'e, = _azueer + (azur - 87““2)89 + (87"u6 + 7)62'

Then we have the vorticity equation

D 1 1. .,
—w" = (02 + 0+ =0, — )" — (WO + W )u" =0,
T T

Dt

D , 1 1 2u09,uf  urwh

O (02402 4 -8, — et - T —0

D VOOt 20— e r r ’ (2.2)

D 1
Ew’z —v(0?+ 0% + ;@)wz — (W', +wWis)u =0,

wli=0 = wier + wgeg + wie..
If, we set @ = u"e, + u®e,, then
V-ia=0 and V xu=uwe.
To proof Theorem [1.1] we need the following key lemmas.
Lemma 2.1 ([2 Lemma 2]). Suppose that u(z,t) is an azisymmetric vector field

with divu = 0, and w = curl v vanishes sufficiently fast near infinity in R>, then
Vu and V(uley) can be represented as the singular integral form

Vi(z) = Cuwleq(z) + [K * (Wep)](z),

V(ueo(w) = Cofa) + [+ @)](0)
where the kernels K(x) and H(x) are matriz valued functions homogeneous of
degree —3, defining a singular integral operator by convolution, and f x g(z) =
Jzs f(x —y)g(y)dy denotes the standard convolution operator. The matrices C and
C are constant.

Lemma 2.2. Based on the above Lemma [2.1] and the LP boundness of Calderon-
Zygmund singular integral operators with 1 < p < 0o, we can deduce that

IValrr < llwllze,  IV(ueo)llzr < llwlrr-

Lemma 2.3. Let u be a sufficiently smooth vector field, then for all 1 < p < oo,
we have
[Vullr < C(p)l|w]|zr-

Lemma 2.4 ([6, Lemma 3]). Let u be a sufficiently smooth divergence-free azisym-
metric vector field. Then there exist constants C1(p) > 0 and Cy > 0, independent
of u, such that for 1 < p < oo, we have

u”’
IVullze +1=llze < Cr ()|’ 7,

’U,e 2
10- (=2 < Co| V7ul| o

r
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Lemma 2.5 ([0, Lemma 4]). Suppose that u is a sufficiently smooth azisymmetric
vector field, then there exists a constant C > 0 that is independent of u, such that
for all 1 < p < oo, we have

0
u
IV’ e + =Mz < ClVul Lo,

uf
16-(=)llzr < CllAul e
Lemma 2.6 ([6l Lemma 5]). Let u be the sufficiently smooth and divergence-free
azisymmetric vector field. Then there exist Cy(p), Ca, independent of u, such that
forl<p<oo

r 6
w w -
Cr)Aulee < [1==llee + 1= lle + 1V oo, H[ Ve l|o + [[Veo?| o

< CQ”AUHLP.
Lemma 2.7. Let u be the unique local axisymmetric solution of (1.1), then we
have
2,112 2 u” o 2 u” o
IVZullze = IVOrulze + IV —=llz2 + [IVO:ulz> + 110: -1z

0 0
u u
+ IV |L: + IV —l72 + VO’ T2 + 10— 17 + [IV?u?[| 72

-
2 \2 uﬁr 2 r’ui

+/R3 742{(3ru) +(r) Or T}dx
2 0 u? eu‘g

+/RS ﬁ{(&u )2—1-(7)2 — Oru 7}dx

Lemma 2.8 (Proposition 2.5|MZ). Let u be the sufficiently smooth and divergence-
free axisymmetric vector field, and V X u = w, then one can obtain that

u” w? 0, o

— =A'9,(= _QLA*QZUL 2.
L GO EELTNINCS (23)
where

Or x3 x3 T1T2

7f(7“, z) = ﬁR1lf+ 72322f —2 3 Riaof (2.4)

here R;; = A—laiaj.

Lemma 2.9. Based on Lemma [2.7, for 1 < p < oo, one can deduce easily the
following results

~u” w?
1V e < OO o (25)
~au” w?
199 e < C)I0- () s (26)

The Lemma below is a general Sobolev-Hardy inequality, which was deduced by
Hui chen et al [4, v]. About more Sobolev-Hardy inequality one can see [I, Theorem
2.1].

Lemma 2.10 ([ Lemma 2.4]). We assume that There exist a positive constant
C(s,q*), ¢" € [2,2(2 —s)] with 0 < s < 2 and r = (23 + 23)Y/? such that for all
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u € 2Y9(R3), one can obtain that

3—s

u B et T S
”E”Lq* <O s)lullz *IVullg:

Lemma 2.11 ([4]). Let u be the unique axisymmetric solution of (L.1)), then we
have

|| ||L°°0TL)+H ||L°°0TL2)+||V ||L2(OTL2)+||V ||L2 (0,TL2)

w w =7
sc{||—0||Lz+||—°uLz}exp{c/ " at}.
r r 0
where (a, 3) satisfies 2 + % <1 with3 < B < 0.

Proof. This proof can be found in [4]. For reader’s convenience, we give it here.
Multiplying the w" equation of (2.2) by ‘;’—; and integrating the resulting equation
over R? leads to

1d,w"
5 I + V2,
:/ (W' +w 8)u—w—~rdx
ror
T r r
:—271'/ ,u’ 8— w—drdz+27r// Zu -w—~rdrdz
r ror
:/ W @.0, ) 4 u0(0,")(0. % ) da
R3 T T

w00 e - [ w0, 0,2
[ @05 ae— [ 0.0, % e
T T w
— T)dl‘—Hl—l-HQ

Form Lemma [2.9] we obtain
i< [ 000, s
R3 T T

T

u” w .. . .
< s 0, 1| 2s, ||az—||p (Hélder inequality)

w’l”

< Cflu? |10 VO~ ||L2||8 IILz"II6 —llze

2
((Lemma [2.10[s = 0, ¢* = i)

0 —2
0 Aw‘g% w? -2 s w"
< O las VN 1 * 195z (Lemma 9)

0 é (/Jo 2 ~w" 2 ’\we 2 . .
< Collu T 1L s + 819 + 6923 (Young inequaliy)

The quantity Hs can be estimated similarly as Hy:

2

—5 % r 6
01— 3 w ~ W ~ W
|Ho| < Csllu’ll " 1= 1172 + 011V =117z + 6]V =17
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Thus we have
1d, w"

AWTQ
L L e, e,

2 o o (2.7)
o) 5 c v
< Calla?ll7 11 + 2819 - 3 + 2819 )3
Multiplying w? equation of (2.2)) by ‘7‘"’—29, and integrating over R3, after integrating
by parts we obtain that

1d W ~w? ul wrw?
V—|2.:=2 | ——"do:=H
e e e e
0 T
] < [ e
R3 r r
0 1w’ Lw" o :
< Cllu ||L5||7“_7—|| iHT_E—H L2 (Holder inequality)
r &
L+ g L+
< C||u9||Lﬁ||*||L2 mHV ||2 %”*Hm # ||V ||2 zﬂ
2
(where we used Lemma [2.10{ s = ﬂf L q = 3 fl)

2
-3 W w? ~w? ~ W .
< Cé”’uaHLzsﬁ ||7HL2H7||L2 + 5||V7||2L2 + 5||V7||%2 (Young ineq.)
6)1*2i W'y w? o oy 2w o
< Collu’ll s (== M72 + 1= I72) + oIV =172 + [IV—II72
r r r r
Then we obtain

1d, o’

Awe 2
S I 13 + IV
2

(2.8)
< Ca\luellm (||*||L2 + ||7||L2) + 5HV7HL2 + 5HV7HL2

Combining (2.7) and (2.8) together and let § be a small enough constant, we have
then by Gronwall’s inequality that

|| HLoo(OTL2 +||V ||L2 OTL2)+||7||L°°(0TL2)+HV ||L2 (0,T;L2)

w w 13
_awﬁm+W£mamﬂc/nwhfw}
0

3. PROOF OF REGULARITY CRITERIA

Proof. Let u be an axisymmetric smooth solution of the Navier-Stokes equations.
Taking curl on the both sides of the Navier-Stokes equations, then we can obtain
the equation

Ow — Aw+ (u- V)w = (w- V)u.
By multiplying w on the both sides of the above equations, and integrating over
R3, one obtain:

1d )
th/ 5] dx—i—/R3|Vw| dz
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z/RS(w~V)u-wd1:

(4
w
= wopu"wdr — Zwlwrde + w?ou"w dx + W Opulwldx
R3 rR3 T R3 R3
2
wWor e z 6 0 r z 0 z z, 2
—u"w’dz w?o,u’w’de w' o uFw’dx wfoufwdx
+ dx + 0 dx + 19 dz + 0 d
rR3 T R3 R3 R3

:Il+IQ+I3+I4+I5+I(,+I7+Ig

We will estimate the terms one by one, for the term I, using integration by
parts, we have

I :/ w" O u"w"dx
]Rii

—/ A.ul - O - whdx
R3

/ (ue 20,0u" w4+ ul - Opu” Lw")dx
]RS

then
|| < / |u? - 0.0,u" - w'|da +/ |u? - Opu"d,w" |dx = I} + I?
R3 R3
For the term I{,
1/2
Il < {/ |u? ow”|2dm} )]0,0pu” |2 (Holder inequality)
R3
< Cg/ [u? - w"[2dz 4 6]|0.0,u"||2:  (Young inequality)
R3
< Cg/ [u? - w"2dz + 0||Vw|2.  (By Lemma [2.6)
R3
< Csllu? 25| w1 25 + || Vw22 (Holder inequality)
LB-2
_o12
< Osllu’ 125 {IlwllZ= IVl 127} + 8l VewlZ.
3
(Gagliardo-Nirenberg inequlity and 6 =1 — E)
2
< Cg||u9||zg||w||2L2 +25||Vw||2:  (Young inequality)
For the term of I3,
I = / |u? - 0" - 0w |dx
R3
) 1/2
< { |u ~8rur|2dx} [|0w" |2 (Holder inequality)
R3
< 05{ / [u? - GruT|2dz} +6)|0.w" |2 (Young inequality)
R3

< Cs[|u?||2 5| 0ru" || 2+ §)|0.w"||2.  (Hélder inequality)
LB—2

1/2
< Collu? |26 { Il IVl 27} + 011013
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3
(Gagliardo-Nirenberg inequlity and § = 1 — B)

2
< Csllu?||7,||w]32 + 26| Vw72 (Young inequality and Lemma [2.6)
Then we obtain
2
-y
1] < Csllw’ll o™ lwllZe + 28] Vel

Similarly, one has

2

-z
| Lo, s, [Lal, | T6|, | 7] < Csllu’ 57 w7z + 26] V]|

One can see that I5 is a difficult term, but we can obtain a term that can be

estimated by Lemma [2.10]
0 0y4
|Is| < / |wfw0ur|dm < C|lu"|z2 (/ %dm)l/2 (Holder inequality)
rR3 T rR3 T
w’ 0 w’ 0)1/2 9)1/2 . . .
< C’||7||L6Hw s < C’||7||L6||w |2 [[Vw”||}2" (Gagliardo-Nirenberg ineq.)
AERTIE 02 : -
< G5Vl Zall”ll 2 + 8] Vw?|Z2  (Young inequality )
0
w . .
< ||V7||%z + Cs|?)22 + || Vw?||22.  (Young inequality )

0
w
< ||V7||%z + Csllw||72 + 0||Vw||7-. (Lemma [2:6)

Using integration by parts, one has

0
Is = / w?d,ufwdx = / ((“),«ug + u—)azuzufdm
R3 R3 T

0
= 9,u?8, - u? - wdx + / L. o,u” - w'dx
R3 R3 T
= —/ uw? - 0,0,u% - Wwdx — / u? o0 9w de +/ u? - ou - w—dm
R3 R3 R3 T

=T+ I3+ I3
For the term I3,
|I] < /RB |u? - 0,0, - w"|dx < {/RS |’ -wr|2dm}1/2||8razuz||p (Holder ineq.)
< Cs /]R3 |u? - w"|?dx + 6]|0,0,u|| > (Young inequality )
< Cslu?|| ||(,u||2ﬁ27ﬁ2 + 8| Vw|[72  (Hélder inequality and Lemma[2.7)

< Csllu?[126 {|w|l%- ||VwH}:§0}2 +6||Vw||7.  (Gagliardo-Nirenberg inequlity )

2
< Cg||u9\|zg |w||?2 + 26| Vw||2.  (Young inequality )
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The quantities |I2|, |I3] can be estimated similarly to |I3]|. Putting together the

ab

ove estimates, and taking ¢ small enough, then one have

2
d g 13 o
s+ 1Vel3a < {1+ 11" Pl + CIvE-3.

Using Gronwall’s inequality, we have

||WH%°°((O,T);L2) + ”V"‘)H%Z((O,T);L?)

0 T 23
w B—3
< Cflolts + IV o rm b exp {C+0 [ I ar,

Therefore, combining with Lemma then we completes the proof of Theorem

L1l O
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