Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 250, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

REGULARITY FOR THE AXISYMMETRIC NAVIER-STOKES EQUATIONS

PENG WANG

ABSTRACT. In this article, we establish a regularity criterion for the Navier-Stokes system with axisymmetric initial data. It is proved that if the local axisymmetric smooth solution u satisfies $\|u^{\theta}\|_{L^{\alpha}(0,T;L^{\beta})} < \infty$, where $\frac{2}{\alpha} + \frac{3}{\beta} \leq 1$, and $3 < \beta \leq \infty$, then the strong solution keeps smoothness up to time T.

1. Introduction

We study the following classic 3D incompressible Navier-Stokes equations in the whole space,

$$\partial_t u + (u \cdot \nabla u)u + \nabla p = \nu \Delta u,$$

$$\nabla \cdot u = 0,$$

$$u(x, t = 0) = u_0,$$
(1.1)

where $u(x,t) \in \mathbb{R}^3$ and $p(x,t) \in \mathbb{R}$ denote the unknowns, velocity and pressure respectively, while ν denotes the viscous coefficient of the system.

A lot of works have been devoted to study the above system, but global well-posedness for (1.1) with arbitrary large initial data is still a challenging open problem, see [3, 5, 8, 12, 13, 14].

Here, we are concerned with (1.1) with axisymmetric initial data. If u_0 is axisymmetric in system (1.1), then the solution u(x,t) of system (1.1)is also axisymmetric [10, 7]. So, it is convenient to write u(x,t) as in the form

$$u(x,t) = u^{r}(r,z,t)e_{r} + u^{\theta}(r,z,t)e_{\theta} + u^{z}(r,z,t)e_{z},$$

where e_r , e_θ and e_z are the standard orthonormal unit vectors in cylindrical coordinate system

$$e_r = (\frac{x_1}{r}, \frac{x_2}{r}, 0) = (\cos \theta, \sin \theta, 0),$$

$$e_{\theta} = (-\frac{x_2}{r}, \frac{x_1}{r}, 0) = (-\sin \theta, \cos \theta, 0),$$

$$e_z = (0, 0, 1),$$

²⁰¹⁰ Mathematics Subject Classification. 35Q30, 76D03.

Key words and phrases. Navier-Stokes equations; axi-symmetric flow; regularity criterion. ©2015 Texas State University - San Marcos.

Submitted June 11, 2015. Published September 25, 2015.

with $r = (x_1^2 + x_2^2)^{1/2}$. By direct computations, it is easy to show the following relations.

$$\begin{split} \nabla &= (\partial_{x_1}, \partial_{x_2}, \partial_z)^T = \partial_r e_r + \frac{\partial_\theta}{r} e_\theta + \partial_z e_z, \\ \Delta &= \nabla \cdot \nabla = \frac{1}{r} \partial_r (r \partial_r) + \frac{1}{r^2} \frac{\partial^2}{\partial_\theta^2} + \frac{\partial^2}{\partial z^2}, \\ \frac{\partial e_r}{\partial \theta} &= e_\theta, \quad \frac{\partial e_\theta}{\partial \theta} = -e_r. \end{split}$$

Accordingly, the system (1.1) can be rewritten equivalently as

$$\frac{\tilde{D}}{Dt}u^{r} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}})u^{r} - \frac{(u^{\theta})^{2}}{r} + \partial_{r}p = 0,$$

$$\frac{\tilde{D}}{Dt}u^{\theta} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}})u^{\theta} + \frac{u^{r}u^{\theta}}{r} = 0,$$

$$\frac{\tilde{D}}{Dt}u^{z} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r})u^{z} + \partial_{z}p = 0,$$

$$u|_{t=0} = u_{0}^{r} \cdot e_{r} + u_{0}^{\theta} \cdot e_{\theta} + u_{0}^{z} \cdot e_{z},$$
(1.2)

where $\frac{\tilde{D}}{Dt}$ denotes the material derivative

$$\frac{\tilde{D}}{Dt} = \partial_t + u^r \partial_r + u^z \partial_z.$$

If $u^{\theta}=0$ (so-called without swirl), Ukhovskii and Yudovich [10] (see also [7]) proved the existence of generalized solutions, uniqueness and regularity. When $u^{\theta}\neq 0$ (with swirl), it is much complicated and difficult. For recent progress, one can find results on regularity criteria or global existence with small initial data in [2, 6, 7, 11]. In particular, very recently in [11], the following regularity criterion was established:

$$||u^{\theta}1_{r\leq\varsigma}||_{L^{\alpha}((0,T);L^{\beta})} < \infty, \text{ with } \frac{2}{\alpha} + \frac{3}{\beta} < 1, \quad \beta > 6, \text{ or } (\alpha,\beta) = (4,6), (1.3)$$

where $\varsigma > 0$ is given.

The aim of this paper is to give a regularity criteria in terms of u^{θ} . More precisely, we have the following theorem.

Theorem 1.1. Let $u_0 \in H^2$, and $u \in C([0,T); H^2(\mathbb{R}^3)) \cap L^2_{loc}([0,T); \dot{H}^3(\mathbb{R}^3))$ be the solution of (1.1). If it satisfies

$$\|u^{\theta}\|_{L^{\alpha}(0,T;L^{\beta})} < \infty, \quad \text{where } \frac{2}{\alpha} + \frac{3}{\beta} = 1, \text{ and } 3 < \beta \le \infty,$$
 (1.4)

then u(x,t) can be continued beyond T.

In Section 2 some key lemmas are given. Then Section 3 is devoted to the proof of the main result.

2. Key lemmas

Before going to the details, let us introduce some notation. $L^{p,q}$ norm be defined by

$$||u||_{L^{p,q}} = \begin{cases} \left(\int_0^t ||u||_{L^q}^p d\tau \right)^{1/p} & \text{if } 1 \le p < \infty, \\ \operatorname{ess\,sup}_{0 < \tau < t} ||u||_{L^q} & \text{if } q = \infty. \end{cases}$$
(2.1)

And we define $\tilde{\nabla} \doteq (\partial_r, \partial_z)$.

Next, let us introduce the vorticity field and the corresponding equation,

$$\omega = \nabla \times u = \left(\frac{1}{r} \frac{\partial u^z}{\partial \theta} - \frac{\partial u^{\theta}}{\partial z}\right) e_r + \left(\frac{\partial u^r}{\partial z} - \frac{\partial u^z}{\partial r}\right) e_{\theta} + \left(\frac{1}{r} \frac{\partial}{\partial r} (u^{\theta} r) - \frac{1}{r} \frac{\partial u^r}{\partial \theta}\right) e_z,$$

or equivalently,

$$\omega = \omega^r e_r + \omega^\theta e_\theta + \omega^z e_z = -\partial_z u^\theta e_r + (\partial_z u^r - \partial_r u^z) e_\theta + (\partial_r u^\theta + \frac{u^\theta}{r}) e_z.$$

Then we have the vorticity equation

$$\frac{\tilde{D}}{Dt}\omega^{r} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}})\omega^{r} - (\omega^{r}\partial_{r} + \omega^{z}\partial_{z})u^{r} = 0,$$

$$\frac{\tilde{D}}{Dt}\omega^{\theta} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r} - \frac{1}{r^{2}})\omega^{\theta} - \frac{2u^{\theta}\partial_{z}u^{\theta}}{r} - \frac{u^{r}\omega^{\theta}}{r} = 0,$$

$$\frac{\tilde{D}}{Dt}\omega^{z} - \nu(\partial_{r}^{2} + \partial_{z}^{2} + \frac{1}{r}\partial_{r})\omega^{z} - (\omega^{r}\partial_{r} + \omega^{3}\partial_{3})u^{3} = 0,$$

$$\omega|_{t=0} = \omega_{0}^{r}e_{r} + \omega_{0}^{\theta}e_{\theta} + \omega_{0}^{z}e_{z}.$$
(2.2)

If, we set $\tilde{u} \doteq u^r e_r + u^z e_z$, then

$$\nabla \cdot \tilde{u} = 0$$
 and $\nabla \times \tilde{u} = \omega^{\theta} e_{\theta}$.

To proof Theorem 1.1, we need the following key lemmas.

Lemma 2.1 ([2, Lemma 2]). Suppose that u(x,t) is an axisymmetric vector field with div u=0, and $\omega=curl\ u$ vanishes sufficiently fast near infinity in \mathbb{R}^3 , then ∇u and $\nabla (u^{\theta}e_{\theta})$ can be represented as the singular integral form

$$\nabla \tilde{u}(x) = C\omega^{\theta} e_{\theta}(x) + [K * (\omega^{\theta} e_{\theta})](x),$$

$$\nabla (u^{\theta} e_{\theta}(x)) = C\tilde{\omega}(x) + [H * (\tilde{\omega})](x),$$

where the kernels K(x) and H(x) are matrix valued functions homogeneous of degree -3, defining a singular integral operator by convolution, and $f * g(x) = \int_{\mathbb{R}^3} f(x-y)g(y) dy$ denotes the standard convolution operator. The matrices C and \tilde{C} are constant.

Lemma 2.2. Based on the above Lemma 2.1 and the L^p boundness of Calderon-Zygmund singular integral operators with 1 , we can deduce that

$$\|\nabla \tilde{u}\|_{L^p} \lesssim \|\omega\|_{L^p}, \quad \|\nabla (u^{\theta} e_{\theta})\|_{L^p} \lesssim \|\omega\|_{L^p}.$$

Lemma 2.3. Let u be a sufficiently smooth vector field, then for all 1 , we have

$$\|\nabla u\|_{L^p} < C(p)\|\omega\|_{L^p}.$$

Lemma 2.4 ([6, Lemma 3]). Let u be a sufficiently smooth divergence-free axisymmetric vector field. Then there exist constants $C_1(p) > 0$ and $C_2 > 0$, independent of u, such that for 1 , we have

$$\|\nabla u^r\|_{L^p} + \|\frac{u^r}{r}\|_{L^p} \le C_1(p)\|\omega^\theta\|_{L^p},$$
$$\|\partial_r(\frac{u^\theta}{r})\|_{L^p} \le C_2\|\nabla^2 u\|_{L^p}.$$

Lemma 2.5 ([6, Lemma 4]). Suppose that u is a sufficiently smooth axisymmetric vector field, then there exists a constant C > 0 that is independent of u, such that for all $1 \le p \le \infty$, we have

$$\|\nabla u^{\theta}\|_{L^{p}} + \|\frac{u^{\theta}}{r}\|_{L^{p}} \le C\|\nabla u\|_{L^{p}},$$
$$\|\partial_{r}(\frac{u^{\theta}}{r})\|_{L^{p}} \le C\|\Delta u\|_{L^{p}}.$$

Lemma 2.6 ([6, Lemma 5]). Let u be the sufficiently smooth and divergence-free axisymmetric vector field. Then there exist $C_1(p)$, C_2 , independent of u, such that for 1

$$C_{1}(p)\|\Delta u\|_{L^{p}} \leq \|\frac{\omega^{r}}{r}\|_{L^{p}} + \|\frac{\omega^{\theta}}{r}\|_{L^{p}} + \|\nabla\omega^{r}\|_{L^{p}}, + \|\nabla\omega^{\theta}\|_{L^{p}} + \|\nabla\omega^{z}\|_{L^{p}}$$
$$\leq C_{2}\|\Delta u\|_{L^{p}}.$$

Lemma 2.7. Let u be the unique local axisymmetric solution of (1.1), then we have

$$\|\nabla^{2}u\|_{L^{2}}^{2} = \|\nabla\partial_{r}u^{r}\|_{L^{2}}^{2} + \|\nabla\frac{u^{r}}{r}\|_{L^{2}}^{2} + \|\nabla\partial_{z}u^{r}\|_{L^{2}}^{2} + \|\partial_{z}\frac{u^{r}}{r}\|_{L^{2}}^{2}$$

$$+ \|\nabla\partial_{r}u^{\theta}\|_{L^{2}}^{2} + \|\nabla\frac{u^{\theta}}{r}\|_{L^{2}}^{2} + \|\nabla\partial_{z}u^{\theta}\|_{L^{2}}^{2} + \|\partial_{z}\frac{u^{\theta}}{r}\|_{L^{2}}^{2} + \|\nabla^{2}u^{z}\|_{L^{2}}^{2}$$

$$+ \int_{\mathbb{R}^{3}} \frac{2}{r^{2}} \left\{ (\partial_{r}u^{r})^{2} + (\frac{u^{r}}{r})^{2} - \partial_{r}u^{r}\frac{u^{r}}{r} \right\} dx$$

$$+ \int_{\mathbb{R}^{3}} \frac{2}{r^{2}} \left\{ (\partial_{r}u^{\theta})^{2} + (\frac{u^{\theta}}{r})^{2} - \partial_{r}u^{\theta}\frac{u^{\theta}}{r} \right\} dx$$

Lemma 2.8 (Proposition 2.5]MZ). Let u be the sufficiently smooth and divergence-free axisymmetric vector field, and $\nabla \times u = \omega$, then one can obtain that

$$\frac{u^r}{r} = \Delta^{-1}\partial_z(\frac{\omega^\theta}{r}) - 2\frac{\partial_r}{r}\Delta^{-2}\partial_z(\frac{\omega^\theta}{r})$$
 (2.3)

where

$$\frac{\partial_r}{r}f(r,z) = \frac{x_2^2}{r^2}R_{11}f + \frac{x_1^2}{r^2}R_{22}f - 2\frac{x_1x_2}{r^2}R_{12}f$$
 (2.4)

here $R_{ij} = \Delta^{-1} \partial_i \partial_j$.

Lemma 2.9. Based on Lemma 2.7, for 1 , one can deduce easily the following results

$$\|\hat{\nabla} \frac{u^r}{r}\|_{L^p} \le C(p) \|\frac{\omega^{\theta}}{r}\|_{L^p} \tag{2.5}$$

$$\|\hat{\nabla}\hat{\nabla}\frac{u^r}{r}\|_{L^p} \le C(p)\|\partial_z(\frac{\omega^\theta}{r})\|_{L^p} \tag{2.6}$$

The Lemma below is a general Sobolev-Hardy inequality, which was deduced by Hui chen et al [4, v]. About more Sobolev-Hardy inequality one can see [1, Theorem 2.1].

Lemma 2.10 ([4, Lemma 2.4]). We assume that There exist a positive constant $C(s, q^*)$, $q^* \in [2, 2(2-s)]$ with $0 \le s < 2$ and $r = (x_1^2 + x_2^2)^{1/2}$ such that for all

 $u \in \mathcal{D}^{1,q}(\mathbb{R}^3)$, one can obtain that

$$\|\frac{u}{\frac{s}{r^{\frac{s}{q^*}}}}\|_{L^{q^*}} \le C(q^*,s) \|u\|_{L^2}^{\frac{3-s}{q^*}-\frac{1}{2}} \|\nabla u\|_{L^2}^{\frac{3}{2}-\frac{3-s}{q^*}}.$$

Lemma 2.11 ([4]). Let u be the unique axisymmetric solution of (1.1), then we have

$$\|\frac{\omega^{\theta}}{r}\|_{L^{\infty}(0,T;L^{2})}^{2} + \|\frac{\omega^{r}}{r}\|_{L^{\infty}(0,T;L^{2})}^{2} + \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}(0,T;L^{2})}^{2} + \|\nabla\frac{\omega^{r}}{r}\|_{L^{2}(0,T;L^{2})}^{2}$$

$$\leq C \Big\{ \|\frac{\omega_{0}^{r}}{r}\|_{L^{2}} + \|\frac{\omega_{0}^{\theta}}{r}\|_{L^{2}} \Big\} \exp\Big\{ C \int_{0}^{T} \|u^{\theta}\|_{L^{\beta}}^{\frac{2}{1-\frac{3}{\beta}}} dt \Big\}.$$

where (α, β) satisfies $\frac{2}{\alpha} + \frac{3}{\beta} \le 1$ with $3 < \beta \le \infty$.

Proof. This proof can be found in [4]. For reader's convenience, we give it here. Multiplying the ω^r equation of (2.2) by $\frac{\omega^r}{r^2}$ and integrating the resulting equation over \mathbb{R}^3 leads to

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\|\frac{\omega^r}{r}\|_{L^2}^2 + \nu\|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^2 \\ &= \int_{\mathbb{R}^3} \left(\omega^r \partial_r + \omega^z \partial_z\right) \frac{u^r}{r} \frac{\omega^r}{r} \cdot r \mathrm{d}x \\ &= -2\pi \int_{\mathbb{R}} \int_0^\infty \partial_z u^\theta \cdot \partial_r \frac{u^r}{r} \cdot \frac{\omega^r}{r} \mathrm{d}r \mathrm{d}z + 2\pi \int_{\mathbb{R}} \int_0^\infty \frac{\partial_r (r u^\theta)}{r} \cdot \partial_z \frac{u^r}{r} \cdot \frac{\omega^r}{r} \cdot r \mathrm{d}r \mathrm{d}z \\ &= \int_{\mathbb{R}^3} u^\theta (\partial_z \partial_r \frac{u^r}{r}) \frac{\omega^r}{r} + u^\theta (\partial_r \frac{u^r}{r}) (\partial_z \frac{\omega^r}{r}) \mathrm{d}x \\ &- \int_{\mathbb{R}^3} u^\theta \cdot (\partial_r \partial_z \frac{u^r}{r}) (\frac{\omega^r}{r}) \mathrm{d}x - \int_{\mathbb{R}^3} u^\theta \cdot (\partial_z \frac{u^r}{r}) (\partial_r \frac{\omega^r}{r}) \mathrm{d}x \\ &= \int_{\mathbb{R}^3} u^\theta \cdot (\partial_r \frac{u^r}{r}) \cdot (\partial_z \frac{\omega^r}{r}) \mathrm{d}x - \int_{\mathbb{R}^3} u^\theta \cdot (\partial_z \frac{u^r}{r}) \cdot (\partial_r \frac{\omega^r}{r}) \mathrm{d}x = H_1 + H_2 \end{split}$$

Form Lemma 2.9 we obtain

$$\begin{split} |H_{1}| & \leq \int_{\mathbb{R}^{3}} |u^{\theta} \cdot (\partial_{r} \frac{u^{r}}{r} \partial_{z} \frac{\omega^{r}}{r})| \mathrm{d}x \\ & \leq \|u^{\theta}\|_{L^{\beta}} \|\partial_{r} \frac{u^{r}}{r}\|_{L^{\frac{2\beta}{\beta-2}}} \|\partial_{z} \frac{\omega^{r}}{r}\|_{L^{2}} \quad \text{(H\"older inequality)} \\ & \leq C \|u^{\theta}\|_{L^{\beta}} \|\hat{\nabla} \partial_{r} \frac{u^{r}}{r}\|_{L^{2}}^{\frac{3}{\beta}} \|\partial_{r} \frac{u^{r}}{r}\|_{L^{2}}^{1-\frac{3}{\beta}} \|\partial_{z} \frac{\omega^{r}}{r}\|_{L^{2}} \\ & \quad \text{((Lemma 2.10 } s = 0, \ q^{*} = \frac{2\beta}{\beta-2}) \\ & \leq C \|u^{\theta}\|_{L^{\beta}} \|\hat{\nabla} \frac{\omega^{\theta}}{r}\|_{L^{2}}^{\frac{3}{\beta}} \|\frac{\omega^{\theta}}{r}\|_{L^{2}}^{1-\frac{3}{\beta}} \|\hat{\nabla} \frac{\omega^{r}}{r}\|_{L^{2}} \quad \text{(Lemma 2.9)} \\ & \leq C_{\delta} \|u^{\theta}\|_{L^{\beta}}^{\frac{2}{-\frac{3}{\beta}}} \|\frac{\omega^{\theta}}{r}\|_{L^{2}}^{2} + \delta \|\hat{\nabla} \frac{\omega^{r}}{r}\|_{L^{2}}^{2} + \delta \|\hat{\nabla} \frac{\omega^{\theta}}{r}\|_{L^{2}}^{2} \quad \text{(Young inequality)} \end{split}$$

The quantity H_2 can be estimated similarly as H_1 :

$$|H_2| \le C_\delta \|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}} \|\frac{\omega^\theta}{r}\|_{L^2}^2 + \delta \|\hat{\nabla}\frac{\omega^r}{r}\|_{L^2}^2 + \delta \|\hat{\nabla}\frac{\omega^\theta}{r}\|_{L^2}^2.$$

Thus we have

$$\frac{1}{2} \frac{d}{dt} \| \frac{\omega^r}{r} \|_{L^2}^2 + \nu \| \hat{\nabla} \frac{\omega^r}{r} \|_{L^2}^2 \\
\leq C_{\delta} \| u^{\theta} \|_{L^{\beta}}^{\frac{2}{1-\frac{3}{\beta}}} \| \frac{\omega^{\theta}}{r} \|_{L^2}^2 + 2\delta \| \hat{\nabla} \frac{\omega^r}{r} \|_{L^2}^2 + 2\delta \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^2}^2 \tag{2.7}$$

Multiplying ω^{θ} equation of (2.2) by $\frac{\omega^{\theta}}{r^2}$, and integrating over \mathbb{R}^3 , after integrating by parts we obtain that

$$\begin{split} \frac{1}{2} \frac{d}{dt} \| \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} + \nu \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} &= 2 \int_{\mathbb{R}^{3}} \frac{u^{\theta}}{r} \frac{\omega^{r}}{r} \frac{\omega^{\theta}}{r} dx := H_{3} \\ |H_{3}| &\leq \int_{\mathbb{R}^{3}} |u^{\theta} \cdot (r^{-\frac{1}{2}} \frac{\omega^{\theta}}{r}) (r^{-\frac{1}{2}} \frac{\omega^{r}}{r}) |dx \\ &\leq C \| u^{\theta} \|_{L^{\beta}} \| r^{-\frac{1}{2}} \frac{\omega^{\theta}}{r} \|_{L^{\frac{2\beta}{\beta-1}}} \| r^{-\frac{1}{2}} \frac{\omega^{r}}{r} \|_{L^{\frac{2\beta}{\beta-1}}} \quad \text{(H\"older inequality)} \\ &\leq C \| u^{\theta} \|_{L^{\beta}} \| \frac{\omega^{\theta}}{r} \|_{L^{2}}^{\frac{1}{2} - \frac{3}{2\beta}} \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{\frac{1}{2} + \frac{3}{2\beta}} \| \frac{\omega^{r}}{r} \|_{L^{2}}^{\frac{1}{2} - \frac{3}{2\beta}} \| \hat{\nabla} \frac{\omega^{r}}{r} \|_{L^{2}}^{\frac{1}{2} + \frac{3}{2\beta}} \\ &\text{(where we used Lemma 2.10 } s = \frac{\beta}{\beta - 1}, \ q^{*} = \frac{2\beta}{\beta - 1}) \\ &\leq C_{\delta} \| u^{\theta} \|_{L^{\beta}}^{\frac{2}{-\frac{3}{\beta}}} \| \frac{\omega^{r}}{r} \|_{L^{2}} \| \frac{\omega^{\theta}}{r} \|_{L^{2}} + \delta \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} + \delta \| \hat{\nabla} \frac{\omega^{r}}{r} \|_{L^{2}}^{2} \quad \text{(Young ineq.)} \\ &\leq C_{\delta} \| u^{\theta} \|_{L^{\beta}}^{\frac{2}{-\frac{3}{\beta}}} (\| \frac{\omega^{r}}{r} \|_{L^{2}}^{2} + \| \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2}) + \delta \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} + \delta \| \hat{\nabla} \frac{\omega^{r}}{r} \|_{L^{2}}^{2} \end{split}$$

Then we obtain

$$\frac{1}{2} \frac{d}{dt} \left\| \frac{\omega^{\theta}}{r} \right\|_{L^{2}}^{2} + \nu \|\hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} \\
\leq C_{\delta} \|u^{\theta}\|_{L^{\beta}}^{\frac{2}{1-\frac{3}{\beta}}} \left(\left\| \frac{\omega^{r}}{r} \right\|_{L^{2}}^{2} + \left\| \frac{\omega^{\theta}}{r} \right\|_{L^{2}}^{2} \right) + \delta \|\hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^{2}}^{2} + \delta \|\hat{\nabla} \frac{\omega^{r}}{r} \|_{L^{2}}^{2} \tag{2.8}$$

Combining (2.7) and (2.8) together and let δ be a small enough constant, we have then by Gronwall's inequality that

$$\begin{split} & \| \frac{\omega^r}{r} \|_{L^{\infty}(0,T;L^2)}^2 + \| \hat{\nabla} \frac{\omega^r}{r} \|_{L^2(0,T;L^2)}^2 + \| \frac{\omega^{\theta}}{r} \|_{L^{\infty}(0,T;L^2)}^2 + \| \hat{\nabla} \frac{\omega^{\theta}}{r} \|_{L^2(0,T;L^2)}^2 \\ & \leq C(\| \frac{\omega_0^r}{r} \|_{L^2} + \| \frac{\omega_0^{\theta}}{r} \|_{L^2}) \exp\Big\{ C \int_0^T \| u^{\theta} \|_{L^{\beta}}^{\frac{2}{1-\frac{3}{\beta}}} \, \mathrm{d}t \Big\}. \end{split}$$

3. Proof of regularity criteria

Proof. Let u be an axisymmetric smooth solution of the Navier-Stokes equations. Taking curl on the both sides of the Navier-Stokes equations, then we can obtain the equation

$$\partial_t \omega - \Delta \omega + (u \cdot \nabla) \omega = (\omega \cdot \nabla) u.$$

By multiplying ω on the both sides of the above equations, and integrating over \mathbb{R}^3 , one obtain:

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^3} |\omega|^2 dx + \int_{\mathbb{R}^3} |\nabla \omega|^2 dx$$

$$\begin{split} &= \int_{\mathbb{R}^3} (\omega \cdot \nabla) u \cdot \omega \mathrm{d}x \\ &= \int_{\mathbb{R}^3} \omega^r \partial_r u^r \omega^r \mathrm{d}x - \int_{\mathbb{R}^3} \frac{\omega^\theta}{r} u^\theta \omega^r \mathrm{d}x + \int_{\mathbb{R}^3} \omega^z \partial_z u^r \omega^r \mathrm{d}x + \int_{\mathbb{R}^3} \omega^r \partial_r u^\theta \omega^\theta \mathrm{d}x \\ &+ \int_{\mathbb{R}^3} \frac{\omega^\theta}{r} u^r \omega^\theta \mathrm{d}x + \int_{\mathbb{R}^3} \omega^z \partial_z u^\theta \omega^\theta \mathrm{d}x + \int_{\mathbb{R}^3} \omega^r \partial_r u^z \omega^\theta \mathrm{d}x + \int_{\mathbb{R}^3} \omega^z \partial_z u^z \omega^z \mathrm{d}x \\ &:= I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8. \end{split}$$

We will estimate the terms one by one, for the term I_1 , using integration by parts, we have

$$I_{1} = \int_{\mathbb{R}^{3}} \omega^{r} \partial_{r} u^{r} \omega^{r} dx$$

$$= -\int_{\mathbb{R}^{3}} \partial_{z} u^{\theta} \cdot \partial_{r} u^{r} \cdot \omega^{r} dx$$

$$= \int_{\mathbb{R}^{3}} (u^{\theta} \cdot \partial_{z} \partial_{r} u^{r} \cdot \omega^{r} + u^{\theta} \cdot \partial_{r} u^{r} \partial_{z} \omega^{r}) dx$$

then

$$|I_1| \le \int_{\mathbb{R}^3} |u^{\theta} \cdot \partial_z \partial_r u^r \cdot \omega^r| dx + \int_{\mathbb{R}^3} |u^{\theta} \cdot \partial_r u^r \partial_z \omega^r| dx \doteq I_1^1 + I_1^2$$

For the term I_1^1 ,

$$\begin{split} I_1^1 & \leq \left\{ \int_{R^3} |u^\theta \cdot \omega^r|^2 \mathrm{d}x \right\}^{1/2} \cdot \|\partial_z \partial_r u^r\|_{L^2} \quad \text{(H\"older inequality)} \\ & \leq C_\delta \int_{R^3} |u^\theta \cdot \omega^r|^2 \mathrm{d}x + \delta \|\partial_z \partial_r u^r\|_{L^2}^2 \quad \text{(Young inequality)} \\ & \leq C_\delta \int_{R^3} |u^\theta \cdot \omega^r|^2 \mathrm{d}x + \delta \|\nabla \omega\|_{L^2}^2 \quad \text{(By Lemma 2.6)} \\ & \leq C_\delta \|u^\theta\|_{L^\beta}^2 \|\omega^r\|_{L^\frac{2\beta}{\beta-2}}^2 + \delta \|\nabla \omega\|_{L^2}^2 \quad \text{(H\"older inequality)} \\ & \leq C_\delta \|u^\theta\|_{L^\beta}^2 \left\{ \|\omega\|_{L^2}^\theta \|\nabla \omega\|_{L^2}^{1-\theta} \right\}^2 + \delta \|\nabla \omega\|_{L^2}^2 \\ & \text{(Gagliardo-Nirenberg inequlity and } \theta = 1 - \frac{3}{\beta} \text{)} \\ & \leq C_\delta \|u^\theta\|_{L^\beta}^\frac{2}{\delta} \|\omega\|_{L^2}^2 + 2\delta \|\nabla \omega\|_{L^2}^2 \quad \text{(Young inequality)} \end{split}$$

For the term of I_1^2 ,

$$\begin{split} I_1^2 &= \int_{\mathbb{R}^3} |u^\theta \cdot \partial_r u^r \cdot \partial_z \omega^r | \mathrm{d}x \\ &\leq \Big\{ \int_{\mathbb{R}^3} |u^\theta \cdot \partial_r u^r|^2 \mathrm{d}x \Big\}^{1/2} \cdot \|\partial_z \omega^r\|_{L^2} \quad \text{(H\"older inequality)} \\ &\leq C_\delta \Big\{ \int_{\mathbb{R}^3} |u^\theta \cdot \partial_r u^r|^2 \mathrm{d}x \Big\} + \delta \|\partial_z \omega^r\|_{L^2}^2 \quad \text{(Young inequality)} \\ &\leq C_\delta \|u^\theta\|_{L^\beta}^2 \|\partial_r u^r\|_{L^{\frac{2\beta}{\beta-2}}}^2 + \delta \|\partial_z \omega^r\|_{L^2}^2 \quad \text{(H\"older inequality)} \\ &\leq C_\delta \|u^\theta\|_{L^\beta}^2 \Big\{ \|\omega\|_{L^2}^\theta \|\nabla\omega\|_{L^2}^{1-\theta} \Big\}^{1/2} + \delta \|\partial_z \omega^r\|_{L^2}^2 \end{split}$$

(Gagliardo-Nirenberg inequality and
$$\theta = 1 - \frac{3}{\beta}$$
)
 $\leq C_{\delta} \|u^{\theta}\|_{L^{\beta}}^{\frac{2}{\theta}} \|\omega\|_{L^{2}}^{2} + 2\delta \|\nabla \omega\|_{L^{2}}^{2}$ (Young inequality and Lemma 2.6)

Then we obtain

$$|I_1| \le C_\delta \|u^\theta\|_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}} \|\omega\|_{L^2}^2 + 2\delta \|\nabla\omega\|_{L^2}^2$$

Similarly, one has

$$|I_2|, |I_3|, |I_4|, |I_6|, |I_7| \le C_\delta ||u^\theta||_{L^\beta}^{\frac{2}{1-\frac{3}{\beta}}} ||\omega||_{L^2}^2 + 2\delta ||\nabla \omega||_{L^2}^2.$$

One can see that I_5 is a difficult term, but we can obtain a term that can be estimated by Lemma 2.10,

$$|I_{5}| \leq \int_{\mathbb{R}^{3}} |\frac{\omega^{\theta}}{r} \omega^{\theta} u^{r} | \mathrm{d}x \leq C \|u^{r}\|_{L^{2}} \left(\int_{\mathbb{R}^{3}} \frac{(\omega^{\theta})^{4}}{r^{2}} \mathrm{d}x \right)^{1/2} \quad \text{(H\"older inequality)}$$

$$\leq C \|\frac{\omega^{\theta}}{r}\|_{L^{6}} \|\omega^{\theta}\|_{L^{3}} \leq C \|\frac{\omega^{\theta}}{r}\|_{L^{6}} \|\omega^{\theta}\|_{L^{2}}^{1/2} \|\nabla\omega^{\theta}\|_{L^{2}}^{1/2} \quad \text{(Gagliardo-Nirenberg ineq.)}$$

$$\leq C_{\delta} \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}}^{\frac{4}{3}} \|\omega^{\theta}\|_{L^{2}}^{\frac{2}{3}} + \delta \|\nabla\omega^{\theta}\|_{L^{2}}^{2} \quad \text{(Young inequality)}$$

$$\leq \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}}^{2} + C_{\delta} \|\omega^{\theta}\|_{L^{2}}^{2} + \delta \|\nabla\omega^{\theta}\|_{L^{2}}^{2}. \quad \text{(Young inequality)}$$

$$\leq \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}}^{2} + C_{\delta} \|\omega\|_{L^{2}}^{2} + \delta \|\nabla\omega\|_{L^{2}}^{2}. \quad \text{(Lemma 2.6)}$$

Using integration by parts, one has

$$\begin{split} I_8 &= \int_{\mathbb{R}^3} \omega^z \partial_z u^z \omega^z \mathrm{d}x = \int_{\mathbb{R}^3} \left(\partial_r u^\theta + \frac{u^\theta}{r} \right) \partial_z u^z \omega^r \mathrm{d}x \\ &= \int_{\mathbb{R}^3} \partial_r u^\theta \partial_z \cdot u^z \cdot \omega^r \mathrm{d}x + \int_{\mathbb{R}^3} \frac{u^\theta}{r} \cdot \partial_z u^z \cdot \omega^r \mathrm{d}x \\ &= -\int_{\mathbb{R}^3} u^\theta \cdot \partial_r \partial_z u^z \cdot \omega^r \mathrm{d}x - \int_{\mathbb{R}^3} u^\theta \cdot \partial_z u^z \cdot \partial_r \omega^r \mathrm{d}x + \int_{\mathbb{R}^3} u^\theta \cdot \partial_z u^z \cdot \frac{\omega^r}{r} \mathrm{d}x \\ &:= I_8^2 + I_8^2 + I_8^3 \end{split}$$

For the term I_8^1 ,

$$\begin{split} |I_8^1| &\leq \int_{\mathbb{R}^3} |u^\theta \cdot \partial_r \partial_z \cdot \omega^r| \mathrm{d}x \leq \left\{ \int_{\mathbb{R}^3} |u^\theta \cdot \omega^r|^2 \mathrm{d}x \right\}^{1/2} \|\partial_r \partial_z u^z\|_{L^2} \quad \text{(H\"older ineq.)} \\ &\leq C_\delta \int_{\mathbb{R}^3} |u^\theta \cdot \omega^r|^2 \mathrm{d}x + \delta \|\partial_r \partial_z u^z\|_{L^2} \quad \text{(Young inequality)} \\ &\leq C_\delta \|u^\theta\|_{L^\beta}^2 \|\omega\|_{\frac{2\beta}{\beta-2}}^2 + \delta \|\nabla \omega\|_{L^2}^2 \quad \text{(H\"older inequality and Lemma 2.7)} \\ &\leq C_\delta \|u^\theta\|_{L^\beta}^2 \left\{ \|\omega\|_{L^2}^\theta \|\nabla \omega\|_{L^2}^{1-\theta} \right\}^2 + \delta \|\nabla \omega\|_{L^2}^2 \quad \text{(Gagliardo-Nirenberg inequality)} \\ &\leq C_\delta \|u^\theta\|_{L^\beta}^\frac{2}{\theta}} \|\omega\|_{L^2}^2 + 2\delta \|\nabla \omega\|_{L^2}^2 \quad \text{(Young inequality)} \end{split}$$

The quantities $|I_8^2|$, $|I_8^3|$ can be estimated similarly to $|I_8^1|$. Putting together the above estimates, and taking δ small enough, then one have

$$\frac{d}{dt} \|\omega\|_{L^{2}}^{2} + \|\nabla\omega\|_{L^{2}}^{2} \le C \left\{ 1 + \|u^{\theta}\|_{L^{\beta}}^{\frac{2}{1-\frac{3}{\beta}}} \right\} \|\omega\|_{L^{2}}^{2} + C \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}}^{2}$$

Using Gronwall's inequality, we have

$$\begin{split} &\|\omega\|_{L^{\infty}((0,T);L^{2})}^{2} + \|\nabla\omega\|_{L^{2}((0,T);L^{2})}^{2} \\ &\leq C \Big\{ \|\omega_{0}\|_{L^{2}}^{2} + \|\nabla\frac{\omega^{\theta}}{r}\|_{L^{2}(0,T;L^{2})}^{2} \Big\} \exp\Big\{ C + C \int_{0}^{T} \|u^{\theta}\|_{L^{\beta}}^{\frac{2\beta}{\beta-3}} \mathrm{d}t \Big\}. \end{split}$$

Therefore, combining with Lemma 2.11 then we completes the proof of Theorem \Box 1.1.

References

- [1] M. Badiale, G. Tarantello; A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163 (2002), 259–293.
- [2] D. Chae, J. Lee; On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z. 239 (2002), 645-671.
- [3] P. Constantin, C. Foias; Navier-Stokes equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988.
- [4] H. Chen, D. Fang, T. Zhang; Regularity of 3D axisymmetric Navier-Stokes equations. arXiv:1505.00905 [math.AP]
- [5] C. L. Fefferman; Existence and smoothness of the Navier-Stokes equation, The millennium prize problems, Clay Math. Inst., Cambridge, MA (2006), 57–67.
- [6] J. Neustupa, M. Pokorný; Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component, Math. Bohem. 126 (2001), 469–481.
- [7] S. Leonardi, J. Málek, J. Nečas, M. Pokorný; On axially symmetric flows in R³, Z. Anal. Anwendungen 18 (1999), 639–649.
- [8] A. J. Majda, A. L. Bertozzi; Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.
- [9] C. Miao, X. Zheng; Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl. 101 (2014), 842–872.
- [10] M. R. Ukhovskii, V. I. Iudovich; Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech. 32 (1968), 52–61.
- [11] P. Zhang, T. Zhang; Global axisymmetric solutions to three-dimensional Navier-Stokes system, Int. Math. Res. Not. IMRN 3 (2014), 610–642.
- [12] Y. Zhou; A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl. (9) 84 (2005), 1496–1514.
- [13] Y. Zhou, M. Pokorný; On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys. 50 (2009), 123514, 11
- [14] Y. Zhou, M. Pokorný; On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097–1107

Peng Wang

DEPARTMENT OF MATHEMATICS, ZHEJIANG NORMAL UNIVERSITY, JINHUA 321004, ZHEJIANG, CHINA *E-mail address*: wpmath2013@gmail.com