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STABILIZATION OF ODE-SCHRÖDINGER CASCADED
SYSTEMS SUBJECT TO BOUNDARY CONTROL MATCHED

DISTURBANCE

YA-PING GUO, JUN-JUN LIU

Abstract. In this article, we consider the state feedback stabilization of ODE-

Schrödinger cascaded systems with the external disturbance. We use the back-
stepping transformation to handle the unstable part of the ODE, then design

a feedback control which is used to cope with the disturbance and stabilize the

Schrödinger part. By active disturbance rejection control (ADRC) approach,
the disturbance is estimated by a constant high gain estimator, then the feed-

back control law can be designed. Next, we show that the resulting closed-loop

system is practical stable, where the peaking value appears in the initial stage
and the stabilized result requires that the derivative of disturbance be uni-

formly bounded. To avoid the peak phenomenon and to relax the restriction

on the disturbance, a time varying high gain estimator is presented and asymp-
totical stabilization of the corresponding closed-loop system is proved. Finally,

the effectiveness of the proposed control is verified by numerical simulations.

1. Introduction

Environmental disturbances (e.g., noise, wave, and wind) and modeling uncer-
tainties (e.g., unknown plant parameters) are often encountered problems in prac-
tical engineering systems which reduce the system quality, lead to limited produc-
tivity and result in premature fatigue failure. As noted in [10], there is an input
disturbance in heat PDE-ODE cascade which causes variations in system dynamic
characteristics, and makes systems unstable. To suppress vibrations of the systems,
many control approaches have been developed to cope with system uncertainty or
disturbance. For instance, the result of control design to the systems with unknown
plant parameters by adaptive control method is given in [7], with external distur-
bance by sliding mode control is presented in [13], and with input disturbance by
active disturbance rejection control (ADRC) is investigated in [3]. However, it is
noticed that stabilized result of [3] requires that the derivative of disturbance is uni-
formly bounded. Furthermore, the time varying feedback control design has been
recently proposed for the unstable wave system in [2], which relaxes the restriction
on the disturbance.
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Actuator appears in many control applications such as electromagnetic cou-
pling [8], chemical engineering [12], and industrial oil-drilling plants [1]. Some
practical systems with actuator are modelled by ordinary/partial differential equa-
tion (ODE/PDE)-PDE cascade, in which the original system is considered as the
ODE/PDE part, while the actuator is regarded as a PDE part. Much attention has
been dedicated in the past years to the control of unstable systems with infinite-
dimensional actuator dynamics. For example, the diffusion PDE-ODE cascaded
system is considered in [8], where the compensating actuator dynamics dominated
by first-order hyperbolic PDE systems. The results in [8] are extended to the case
of actuator dynamics modelled by heat [6], wave [1] or Schrödinger [9] systems. In
all these works, without the disturbances and uncertainties, the predictor feedback
control law is designed for the actuator and the systems achieve stabilization. More
recently, the feedback control law is designed for the cascaded ODE-heat system
with the input disturbance in [10] using sliding mode control and backstepping
method.

To the best of our knowledge, the predictor feedback control law designing
for ODE-Schrödinger cascades with the external disturbances is still open. The
Schrödinger equation is challenging due to its complex state and the fact that all
of its eigenvalues are on the imaginary axis [9, 11]. When we take into account the
input disturbances, the stabilization of the cascaded Schrödinger-ODE systems is
difficult .

In this article, we consider the stabilization of the cascaded ODE-Schrödinger
systems with input disturbances:

Ẋ(t) = AX(t) +Bu(0, t), t > 0,

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0,

ux(1, t) = U(t) + d(t),

(1.1)

where X ∈ Cn×1 and u are the states of ODE and PDE respectively, A ∈ Cn×n,
B ∈ Cn×1; U(t) is the control input; d(t) is the input disturbance at the control
end; X0 and u0(x) are the initial value of ODE and PDE respectively. The whole
system is depicted in Figure 1.

Schrödinger PDE

ODE

(actuator)

�

Bu(0, t)

X(0) - -
X(t)

-
-U(t) + d(t) u(x, t)

Figure 1. Block diagram for the coupled ODE-PDE system
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Our aim is to design a feedback control law such that the resulting closed-loop
cascaded system is asymptotic stable. First, our design method is based on two-
step invertible backstepping transformations that deal with the unstable part of the
system, so that the feedback control law is only used to deal with the disturbance
and stabilize the PDE part. Second, using ADRC approach, the disturbance is
estimated by a constant high gain estimator and time varying high gain estimator
respectively; the feedback controllers are designed for the system. Furthermore,
we show that the solution of the resulting closed-loop cascaded system is practical
stable and asymptotic stable respectively. Finally, the numerical simulation results
are provided to illustrate the effectiveness of the proposed design method.

We proceed as follows. In Section 2, the two-step backstepping design is devel-
oped using the invertible Volterra integral transformation. In Section 3, we consider
the well-posedness of the system obtained from original system (1.1) by designing
a feedback control law. In Section 4, we design a constant high gain estimator by
the ADRC approach and show the practical stability of the resulting closed-loop
system. In Section 5, we design a time varying disturbance estimator and obtain
the asymptotic stability of the corresponding closed-loop system. In Section 6, the
numerical simulation results are provided to show the effectiveness of the proposed
method.

2. Backstepping design

We first introduce the following transformation to stabilize the ODE part [9],

X(t) = X(t),

w(x, t) = u(x, t)−
∫ x

0

q(x, y)u(y, t)dy − γ(x)X(t),
(2.1)

where

q(x, y) =
∫ x−y

0

jγ(σ)Bdσ,

γ(x) =
[
K 0

]
exp

([0 jA
I 0

]
x
)[I

0

]
.

The transformation changes system (1.1) into

Ẋ(t) = (A+BK)X(t) +Bw(0, t),

wt(x, t) = −jwxx(x, t),

wx(0, t) = 0,

wx(1, t) = U(t) + d(t)−
∫ 1

0

qx(1, y)u(y, t)dy − γ′(1)X(t),

(2.2)

where K is chosen such that A + BK is Hurwitz. By (2.2), if the PDE part is
stable, then the ODE part is also stable.

The transformation (2.1) is invertible, and the inverse transformation w 7→ u is
postulated as follows [9]:

u(x, t) = w(x, t) +
∫ x

0

l(x, y)w(y, t)dy + ψ(x)X(t), (2.3)
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where

l(x, y) =
∫ x−y

0

jψ(ξ)Bdξ,

ψ(x) =
[
K 0

]
exp

([0 j(A+BK)
I 0

]
x
)[I

0

]
.

For increasing the decay rate, we define the transformation [8]

X(t) = X(t),

z(x, t) = w(x, t)−
∫ x

0

k(x, y)w(y, t)dy,
(2.4)

where

k(x, y) = −cjx
I1(
√
cj(x2 − y2))√
cj(x2 − y2)

, 0 ≤ y ≤ x ≤ 1, (2.5)

and I1 is the modified Bessel function. Transformation (2.4) changes system (2.2)
to the system

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = U(t) + d(t)−
∫ 1

0

qx(1, y)u(y, t)dy − γ′(1)X(t)

− k(1, 1)w(1, t)−
∫ 1

0

kx(1, y)w(y, t)dy.

(2.6)

The inverse of transformation (2.4) can be found as follows:

w(x, t) = z(x, t) +
∫ x

0

p(x, y)z(y, t)dy, (2.7)

where

p(x, y) = −cjx
J1(
√
cj(x2 − y2))√
cj(x2 − y2)

, 0 ≤ y ≤ x ≤ 1, (2.8)

where J1 is a Bessel function.
Therefore, under the two transformations (2.1) and (2.4), systems (1.1) and (2.6)

are equivalent. So we only need consider system (2.6). Denote

U0(t) = U(t)−
∫ 1

0

qx(1, y)u(y, t)dy − γ′(1)X(t)− k(1, 1)w(1, t)

−
∫ 1

0

kx(1, y)w(y, t)dy.
(2.9)

By (2.9), the system (2.6) can be rewritten as follows

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = U0(t) + d(t).

(2.10)
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3. Well-posedness of (2.10)

Let us consider systems (1.1) and (2.6) in the state space H = Cn × L2(0, 1),
equipped with the usual inner product:

〈(X, f)>, (Y, g)>〉H = X>Y +
∫ 1

0

f(x)g(x)dx, ∀(X, f)>, (Y, g)> ∈ H. (3.1)

Define the system operator A0 : D(A0)(⊂ H)→ H as

D(A0) =
{

(X, f) ∈ Cn ×H2(0, 1)|f ′(0) = 0, f ′(1) = 0
}
, (3.2)

and for any Z = (X, f)> ∈ D(A0),

A0Z = ((A+BK)X +Bf(0),−jf ′′ − cf). (3.3)

We compute A∗0, the adjoint of A0, to obtain

A∗0(Y, g) = ((A+BK)>Y, jg′′ − cg), ∀(Y, g) ∈ D(A∗0),

D(A∗0) = {(Y, g) ∈ Cn ×H2(0, 1) : g′(0) = jB>Y, g′(1) = 0}.
(3.4)

Define the unbounded operator B0 by

B0 = (0,−δ(x− 1))>. (3.5)

Then system (2.10) can be written as an abstract evolution equation in H,

d

dt
Z(t) = A0Z(t) + jB0(U0(t) + d(t)), (3.6)

where Z(t) = (X(t), z(·, t)).

Lemma 3.1. Let A0 be given by (3.2) and (3.3). Then A−1
0 exists and is compact

on H and hence σ(A0), the spectrum of A0, consists of isolated eigenvalues of
finitely algebraic multiplicity only.

Proof. For any given (X1, z1) ∈ H, solve

A0(X, z) = ((A+BK)X +Bz(0),−jz′′(x)− cz(x)) = (X1, z1). (3.7)

We obtain
(A+BK)X +Bz(0) = X1.

−jz′′(x)− cz(x) = z1(x),

z′(0) = 0, z′(1) = 0,

(3.8)

with solution

X = (A+BK)−1(X1 −Bz(0)),

z(x) = c0
(
ecλx + e−cλx

)
− 1

2cλ

∫ x

0

(
ecλ(s−x) − e−cλ(s−x)

)
jz1(s)ds,

c0 = − 1
2cλ (ecλ − e−cλ)

∫ 1

0

(
ecλ(s−1) + e−cλ(s−1)

)
jz1(s)ds,

cλ =
√
cj.

(3.9)

Hence, we have the unique (X, z) ∈ D(A0). Then, A−1
0 exists and is compact

on H by the Sobolev embedding theorem. Therefore, σ(A0) consists of isolated
eigenvalues of finite algebraic multiplicity. �



6 Y.-P. GUO, J.-J. LIU EJDE-2015/248

Now we consider the eigenvalue problem of A0. Let A0Y = λY , where Y =
(X, z), then we have

(A+BK)X +Bz(0) = λX,

−jz′′ − cz = λz(x),

z′(0) = z′(1) = 0.

(3.10)

Lemma 3.2. Let A0 be given by (3.2) and (3.3), let λ0
k, k = 1, 2, . . . , n be the

simple eigenvalue of A + BK with the corresponding eigenvector Xk, and assume
that

λ0
k /∈ {λpm,m ∈ N}, (3.11)

where
λpm = −c+m2π2j. (3.12)

Then the eigenvalues of A0 are

{λ0
k, k = 1, 2, . . . , n} ∪ {λpm, m = 0, 1, 2, . . . } (3.13)

and the eigenfunctions corresponding to λ0
k and λpm are respectively

Wk = (Xk, 0), k = 1, 2, . . . , n; (3.14)

Wm(x) = ([λpmI − (A+BK)]−1B, zm(x)), m ∈ N; (3.15)

where
zm(x) = cosmπx, m ∈ N. (3.16)

Proof. Since A+BK is Hurwitz, we have

Reλ0
k < 0, k = 1, 2, . . . , n. (3.17)

A simple computation shows that the eigenvalue problem

−jz′′(x)− cz = λz(x),

z′(0) = 0, z′(1) = 0,
(3.18)

has the nontrivial solutions

(λpm, zm(x)), m ∈ N, (3.19)

where λpm and zm(x) are given by (3.12) and (3.16) respectively.
Next, we look for the eigenvalues for (3.10). Let λ = λ0

k, k = 1, 2, . . . , n, since
B 6= 0 and (A+BK)Xk +Bz(0) = λ0

kXk, we have z(0) ≡ 0. Moreover,

−jz′′ − cz = λ0
kz,

z(0) = z′(0) = z′(1) = 0,
(3.20)

only has trivial solutions. So we obtain that λ0
k, k = 1, 2, . . . , n are the eigenvalues

of (3.10) and have the corresponding eigenfunctions (Xk, 0), as (3.14).
On the other hand, when λ = λpm, (λpm, zm(x)) satisfies the second and third

equations of (3.10) and zm(0) = (−1)m 6= 0. By the first equation of (3.10), we
have

Xp
m = [λpmI − (A+BK)]−1B.

So λpm,m ∈ N is the eigenvalue of (3.10) and has the corresponding eigenfunction

([λpmI − (A+BK)]−1B, cos(mπx)).

The proof is complete. �
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Theorem 3.3. Let A0 be given by (3.2) and (3.3), let λ0
k be the simple eigenvalue

of A + BK with the corresponding eigenvector Xk. Then, there is a sequence of
eigenfunctions of A0 which forms a Riesz basis for H. Moreover, the following
conclusions hold:

(1) A0 generates a C0-semigroup eA0t on H.
(2) The spectrum-determined growth condition ω(A0) = s(A0) holds true for

eA0t , where ω(A0) = limt→∞ ‖eA0t‖/t is the growth bound of eA0t , and
s(A0) = sup{Reλ|λ ∈ σ(A0)} is the spectral bound of A0.

(3) The C0-semigroup eA0t is exponentially stable in the sense ‖eA0t‖ ≤M1e
−c1t,

where M1 > 0 and c1 is an arbitrary pre-designed decay rate.

Proof. It is noted that {Xk, k = 1, 2, . . . , n} is an orthogonal basis in Cn and
{zm(x),m ∈ N} given by (3.16) forms an orthogonal basis in L2(0, 1). We have

{Fk, Fm(x) : k = 1, 2, . . . , n,m ∈ N},
which forms an orthogonal basis in H with Fk = (Xk, 0) and Fm(x) = (0, zm(x)).
It follows from (3.14), (3.15) that

n∑
k=1

‖Wk − Fk‖2 +
∞∑
m=0

‖Wm(x)− Fm(x)‖2 =
∞∑
m=0

‖ (λpmI − (A+BK))−1
B‖2Cn ,

(3.21)
where ‖ · ‖Cn denotes the norm in Cn. A simple computation gives

‖[λpmI − (A+BK)]−1B‖2Cn

= ([λpmI − (A+BK)]−1B)>([λpmI − (A+BK)]−1B)

= B>([λpmI − (A+BK)]−1)>([λpmI − (A+BK)]−1)B

=
1
|λpm|2

B>
([
I − 1

λpm
(A+BK)

]−1
)>[

I − 1
λpm

(A+BK)
]−1

B.

It follows from (3.13) that when m→∞, λpm → −∞, there is a positive number N
such that for m > N ,[

I − 1
λpm

(A+BK)
]−1 = I +O

( 1
|λpm|

)
, m > N.

Thus

‖[λpmI − (A+BK)]−1B‖2Cn =
‖B‖2Cn
|λpm|2

(
1 +O

( 1
|λpm|

))
.

Hence, it follows from (3.21) that
n∑
k=1

‖Wk − Fk‖2 +
∞∑
m=0

‖Wm(x)− Fm(x)‖2

=
∞∑
m=0

‖[λpmI − (A+BK)]−1B‖2Cn

=
N∑
m=0

‖[λpmI − (A+BK)]−1B‖2Cn +
∞∑

m=N+1

‖B‖2Cn
|λpm|2

(
1 +O

( 1
|λpm|

))
<∞.

Therefore, by Bari’s theorem,

{Wk,Wm(x) : k = 1, 2, . . . , n,m = 0, 1, . . . }
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forms a Riesz basis for H. Moreover, by Lemma 3.1, A0 generates a C0-semigroup
eA0t on H and the spectrum-determined growth condition ω(A0) = s(A0) holds
true for eA0t. Finally, by the eigenvalues of A0 given by (3.13), there is a positive
constant M1 > 0 and c1 such that

‖eA0t‖ ≤M1e
−c1t, ∀t ≥ 0. (3.22)

The proof is complete. �

Lemma 3.4. Let A0, B0 be defined by (3.2)-(3.3) and (3.5) respectively. Then B0

is admissible to the semigroup generated by A0.

Proof. Now we show that B0 is admissible for eA0t, or equivalently, B∗0 is admissible
for eA

∗
0t. To this end, we consider the dual system of (3.6),

Ẋ∗(t) = (A+BK)>X∗(t),

z∗t (x, t) = jz∗xx(x, t)− cz∗(x, t),

z∗x(0, t) = B>jX∗,

z∗x(1, t) = 0,

y(t) = B∗0
(

X∗

z∗(x, t)

)
= −jz∗(1, t).

(3.23)

From Lemma 3.2, we claim that λ̄0
j , j = 1, 2, . . . , n is the simple eigenvalue of

(A+BK)> with the corresponding eigenvector X∗j . In a similar way as Lemma
3.2, we can find the spectrum σ(A∗0) of the adjoint operator A∗0,

σ(A∗0) = {λ̄0
j : j = 1, 2, . . . , n} ∪ {λ̄pm : m = 0, 1, 2, . . . }, (3.24)

and the eigenvectors corresponding to λ̄0
j and λ̄pm are respectively

Z∗j = (X∗j , z
∗
j ), j = 1, 2, . . . , n, Z∗m(x) = (0, cos(mπx)), m ∈ N, (3.25)

where

z∗j =
B>iX∗j

m(e−m − 1)
{
em(1+x) + e−m(1−x) − emx + em(1−x)}, (3.26)

m = i
√
i(c+ λ0

j ). Moreover, {Zj , Zm(x), j = 1, 2, . . . , n,m ∈ N} forms a Riesz

basis for Cn × L2(0, 1) and A∗ generates a C0-semigroup on H. Hence, for any
Z∗(·, 0) ∈ H, we suppose that

Z∗(x, 0) =
n∑
k=1

akZk +
∞∑
m=0

bmZm(x).

Then the solution of (3.23) is

[X∗, z∗] = Z∗(x, t) = eA
∗
0tZ∗(x, 0) =

n∑
k=1

ake
λ0
ktZk +

∞∑
m=0

bme
λpmtZm(x),

where

X∗ =
n∑
k=1

ake
λ0
ktX∗k , z∗ =

n∑
k=1

ake
λ0
ktz∗k +

∞∑
m=0

bme
λpmtZ∗m(x),

hence

y(t) =
n∑
k=1

ake
λ0
ktz∗k +

∞∑
m=0

bme
λpmt.
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By Ingham’s inequality [5, Theorems 4.3], there exists a T > 0, such that∫ T

0

|y(t)|2dt 6 CT1

n∑
k=1

|akz∗k|2 + CT2

∞∑
m=0

|bm|2 6 DT ‖Z∗(·, 0)‖2, (3.27)

for some constants CT1 , CT2 , DT that depend on T .
On the other hand, for any given (X, f)> ∈ H, we solve that

A∗ω̂(Y, g)> = (X, f)>.

Combine the definition of A∗ω̂ with its boundary condition to obtain

(A+BK)>Y = X, jg′′ − cg = f,

g′(0) = jBTY, g′(1) = 0.

A direct computation gives the solution of the above equations

Y = [(A+BK)T ]−1X,

g(x) = c1e
cλx − c2e−cλx +

1
2cλ

∫ x

0

(
e−cλ(s−x) − ecλ(s−x)

)
jf(s)ds,

c1 =
1

cλ(e−cλ − ecλ)

{
1
2

∫ 1

0

(
e−cλ(s−1) − ecλ(s−1)

)
jf(s)ds+ jBTY ecλ

}
,

c2 =
1

cλ(e−cλ − ecλ)

{
1
2

∫ 1

0

(
e−cλ(s−1) − ecλ(s−1)

)
jf(s)ds+ jBTY e−cλ

}
,

cλ = j
√
cj.

We obtain
B∗0(A∗ω̂)−1(X, f)> = B∗0(Y, g)> = −g(1),

which is bounded from H to C. This shows that B∗0 is admissible for eA
∗
0t and so is

B0 for eA0t . The proof is complete. �

Proposition 3.5. The operator A0 defined by (3.2) and (3.3) generates an expo-
nential stable C0-semigroup on H, and the control operator B0 is admissible to the
semigroup eA0t. Hence, for any Z(x, 0) ∈ H, there exists a unique (weak) solution
to (3.6), which can be written as

Z(·, t) = eA0tZ(·, 0) + j

∫ t

0

eA0(t−s)B0[U0(s) + d(s)]ds, (3.28)

for all U0(s) + d(s) ∈ L2
loc(0,∞); that is,

d

dt
〈Z(·, t), ρ〉 = 〈Z(·, t),A∗0ρ〉+ j[U0(t) + d(t)]B∗0ρ, ∀ ρ ∈ D(A∗0). (3.29)

4. Constant high gain estimator based feedback

In this section, we propose a state disturbance estimator with constant high gain
based on the ADRC approach. It is supposed that d and its derivative are uniformly
bounded, i.e., |d(t)| ≤ M1 and |ḋ(t)| ≤ M2 for some M1,M2 > 0 and all t ≥ 0.
Taking specially ρ(x) = (0, 2x3 − 3x2)> in (3.29), we obtain

ẏ0(t) = U0(t) + d(t) + y1(t), (4.1)
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where

y0(t) = −j
∫ 1

0

(2x3 − 3x2)z(x, t)dx, (4.2)

y1(t) =
∫ 1

0

(−12x+ 6 + 2cjx3 − 3cjx2)z(x, t)dx. (4.3)

Then we are able to design an extended state observer to estimate both y0(t) and
d(t) [4] as follows:

˙̂yε(t) = U0(t) + d̂ε(t) + y1(t)− 1
ε

(ŷε − y0),

˙̂
dε(t) = − 1

ε2
{ŷε − y0},

(4.4)

where ε is the tuning small parameter and d̂ε(t) is regarded as approximation of
d(t). We have the following result.

Lemma 4.1. Let (ŷε, d̂ε) be the solution of (4.4) and y0 be defined as (4.2). The
followings hold.

(1) For any α > 0,

|ŷε(t)− y0(t)|+ |d̂ε(t)− d(t)| → 0, as ε→ 0, uniformly t ∈ [α,∞). (4.5)

(2) For any α > 0,∫ α

0

|ŷε(t)− y0(t)|+ |d̂ε(t)− d(t)|dt is uniformly bounded as ε→ 0. (4.6)

Proof. Suppose the errors

ỹε(t) = ŷε(t)− y0(t), d̃ε(t) = −d̂ε(t) + d(t), (4.7)

satisfy
˙̃yε(t) = −d̃ε(t)−

1
ε
ỹε(t),

˙̃
dε(t) =

1
ε2
ỹε(t) + ḋ(t).

(4.8)

Then (4.8) can be written as an evolution equation:

d

ds

(
ỹε
d̃ε

)
= A1

(
ỹε
d̃ε

)
+D1(s), (4.9)

where

A1 =
(
− 1
ε −1

1
ε2 0

)
, D1(s) =

(
0
1

)
. (4.10)

A simple exercise shows that the eigenvalues of the matrix A1 are

λ1 = − 1
2ε

+
√

3
2
j, λ2 = − 1

2ε
−
√

3
2
j,

which satisfy

eA1t =

(
λ1

λ2−λ1
eλ1t − λ2

λ2−λ1
eλ2t λ1λ2

Cε(λ2−λ1)

(
eλ2t − eλ1t

)
Cε

λ2−λ1

(
eλ1t − eλ2t

)
− λ2
λ2−λ1

eλ1t + λ1
λ2−λ1

eλ2t

)
,

eA1tD1 = −

(
λ1λ2

Cε(λ2−λ1)

(
eλ2t − eλ1t

)
− λ2
λ2−λ1

eλ1t + λ1
λ2−λ1

eλ2t

)
, Cε =

1
ε2
.

(4.11)
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The above three equations imply that there exist constants L̂ and M̂ such that

‖eA1t‖ ≤ L̂

ε
e−

1
2ε t, ‖eA1tD1‖ ≤ M̂e−

1
2ε t. (4.12)

Since (
ỹε(t)
d̃ε(t)

)
= eA1t

(
ỹε(0)
d̃ε(0)

)
+
∫ t

0

eA1(t−s)D1ḋ(s)ds, (4.13)

the first term above can be arbitrarily small as t→∞ by the exponential stability of
eA1t, and the second term can also be arbitrarily small as ε→ 0 due to boundedness
of ḋ and the expression of eA1tD1. As a result, the solution (ỹε, d̃ε) of (4.8) satisfies

(ỹε, d̃ε)→ 0, as t→∞, ε→ 0. (4.14)

By estimating (4.12), we can obtain (4.6). The proof is completed. �

By Lemma 4.1, we deduce that the design of ESO (4.4) is based on the arbitrary
decay rate of ‖eA1t‖ and the special structure of D1. In this way, the ADRC is
not well adapted to PDEs because it is hard that a PDE system has the arbitrary
decay rate. That also explains why ḋ must be uniformly bounded.

In (4.6), it is worth pointing out that
∫ α
0
|d̂ε(t)− d(t)|dt is uniformly bounded in

ε for any fixed α > 0, while
∫ α
0
|d̂ε(t)− d(t)|2dt is unbounded in ε. Then we could

find that the L2 unboundedness of
∫ α
0
|d̂ε(t)− d(t)|2dt brings trouble to PDEs (see

(4.23)). To avoid this phenomenon, the feedback controller for system (2.10) is
proposed as follows:

U0(t) = − sat(d̂ε(t)), (4.15)

where

sat(x) =


M1, x ≥M1 + 1,
−M1, x ≤ −M1 − 1,
x, x ∈ (−M1 − 1,M1 + 1).

(4.16)

Combining |d(t)| ≤M1 with (4.7), for any given α > 0, when ε is sufficiently small,
we obtain U0(t) = −d̂ε(t), for all t ∈ [α,∞).

Under the feedback (4.15), system (2.10) becomes

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = − sat(d̂ε(t)) + d(t),

˙̂yε(t) = − sat(d̂ε(t)) + d̂ε(t) + y1(t)− 1
ε

(ŷε − y0),

˙̂
dε(t) = − 1

ε2
{ŷε − y0}.

(4.17)
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Using the error dynamics defined in (4.7), we see that (4.17) is equivalent to:

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = sat(d̃ε(t)− d(t)) + d(t),

˙̃yε(t) = −d̃ε(t)−
1
ε
ỹε(t),

˙̃
dε(t) =

1
ε2
ỹε(t) + ḋ(t).

(4.18)

By (4.7), it is seen that (ỹε(t), d̃ε(t)) is independent of the “(X, z)-part”, which
can be arbitrarily small as t → ∞, ε → 0 by Lemma 4.1. Hence, we only need to
consider the “(X, z)-part” which is rewritten as

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = sat(d̃ε(t) + d(t)) + d(t) , d̃(t).

(4.19)

System (4.19) can be written as the following abstract evolution equation in H:
d

dt
Z(t) = A0Z(t) + jB0d̃(t), (4.20)

where Z(t) = (X(t), z(·, t)), A0 and B0 are given respectively by (3.3) and (3.5).

Lemma 4.2. Assume that |d(t)| 6M1 and ḋ(t) is measurable, |ḋ(t)| ≤M2 for all
t ≥ 0. Then for any initial value (X(0), z(·, 0)) ∈ H, the closed-loop system (4.19)
admits a unique solution (X, z)> ∈ C(0,∞;H), and

lim
t→∞, ε→0

‖(X(t), z(·, t), ŷε(t), d̂ε(t)− d(t))‖H×C2 = 0.

Proof. By Theorem 3.3 and Lemma 3.4, for any initial value (X(0), z(·, 0)) ∈ H,
there exists a unique (weak) solution (X, z) ∈ C(0,∞;H) which can be written as

Z(·, t) = eA0tZ(·, 0) + j

∫ t

0

eA0(t−s)B0d̃(t)ds. (4.21)

By (4.14), for any given ε0 > 0, there exist t0 > 0 and ε1 > 0 such that

|d̃(t)| = | − sat(d̃ε(t) + d(t)) + d(t)| < ε0,

for all t > t0 and 0 < ε < ε1. We rewrite the solution of (4.21),

Z(·, t) = eA0tZ(·, 0) + jeA0(t−t0)
∫ t0

0

eA0(t0−s)B0d̃(s)ds

+ j

∫ t

t0

eA0(t−s)B0d̃(s)ds.
(4.22)

According to the admissibility of B0, we obtain

‖
∫ t0

0

eA0(t−s)B0d̃(s)ds‖2H 6 Ct0‖ sat(d̃ε + d) + d‖2L2(0,t0)

6 t0Ct0(2M1 + 1)2,
(4.23)



EJDE-2015/248 STABILIZATION OF ODE-SCHRÖDINGER CASCADED SYSTEMS 13

where the constant Ct0 is independent of d̃ε and d. Since eA0t is exponentially
stable and B0 is admissible to eA0t with L2

loc control, B0 is admissible to eA0t with
L∞loc control. It follows from [14, Proposition 2.5] that

‖
∫ t

t0

eA0(t−s)B0d̃(s)ds‖ = ‖
∫ t

0

eA0(t−s)B0(0♦
t0
d̃(s)ds‖

6 L‖d̃(s)‖L∞(0,∞)

6 L‖[sat(d̃ε + d) + d]‖L∞(0,∞) 6 Lε0,

(4.24)

where L is a constant that is independent of d̃ε and d, and [14]

(d1 ♦
τ
d2)(t) =

{
d1(t), 0 6 t 6 τ,
d2(t− τ), t > τ.

(4.25)

Assume that ‖eA0t‖ 6 L0e
−ωt for some L0, ω > 0. By (4.22), (4.23), and (4.24),

‖Z(·, t)‖ 6 L0e
−ωt‖Z(·, 0)‖+ L0t0(2M1 + 1)2Ct0e

−ω(t−t0) + Lε0. (4.26)

This implies that ‖Z(·, t)‖L2(0,1) → 0 as t → ∞. Consequently, by (4.2), y0(t) =
−j
∫ 1

0
(2x3 − 3x2)z(x, t)dx → 0 as t → ∞. The result then follows with (4.7) and

(4.14). The proof is complete. �

Returning to system (1.1) by the inverse transformations (2.3) and (2.7), we have
the following theorem.

Theorem 4.3. Assume that |d(t)| 6 M1 and ḋ(t) is measurable, |ḋ(t)| ≤ M2 for
all t ≥ 0. Then for any initial value (X(0), u(·, 0), ŷε(0), d̂ε(0)) ∈ H × C2, the
closed-loop of system (1.1) as follows:

Ẋ(t) = AX(t) +Bu(0, t), t > 0,

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0,

ux(1, t) = U(t) + d(t),

˙̂yε(t) = − sat(d̂ε(t)) + d̂ε(t) + y1(t)− 1
ε

(ŷε − y0),

˙̂
dε(t) = − 1

ε2
{ŷε − y0},

(4.27)

admits a unique solution (X,u, ŷε, d̂ε)> ∈ C(0,∞;H× C2), and

lim
t→∞, ε→0

‖(X(t), u(·, t), ŷε(t), d̂ε(t)− d(t))‖H×C2 = 0,

where the feedback control is

U(t) =
∫ 1

0

qx(1, x)u(x, t)dx+ γ′(1) + k(1, 1)w(1, t)

+
∫ 1

0

kx(1, x)w(x, t)dx− sat(d̂ε(t)), t > 0,
(4.28)

and

y0(t) = −j
∫ 1

0

(2x3 − 3x2)z(x, t)dx,
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y1(t) =
∫ 1

0

(−12x+ 6 + 2cjx3 − 3cjx2)z(x, t)dx,

z(x, t) = w(x, t)−
∫ x

0

k(x, y)w(y, t)dy,

k(x, y) = −cxj
I1(
√
cj(x2 − y2))√
cj(x2 − y2)

,

w(x, t) = u(x, t)−
∫ x

0

q(x, y)u(y, t)dy − γ(x)X(t),

q(x, y) =
∫ x−y

0

jγ(σ)Bdσ.

5. Time varying high gain estimator based feedback

In this section, we stabilize system (2.10) by ADRC with a time varying high
gain state feedback disturbance estimator which is different from that in Section 4.
The advantage of using the disturbance estimator by time varying high gain lies in
four aspects:

(a) the stability of system (5.18) we obtain in Theorem 5.3 is irrelevant to gain
ε, it is different from Theorem 4.3;

(b) the boundedness of derivative of disturbance is relaxed in some extent by
choosing properly the time varying gain;

(c) the peaking value is reduced significantly;
(d) the possible non-smooth control (4.15) becomes smooth.

Now, we design the following extended state observer with time varying high
gain for y0(t) and d(t):

˙̂y(t) = U0(t) + d̂(t) + y1(t)− g(t)[ŷ(t)− y0(t)],
˙̂
d(t) = −g2(t)[ŷ(t)− y0(t)],

(5.1)

where g ∈ C1[0,∞) is a time varying gain real value function satisfying

g(t) > 0, ġ(t) > 0, ∀t ≥ 0,

g(t)→∞ as t→∞, sup
t∈[0,∞)

∣∣ ġ(t)
g(t)

∣∣ <∞. (5.2)

In addition, we assume that the disturbance d(t) ∈ H1
loc(0,∞) satisfies

lim
t→∞

|ḋ(t)|
g(t)

= 0. (5.3)

By (5.3), ḋ(t) is allowed to grow exponentially at any rate by choosing properly the
gain function g(t). This relaxes the condition in Section 4 where ḋ(t) is assumed to
be uniformly bounded. We use d̂(t) to estimate d(t), then the convergence is stated
in the following lemma.

Lemma 5.1. Let (ŷ, d̂) be the solution of (5.1). Then

lim
t→∞

|ŷ(t)− y(t)| = 0, lim
t→∞

|d̂(t)− d(t)| = 0. (5.4)
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Proof. Set
ỹ(t) = g(t)[ŷ(t)− y0(t)], d̃(t) = d̂(t)− d(t). (5.5)

Then the error (ỹ, d̃) is governed by

˙̃y(t) = −g(t)[ỹ(t)− d̃(t)] +
ġ(t)
g(t)

ỹ(t),

˙̃
d(t) = −g(t)ỹ(t)− ḋ(t).

(5.6)

The existence of the local classical solution to (5.6) is guaranteed by the local
Lipschitz condition of the right side of (5.6). We consider the stability of this
ODE. To this end, we introduce the following Lyapunov function (in addition, the
global solution is ensured by the following Lyapunov function argument). Define

E(t) = |ỹ(t)|2 +
3
2
|d̃(t)|2, ρ(t) = ỹ(t)d̃(t), (5.7)

V (t) = E(t)− Re ρ(t).

Then
1
2
E(t) ≤ V (t) ≤ 2E(t). (5.8)

Differentiating E(t) and ρ(t) with respect to t, we obtain

Ė(t) = 2 Re[ỹ(t) ˙̃y(t)] + 3 Re[d̃(t) ˙̃
d(t)]

= −2g(t)|ỹ(t)|2 + 2
ġ(t)
g(t)
|ỹ(t)|2 − g(t) Re[ỹ(t)d̃(t)]− 3d̃(t)ḋ(t),

and

ρ̇(t) = ˙̃y(t)d̃(t) + ỹ(t) ˙̃
d(t)

= −g(t)|ỹ(t)|2 + g(t)|d̃(t)|2 − g(t)ỹ(t)d̃(t) +
ġ(t)
g(t)

ỹ(t)d̃(t)− ỹ(t)ḋ(t).

Then

V̇ (t) = [−g(t) +
2ġ(t)
g(t)

]|ỹ(t)|2 − g(t)|d̃(t)|2 − ġ(t)
g(t)

Re ρ(t)

+ Re[−3ḋ(t)d̃(t) + ỹ(t)ḋ(t)]

≤ −1
2
κ(t)V (t) +m0|ḋ(t)|‖(ỹ(t), d̃(t))‖

≤ −1
2
κ(t)V (t) +m0|ḋ(t)|

√
V (t),

(5.9)

where m0 is a constant,

κ(t) = g(t)− sup
t∈[0,∞)

|3ġ(t)
g(t)

| → ∞ as t→∞, (5.10)

and there exists t0 > 0 such that

κ(t) > 0, ∀t ≥ t0.

This, together with (5.9), yields

d
√
V (t)
dt

≤ −1
4
κ(t)

√
V (t) +

m0

2
|ḋ(t)|, ∀t ≥ t0. (5.11)
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We deduce that√
V (t) ≤

√
V (t0)e−

1
4

R t
t0
κ(s)ds + e

− 1
4

R t
t0
κ(s)dsm0

2

∫ t

t0

|ḋ(s)|e
1
4

R s
t0
κ(τ)dτ

ds. (5.12)

The first term on the right-hand side of (5.12) is obviously convergent to zero as
t → ∞ owing to (5.10). Applying the L’Hospital rule to the second term on the
right-hand side of (5.12), we obtain

lim
t→∞

m0

∫ t
t0
|ḋ(s)|e

1
4

R s
t0
κ(τ)dτ

ds

2e
1
4

R t
t0
κ(s)ds

= lim
t→∞

m0

2
|ḋ(t)|e

1
4

R t
t0
κ(τ)dτ

1
4e

1
4

R t
t0
κ(s)ds

κ(t)

= lim
t→∞

2m0
|ḋ(s)|
g(t)

· g(t)
κ(t)

= 0,

(5.13)

which implies limt→∞
√
V (t) = 0; that is,

lim
t→∞

[|ỹ(t)|2 + |d̃(t)|2] = 0. (5.14)

The proof is complete. �

By Lemma 5.1, we design the feedback control

U0(t) = −d̂(t), (5.15)

then we can rewrite the closed-loop of system (2.10) as

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = −d̂(t) + d(t),
˙̂y(t) = y1(t)− g(t)[ŷ(t)− y0(t)],

˙̂
d(t) = −g2(t)[ŷ(t)− y0(t)].

(5.16)

Proposition 5.2. Assume that the time varying gain g(t) ∈ C1[0,∞) satisfies
(5.2) and the disturbance d(t) ∈ H1

loc(0,∞) satisfies (5.3). Then for any initial
value (X(0), z(0), ŷ(0), d̂(0)) ∈ H × C2, there exists a unique solution (X, z, ŷ, d̂) ∈
C(0,∞;H×C2) to system (5.16) and system (5.16) is asymptotically stable in the
sense that

lim
t→∞

‖(X(t), z(·, t), ŷ(t), d̂(t)− d(t))‖H×C2 = 0

Proof. By the error variables (ỹ, d̃) defined in (5.5), we have the following equivalent
system for system (5.16),

Ẋ(t) = (A+BK)X(t) +Bz(0, t),

zt(x, t) = −jzxx(x, t)− cz(x, t),
zx(0, t) = 0,

zx(1, t) = −d̂(t) + d(t),

˙̃y(t) = −g(t)[ỹ(t)− d̃(t)] +
ġ(t)
g(t)

ỹ(t),

˙̃
d(t) = −g(t)ỹ(t)− ḋ(t).

(5.17)
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The “ODE part” of (5.17) is just the system (5.6), which is shown to be convergent
by Lemma 5.1. The “(X, z) part” of (5.17) is similar to (2.10), hence the proof
becomes similar to the proof of Lemma 4.2. The details are omitted. �

Returning to system (1.1) by the inverse transformations (2.3) and (2.7), we
prove the following theorem.

Theorem 5.3. Assume that the time varying gain g(t) ∈ C1[0,∞) satisfies (5.2)
and the disturbance d(t) ∈ H1

loc(0,∞) satisfies (5.3). Then for any initial value
(X(0), u(·, 0), ŷ(0), d̂(0)) ∈ H × C2, the closed-loop of system

Ẋ(t) = AX(t) +Bu(0, t), t > 0

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0,

ux(1, t) = −d̂(t) +
∫ 1

0

qx(1, y)u(y, t)dy + γ′(1) + k(1, 1)w(1, t)

+
∫ 1

0

kx(1, y)w(y, t)dy + d(t),

˙̂y(t) = y1(t)− g(t)[ŷ(t)− y0(t)],
˙̂
d(t) = −g2(t)[ŷ(t)− y0(t)],

(5.18)

admits a unique solution (X,u, ŷ, d̂)> ∈ C(0,∞;H × C2), and system (5.18) is
asymptotically stable

lim
t→∞

‖(X(t), u(·, t), ŷ(t), d̂(t)− d(t))‖H×C2 = 0,

where

y0(t) = −j
∫ 1

0

(2x3 − 3x2)z(x, t)dx,

y1(t) =
∫ 1

0

(−12x+ 6 + 2cjx3 − 3cjx2)z(x, t)dx,

z(x, t) = w(x, t)−
∫ x

0

k(x, y)w(y, t)dy,

k(x, y) = −cxj
I1(
√
cj(x2 − y2))√
cj(x2 − y2)

,

w(x, t) = u(x, t)−
∫ x

0

q(x, y)u(y, t)dy − γ(x)X(t),

q(x, y) =
∫ x−y

0

jγ(σ)Bdσ.

6. Numerical simulation

In this section, we present some numerical simulations to show visually the ef-
fectiveness of the proposed controllers for systems (4.27) and (5.18) respectively.
We choose the initial values and the parameters as following: u(x, 0) = −x + 3xj,
A = 2, B = −6, K = 4, ε = 0.01, g(t) = 10 + 12t2. To estimate the unknown
disturbance d(t), we assume that the time varying gain function g(t) satisfies as-
sumption (5.2). However, from the practice standpoint, the increasing g(t) can not
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Figure 2. The d̂(t) and disturbance d(t) = 2 sin(2t) + 2j cos(2t)
by constant high gain
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Figure 3. The d̂(t) and disturbance d(t) = 2 sin(2t) + 2j cos(2t)
by time varying gain

be applied in extended time interval. A recommended scheme is to use the time
varying gain first to reduce the peaking value in the initial stage to a reasonable
level and then use the constant high gain. To this end, we take the gain function

ĝ(t) =

{
g(t), t ≤ t0,
g(t0), t > t0,

(6.1)

where t0 > 0 and ε = 1/g(t0). Using combined varying gain (6.1) with t0 ' 2.8.
On the one hand, the disturbance is taken as d(t) = 2 sin(2t) + 2j cos(2t). It

is seen that with the constant high gain, the peaking value is observed in the
initial stage in Figure 2, whereas with the time varying gain, the peaking value
is dramatically reduced as shown in Figure 3. This is an advantage of the time
varying gain approach. The price is that the convergence by the time varying gain
is slightly slow which is observed from Figure 3. The ODE state X(t) of the systems
(4.27) and (5.18) are shown in Figure 4(a) and Figure 4(b), respectively. The PDE
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Figure 4. The ODE state X(t) for systems (4.27) and (5.18)

(a) Real part (b) Imaginary part

Figure 5. The Schrödinger sate u(x, t) with constant high gain controllers

part of solutions of systems (4.27) and (5.18) are plotted in Figure 5 and Figure 6
respectively.

On the other hand, the disturbance is taken as d(t) = 2 sin(t3/2) + 2j cos(t3/2).
The solutions of system (5.18) are plotted in Figure 7, 8, 9, respectively. In spite
of the derivative of disturbance is unbounded, we see that convergence of the state
is satisfactory with the time varying gain approach. This is another advantage of
the time varying gain approach.
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