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EXISTENCE OF SOLUTIONS FOR FOUR-POINT RESONANCE
BOUNDARY-VALUE PROBLEMS ON TIME SCALES

NING WANG, HUI ZHOU, LIU YANG

Abstract. By using Mawhin’s continuation theorem, we prove the existence
of solutions for a class of multi-point boundary-value problem under different

resonance conditions on time scales.

1. Introduction

Consider multi-point boundary-value problem on time scales

x∆∇(t) = f(t, x(t), x∆(t)) + e(t), t ∈ (0, 1) ∩ T, (1.1)

subject to boundary condition

x(0) = αx(η), x(1) = βx(ξ), (1.2)

where T is a time scale such that 0, 1 ∈ T, η, ξ ∈ (0, 1) ∩ T, f : T × R2 → R is a
continuous function and e(t) ∈ L1[0, 1].α, β ∈ R hold

α = 1, β = 1 (1.3)

or
αη(1− β) + (1− α)(1− βξ) = 0. (1.4)

By condition (1.3) or (1.4), the differential operator in (1.1) is not invertible, which
is called problem at resonance. The study on multi-point nonlocal boundary-value
problems for linear second-order ordinary differential equations was initiated by
Il’in and Moiseev [6, 7]. Since then some existence results were obtained for general
boundary-value problems by several authors. We refer the reader to some recent
results, such as [3, 5, 9, 10, 11] at non-resonance, and [4, 13, 14, 15] at resonance
and reference therein.

For problem (1.1), (1.2) in the continuous setting, by using upper and lower solu-
tion method Rachünková [13, 14, 15] obtained excellent results about the problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1), (1.5)

subject to boundary condition

x(0) = x(η), x(1) = x(ξ) (1.6)

2010 Mathematics Subject Classification. 34N05, 34B10.

Key words and phrases. Boundary-value problem; time scale; coincidence degree.
c©2015 Texas State University - San Marcos.

Submitted March 6, 2015. Published September 21, 2015.

1



2 N. WANG, H. ZHOU, L. YANG EJDE-2015/240

Bai [2] developed the upper and lower solution method and obtained existence and
multiplicity results for the resonance problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1), (1.7)

subject to boundary condition

x(0) = αx(η), x(1) = βx(ξ) (1.8)

where condition (1.4) is satisfied. But the existence results for resonance cases
on time scales is rare (see [8]). Motivated by works above, we apply coincidence
degree theory [12] to establish existence results for resonance problems (1.1)–(1.4).
Considering that the main tools we used are different from [2, 13, 14, 15], the results
we establish follows are new even in the continuous setting.

The article is organized as follows. Some basic definitions and conclusions on
time scales and the main tools we used are introduced in section 2. In section 3, we
discuss the existence of solutions under condition (1.3) and the existence results of
case (1.4) is considered in section 4.

2. Preliminaries

First we present some basic definitions on time scales (see [1]). A time scale T is
a closed nonempty subset of R. For t < supT and r > inf T , we define the forward
jump operator σ and the backward jump operator ρ respectively by

σ(t) = inf{τ ∈ T |τ > t}, ρ(t) = sup{τ ∈ T |τ < t},

for all t ∈ T . If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said to
be right dense. If ρ(t) < t, t is said to be left scattered, and if ρ(t) = t, t is said to
be left dense. A function f is left-dense continuous, if f is continuous at each left
dense point in T and its right-sided limits exists at each right dense points in T .

For u : T → R and t ∈ T , we define the delta-derivative of u(t), u∆(t), to be
the number (when it exists), with the property that for each ε > 0, there is a
neighborhood, U , of t such that for all s ∈ U ,

|u(σ(t))− u(s)− u∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|.

For u : T → R and t ∈ T , we define the nabla-derivative of u(t), u∇(t), to be
the number (when it exists), with the property that for each ε > 0, there is a
neighborhood, U , of t such that for all s ∈ U ,

|u(ρ(t))− u(s)− u∇(t)(ρ(t)− s)| ≤ ε|σ(t)− s|.

Then we recall some notations and an abstract existence result briefly.
Let X, Y be real Banach spaces and let L : domL ⊂ X → Y be a Fredholm

operator with index zero, here domL denotes the domain of L. This means that
ImL is closed in Y and dim kerL = dim(Y/ ImL) < +∞. Consider the sup-
plementary subspaces X1 and Y1 such that X = kerL ⊕ X1 and Y = ImL ⊕ Y1

and let P : X → kerL and Q : Y → Y1 be the natural projections. Clearly,
kerL ∩ (domL ∩ X1) = {0}, thus the restriction Lp := L|domL∩X1 is invertible.
Denote by K the inverse of Lp.

Let Ω be an open bounded subset of X with domL∩Ω 6= ∅. A map N : Ω→ Y
is said to be L-compact in Ω if QN(Ω) is bounded and the operator K(I −Q)N :
Ω→ X is compact. We first give the famous Mawhin continuation theorem.
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Lemma 2.1 (Mawhin [12]). Suppose that X and Y are Banach spaces, and L :
domL ⊂ X → Y is a Fredholm operator with index zero.Furthermore, Ω ⊂ X is an
open bounded set and N : Ω→ Y is L-compact on Ω. If

(1) Lx 6= λNx for all x ∈ ∂Ω ∩ domL, λ ∈ (0, 1);
(2) Nx 6∈ ImL for all x ∈ ∂Ω ∩ kerL;
(3) deg{JQN,Ω ∩ kerL, 0} 6= 0, where J : kerL→ ImQ is an isomorphism,

then the equation Lx = Nx has a solution in Ω ∩ domL.

3. Existence results under condition (1.3)

In this section problem (1.1), (1.2) is considered under the assumption that α = 1
and β = 1. We introduce the space

X = {x : [0, 1]→ R : x∆ ∈ AC[0, 1], x∆∇ ∈ L1[0, 1]}
endowed with the norm ‖x‖ = sup{‖x‖0, ‖x∆‖0}, where ‖x‖0 = supt∈[0,1] |x(t)|.
Let Y = L1[0, 1] with the norm

‖x‖1 =
∫ 1

0

|x(t)|∇t.

Let a linear mapping L : domL ⊂ X → Y with

domL = {x ∈ X : x(0) = x(η), x(1) = x(ξ)}
be defined by Lx = x∆∇(t). Define the mapping N : X → Y by

Nx(t) = f(t, x(t), x∆(t)) + e(t)

Then problem (1.1), (1.2) can be written as Lx = Nx, here L is a linear operator.

Lemma 3.1. If β = 1 and α = 1 then
(1)

ImL = {y(t)|
∫ η

0

(ξ−s)y(s)∇s+
∫ ξ

η

η(ξ−1)y(s)∇s−
∫ 1

0

η(1−s)y(s)∇s = 0}; (3.1)

(2) L : domL ⊂ X → Y is a Fredholm operator with index zero;
(3) Define projector operator P : X → kerL as Px = x(0), then the generalized

inverse of operator L, KP : ImL→ domL ∩ kerP can be written as

KP (y) = − t
η

∫ η

0

(η − s)y(s)∇s+
∫ t

0

(t− s)y(s)∇s, (3.2)

satisfying ‖KP (y(t))‖1 ≤ 2‖y‖1.

Proof. (1) First we show that

ImL = {y(t) ∈ Y |
∫ η

0

(ξ−s)y(s)∇s+
∫ ξ

η

η(ξ−1)y(s)∇s−
∫ 1

0

η(1−s)y(s)∇s = 0}.

First suppose y(t) ∈ ImL, then there exists x(t) such that Lx = y. That is

x(t) =
∫ t

0

(t− s)y(s)∇s+ x∆(0)t+ x(0).

Condition x(0) = x(η), x(1) = x(ξ) imply that∫ η

0

(ξ − s)y(s)∇s+
∫ ξ

η

η(ξ − 1)y(s)∇s−
∫ 1

0

η(1− s)∇s = 0.
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Next we suppose that

y(t) ∈ {y(t)|
∫ η

0

(ξ − s)y(s)∇s+
∫ ξ

η

η(ξ − 1)y(s)∇s−
∫ 1

0

η(1− s)∇s = 0}.

Let x(t) ∈ X, where

x(t) =
∫ t

0

(t− s)y(s)∇s− t

η

∫ η

0

(η − s)y(s)∇s .

Then Lx = x∆∇ = y(t). because

y(t) ∈ {y(t)|
∫ η

0

(ξ − s)y(s)∇s+
∫ ξ

η

η(ξ − 1)y(s)∇s−
∫ 1

0

η(1− s)y(s)∇s = 0},

by a simple computation we have x(0) = x(η), x(1) = x(ξ). Thus y(t) ∈ ImL.
Summing up two steps above we obtain

ImL = {y(t) ∈ Y |
∫ η

0

(ξ−s)y(s)∇s+
∫ ξ

η

η(ξ−1)y(s)∇s−
∫ 1

0

η(1−s)y(s)∇s = 0}.

(2) We claim that L is a Fredholm operator with index zero. It is easy to see
that kerL = R. Next we prove that Y = ImL ⊕ kerL. Suppose y(t) ∈ Y , define
the projector operator Q as

Q(y) =

∫ η
0

(ξ − s)y(s)∇s+
∫ ξ
η
η(ξ − 1)y(s)∇s−

∫ 1

0
η(1− s)y(s)∇s∫ η

0
(ξ − s)∇s+

∫ ξ
η
η(ξ − 1)∇s−

∫ 1

0
η(1− s)∇s

Let y∗ = y(t) − Q(y(t)), by a simple computation, y∗ ∈ ImL. Hence Y = ImL +
kerL, furthermore considering ImL∩kerL = {0}, we have Y = ImL⊕kerL. Thus
dim kerL = codim ImL, which means L is a Fredholm operator with index zero.

(3) Define the projector operator P : X → kerL as Px = x(0), for y(t) ∈ ImL,

(LKP )(y(t)) = y(t),

and for x(t) ∈ domL ∩ kerP , we know

(KPL)(x(t)) = KP (x∆∇(t))

= − t
η

∫ η

0

(η − s)x∆∇(s)∇s+
∫ t

0

∫ s

0

x∆∇(τ)∇τ∇s

= x(t).

This shows that KP = (LdomL∩kerP )−1. Furthermore from the definition of the
norms in the X,Y ,

‖KP (y(t))‖1 ≤ 2‖y‖1.
The above arguments complete the proof. �

Theorem 3.2. Let f : [0, 1] × R2 → R be a continuous function. Assume that
following conditions are satisfied:

(C1) There exist functions a, b, c, r ∈ L1[0, 1] and constant θ ∈ [0, 1) such that
for all (x, y) ∈ R2, either

|f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|y(t)|θ + r(t), (3.3)

or
|f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)|x(t)|θ + r(t). (3.4)
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(C2) There exists a constant M > 0 such that for x ∈ domL, |x(ρ(t))| > M , for
all t ∈ [0, 1],∫ η

0

(ξ − s)(f(s, x, x∆) + e(s))∇s+
∫ ξ

η

η(ξ − 1)(f(s, x, x∆) + e(s))∇s

−
∫ 1

0

η(1− s)(f(s, x, x∆) + e(s))∇s 6= 0

(3.5)

(C3) There exists M∗ > 0 such that for d ∈ R, if |d| > M∗, then either

d×
∫ η

0

(f(t, d, 0) + e(t))∇t > 0 (3.6)

or else

d×
∫ η

0

(f(t, d, 0) + e(t))∇t < 0 (3.7)

Then for each e ∈ L1[0, 1], resonance problem (1.1), (1.2) with α = 1 and
β = 1 has at least one solution provided that

‖a‖1 + ‖b‖1 <
1
3
.

Proof. We divide the proof into two steps.
Step 1. Let

Ω1 = {x ∈ dom L \ kerL : Lx = λNx} for some λ ∈ [0, 1],

Then Ω1 is bounded. Suppose that x ∈ Ω1, Lx = λNx, thus λ 6= 0, Nx ∈ ImL =
kerQ, hence∫ η

0

(ξ − s)(f(s, x, x∆) + e(s))∇s+
∫ ξ

η

η(ξ − 1)(f(s, x, x∆) + e(s))∇s

−
∫ 1

0

η(1− s)(f(s, x, x∆) + e(s))∇s = 0

(3.8)

Then (3.8) and condition (C2) imply that there exists t0 ∈ T such that |x(t0)| < M .
In view of x(0) = x(ρ(t0))−

∫ t0
0
x∆(s)∇s, we obtain that

|x(0)| < M + ‖x∆‖0, t ∈ T. (3.9)

For x(1) = x(η), there exists t1 ∈ (η, 1) ∩ T such that x∆(t1) = 0. Then from

x∆(t) = x∆(t1) +
∫ t

t1

x∆∇(s)∇s,

we have
‖x∆(t)‖0 ≤ ‖Nx‖1 (3.10)

Hence, from (3.9) and (3.10), we have

|x(0)| ≤M + ‖Nx‖1.
Again for x ∈ Ω1, x ∈ domL\kerL, then (I−P )x ∈ domL∩kerP, LPx = 0, thus
from Lemma 3.1, we have

‖(I − P )x‖ = ‖KPL(I − P )x‖ ≤ 2‖L(I − P )x‖1 = 2‖Lx‖1 ≤ 2‖Nx‖1. (3.11)

Then
‖x‖ ≤ ‖Px‖+ ‖(I − P )‖ ≤M + 3‖Nx‖1.
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If assumption (3.3) holds, we obtain

‖x‖ ≤M + 3‖Nx‖1 = M + 3|f(t, x(t), x∆(t)) + e(t)|1
≤M + 3(‖a‖1|x|+ ‖b‖1|x∆|+ ‖c‖1|x∆|θ + ‖r‖1 + ‖e‖1)

≤ 3‖a‖1‖x‖0 + 3[‖b‖1‖x∆‖0 + ‖c‖1‖x∆‖θ0 + ‖r‖1 + ‖e‖1 +
M

3
].

Thus

‖x‖0 ≤
3

1− 3‖a‖1
[‖b‖1‖x∆‖0 + ‖c‖1‖x∆‖θ0 + ‖r‖1 + ‖e‖1 +

M

3
].

Then

‖x∆‖0 ≤ ‖x‖ ≤ [
3‖a‖1

1− 3‖a‖1
+ 1]3[‖b‖1‖x∆‖0 + ‖c‖1‖x∆‖θ0 + ‖r‖1 + ‖e‖1 +

M

3
]

= 3
‖b‖1

1− 3‖a‖1
‖x∆‖0 +

3
1− 3‖a‖1

[‖c‖1‖x∆‖θ0 + ‖r‖1 + ‖e‖1 +
M

3
]

By a simple computation,

‖x∆‖0 ≤
3‖c‖1

1− 3‖a‖1 − 3‖b‖1
‖x∆‖θ0 +

3
1− 3‖a‖1 − 3‖b‖1

[‖r‖1 + ‖e‖1 +
M

3
].

Since θ ∈ [0, 1) and ‖a‖1 + ‖b‖1 < 1/3, there exists positive constant M1 such
that ‖x∆‖0 ≤ M1. Then from (3.9), there exists positive constant M2 such that
‖x‖0 ≤ M1. Hence ‖x‖ = max{‖x‖0, ‖x∆‖0} ≤ max{M1,M2}, which means that
Ω1 is bounded. If (3.4) hold, similar to the above argument, we can prove Ω1 is
also bounded.
Step 2 The set Ω2 = {x ∈ kerL : Nx ∈ ImL} is bounded. The fact that x ∈ Ω2

implies that x = d, N(x) = f(t, d, 0) + e(t) and QNx = 0, thus

Q(Nx) =
(∫ η

0

(ξ − s)(f(s, d, 0) + e(s))∇s+
∫ ξ

η

η(ξ − 1)(f(s, d, 0) + e(s))∇s

−
∫ 1

0

η(1− s)(f(s, d, 0) + e(s))∇s
)

÷
(∫ η

0

(ξ − s)∇s+
∫ ξ

η

η(ξ − 1)∇s−
∫ 1

0

η(1− s)∇s
)

= 0

(3.12)
So |d| < M∗, thus x = d is bounded. The proof of step 2 is complete.

Let Ω = {x ∈ X : ‖x‖ < N1}, where N1 > max{M1,M2,M
∗}. Then Ω1 ⊂ Ω

and Ω2 ⊂ Ω. From argument above, it is obviously that conditions (1), (2) of
Lemma 2.1 are satisfied. Furthermore, by using Ascolli-Arezela theorem, it is easy
to see that KP (I −Q)N : Ω→ Y is compact, thus N is L-compact on Ω.

Next, we claim that condition (3) of Lemma 2.1 is also satisfied. If the first part
of condition (C3) is satisfied, define the isomorphism J : ImQ→ kerL by J(a) = a
and let

H(λ, x) = λx+ (1− λ)JQNx, (λ, x) ∈ Ω× [0, 1].
By a simple calculation, we obtain, for (λ, x) ∈ ∂(Ω ∩ kerL)× [0, 1],

xH(λ, x) = λx2 + (1− λ)xQNx > 0.

Thus H(λ, x) 6= 0.
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If the second part of condition (C3) is satisfied, define

H(λ, x) = −λx+ (1− λ)JQNx, (λ, x) ∈ Ω× [0, 1],

where J : ImQ → kerL defined by J(a) = −a, similar with above, we can obtain
that H(λ, x) 6= 0. Thus

deg(JQN,Ω ∩ kerL, 0) = deg(H(x, 0),Ω ∩ kerL, 0)

= deg(H(x, 1),Ω ∩ kerL, 0)

= deg(I,Ω ∩ kerL, 0) 6= 0.

Then by Lemma 2.1, Lx = Nx has at least one solution in domL∩Ω, which means
resonance problem (1.1), (1.2) has at least one solution. The proof is complete. �

4. Existence result under condition (1.4)

This section we consider problem (1.1),(1.2) under the assumption that

αη(1− β) + (1− α)(1− βξ) = 0.

The normed spaces X,Y and operators L,N are defined as in Section 3.

Lemma 4.1. If αη(1− β) + (1− α)(1− βξ) = 0, then
(1)

ImL = {y(t)|α(1− β)
∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s = 0};

(2) L : domL ⊂ X → Y is a Fredholm operator with index zero.
(3) Define projector operator P : X → kerL as Px = x(0), then the generalized

inverse of operator L, KP : ImL→ domL ∩ kerP can be written as

KP (y) =
∫ t

0

(t− s)y(s)∇s+
t

1− βξ
[β
∫ ξ

0

(ξ − s)y(s)∇s−
∫ 1

0

(1− s)y(s)∇s],

satisfying

‖KP (y(t))‖1 ≤ (1 + | β + 1
1− βξ

|)‖y‖1.

Proof. (1) First we show that

ImL =
{
y(t)|α(1− β)

∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s = 0
}

First suppose y(t) ∈ ImL, then there exists x(t) such that Lx = y. That is

x(t) =
∫ t

0

(t− s)y(s)∇s+ u∆(0)t+ u(0).

Then boundary condition x(0) = αx(η), x(1) = βx(ξ) together with αη(1 − β) +
(1− α)(1− βξ) = 0 imply that

α(1−β)
∫ η

0

(η−s)y(s)∇s+(1−α)β
∫ ξ

0

(ξ−s)y(s)∇s−(1−α)
∫ 1

0

(1−s)y(s)∇s = 0.
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Next we assume that

y(t) ∈
{
y(t)|α(1− β)

∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s = 0
}
.

Let x(t) ∈ X, where

x(t) =
∫ t

0

(t− s)y(s)∇s+
t

1− βξ
[β
∫ ξ

0

(ξ − s)y(s)∇s−
∫ 1

0

(1− s)y(s)∇s] .

Then Lx = x∆∇ = y(t). Since

y(t) ∈
{
y(t)|α(1− β)

∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s = 0
}
,

by a simple computation we have

x(0) = αx(η), x(1) = βx(ξ)

Thus y(t) ∈ ImL. Summing up the two steps above we obtain that: (1)

ImL = {y(t)|α(1− β)
∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s = 0}.

(2) Next we claim that L is a Fredholm operator with index zero. It is easy to
see that kerL = R. Next we prove that Y = ImL⊕kerL. Suppose y(t) ∈ Y , define
the projector operator Q as

Q(y) =
(
α(1− β)

∫ η

0

(η − s)y(s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)y(s)∇s

− (1− α)
∫ 1

0

(1− s)y(s)∇s
)

÷
(
α(1− β)

∫ η

0

(η − s)∇s+ (1− α)β
∫ ξ

0

(ξ − s)∇s− (1− α)
∫ 1

0

(1− s)∇s
)

Let y∗ = y(t) − Q(y(t)), by a simple computation, y∗ ∈ ImL.Hence Y = ImL +
kerL, furthermore considering ImL∩kerL = {0}, we have Y = ImL⊕kerL. Thus

dim kerL = codim ImL,

which means L is a Fredholm operator with index zero.
(3) Define the projector operator P : X → kerL as Px = x(0), for y(t) ∈ ImL,

we have
(LKP )(y(t)) = y(t),

and for x(t) ∈ domL ∩ kerP , we know

(KPL)(x(t))

= KP (x∆∇(t))
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=
∫ t

0

(t− s)x∆∇∇s+
t

1− βξ
[β
∫ ξ

0

(ξ − s)x∆∇∇s−
∫ 1

0

(1− s)x∆∇∇s]

= x(t)

These shows that KP = (LdomL∩kerP )−1. Furthermore from the definition of the
norms in the X, Y , we have

‖KP (y(t))‖1 ≤ (1 + | β + 1
1− βξ

|)‖y‖1.

�

Theorem 4.2. Let f : [0, 1]×R2 → R be a continuous function. Condition C1, C2

are satisfied and:

(C5) There exists a constant M > 0 such that for x ∈ domL, |x(ρ(t))| > M , for
all t ∈ [0, 1],

α(1− β)
∫ η

0

(η − s)(f(s, x, x∆) + e(s))∇s

+ (1− α)β
∫ ξ

0

(ξ − s)(f(s, x, x∆) + e(s))∇s

− (1− α)
∫ 1

0

(1− s)(f(s, x, x∆) + e(s))∇s 6= 0.

(4.1)

Then for each e ∈ L1[0, 1], resonance problem (1.1), (1.2) with αη(1 − β) + (1 −
α)(1− βξ) = 0 has at least one solution provided that

‖a‖1 + ‖b‖1 <
1

2 + | β+1
1−βξ |

.

The proof is similar to that of Theory 3.1 and it is omitted here.

5. An example

In this section we give an example to illustrate the main results of this article.
Let T = {0}∪{ 1

2n+1 }∪ [ 1
2 , 1], (n = 1, 2, . . . ). We consider the four-point boundary-

value problem

x∆∇(t) =
1
18
x(t) +

1
18
x∆(t) +

1
12

sin(x∆(t))1/5, t ∈ (0, 1) ∩ T, (5.1)

subject to the boundary condition

x(0) = x(
1
3

), x(1) = x(
1
2

), (5.2)

It is easy to see that α = β = 1, η = 1/3, ξ = 1/2, a(t) = b(t) = 1
18 , c(t) = 1/12,

‖a(t)‖+ ‖b(t)‖ < 1/3 and

f(t, x, y) ≤ 1
18
|x|+ 1

18
|y|+ 1

12
|y|1/5, f(t, x, y) ≥ 1

18
|x| − 1

18
|y| − 1

12
.

Then all conditions of Theorem 3.2 hold. Hence, the problem has at least one
nontrival solution at resonance.
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