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TWO-SPECIES COMPETITION MODELS WITH
FITNESS-DEPENDENT DISPERSAL ON NON-CONVEX

BOUNDED DOMAINS

XIE LI

Abstract. In this article, we show the existence of global bounded solutions

to a two-species competition models with fitness-dependent dispersal posed in

a bounded domain Ω ⊂ RN with smooth boundary. In particular, we remove
the convexity assumption on Ω used by Lou-Tao-Winkler [13].

1. Introduction

In this article, we show the existence and boundedness of global solutions to the
two-species competition model with fitness-dependent dispersal

ut = ∇ · [µ∇u− αu∇(m− u− w)] + r1u(m− u− w), x ∈ Ω, t > 0,

wt = ν∆w + r2w(m− u− w), x ∈ Ω, t > 0,

[µ∇u− αu∇(m− u− w)] · n = ν∇w · n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where µ, ν, α > 0, r1 ≥ 0, r2 ≥ 0, Ω ⊂ RN (N ≥ 1) is a bounded domain with
smooth boundary ∂Ω and n denotes the outer unite normal of ∂Ω. The functions
u(x, t) and w(x, t) describe the densities of two competing species at time t, at
location x ∈ Ω, and m(x) denotes the distribution of resources. Equation (1.1)1

indicates that the dispersal of organism with density u is dependent on a combina-
tion of random motion with random dispersal rate µ and advection upward along
its fitness gradient, while equation (1.1)2 indicates that the dispersal of organism
with density w is purely random. Moreover, the growth of both species in (1.1) is
logistic, with logistic growth rate r1 and r2, respectively.

In recent years, equations (1.1) and their variations have been studied by many
researchers (see [1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 19] and references therein). To motivate
our study, we recall several related ones. Cosner [5] first considered the following
fitness-dependent dispersal model for a single species

ut = ∇ · [µ∇u− αu∇(m− u)] + ru(m− u), x ∈ Ω, t > 0,

[µ∇u− αu∇(m− u)] · n = 0, x ∈ Ω, t > 0.
(1.2)
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Then Cantrell-Cosner-Lou [3] further investigated the global existence of classical
solution and the behavior of equilibria to equation (1.2). Recently, Cantrell et al
[4] extended the work in [5] to the two-species competition model

ut = ∇ · [µ∇u− αu∇(m− u− w)] + ru(m− u− w), x ∈ Ω, t > 0,

wt = ν∆w + rw(m− u− w) x ∈ Ω, t > 0,

[µ∇u− αu∇(m− u− w)] · n = ν∇w · n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.3)

and showed that the solutions to equations (1.3) exist globally for N = 1, 2, and
for N ≥ 3 with ν > µ. They also investigated the nontrivial nonnegative steady
states. More recently, Lou et al [13] proved that the corresponding results hold for
N ≥ 3 and ν ≤ µ under the extra assumption that the domain Ω is convex. The
global existence and large time behaviour of the nonnegative weak solution to the
limit case (i.e., µ = ν = 0) were also investigated by [13].

The main purpose of this article is to show the global-in-time existence and
uniform-in-time boundedness of solutions to (1.1) on a non-convex bounded domain.
For this purpose, we recall two basic assumptions used in [13]. The first one is
related to the parameters and the distribution of resources:

m(x) ∈ C2+γ(Ω) for some γ ∈ (0, 1), and m(x0) > 0 for some x0 ∈ Ω. (1.4)

The second one relates the initial data:

(u0, w0) ∈ Cγ(Ω)×W 1,∞(Ω) for some γ ∈ (0, 1),

and u0(x) ≥ 0, w0(x) ≥ 0 in Ω.
(1.5)

To obtain the uniqueness, we also need the following conditions:

(u0, w0) ∈W s,p(Ω)×W s,p(Ω) for some p > N and s > 1,

and u0(x) > 0, w0(x) ≥ 0 in Ω.
(1.6)

We now state the main result of this paper as follows.

Theorem 1.1. Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary
∂Ω. Then under the assumptions of (1.4) and (1.5), equations (1.1) have at least
one couple of nonnegative classical solutions (u,w) belonging to C0(Ω × [0,∞)) ∩
C2,1(Ω × (0,∞)), which are bounded in Ω × (0,∞). If in addition (u0, w0) also
satisfy (1.6), then the solution is unique within the indicated class.

The rest of this article is organized as follows. We first present the local existence
and uniqueness of classical solutions, and some preliminaries in Section 2. Then
we establish the global existence of bounded solutions and complete the proof of
Theorem 1.1 in Section 3.

2. Preliminaries

In this section, we first present the existence and uniqueness of classical local
solutions to (1.1) and then present some basic preliminaries.

Lemma 2.1 (Local existence and uniqueness). Under assumptions (1.4) and (1.6),
there exists a maximal existence time T ∗ and a unique functions pair (u,w) ∈
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C0
(
Ω× [0, T ∗)

)
∩C2,1

(
Ω× (0, T ∗)

)
such that (u,w) are classical solutions of equa-

tions (1.1). Moreover, if T ∗ <∞, then

lim
t→T∗

‖u(·, t)‖L∞(Ω) =∞. (2.1)

The proof of the above lemma is standard and we refer to [4, 13] for details. The
following boundary derivative estimate plays an important role when we remove
the convexity assumption on the domain Ω used by [21].

Lemma 2.2 ([14, Lemma 4.2]). Let Ω ⊂ RN be a bounded domain with smooth
boundary ∂Ω. If f ∈ C2(Ω) satisfies ∂f

∂n = 0, then

∂|∇f |2

∂n
≤ CΩ|∇f |2, (2.2)

where CΩ is a positive upper bound for the curvatures of ∂Ω.

The following embedding theorem comes from [10, Proposition 4.22 (ii) and
Theorem 4.24 (i)].

Lemma 2.3. Let Ω be a bounded domain with smooth boundary and let r ∈ (0,∞).
Then

W r,2(∂Ω) ↪→ L2(∂Ω)
is a compact embedding. Moreover, there exists a linear and bounded map from
W r+ 1

2 ,2(Ω) onto W r,2(∂Ω).

The proof of global existence will be based on some a priori estimates. To derive
these estimates, we will use the following two Gagliardo-Nirenberg inequalities [8,
15, 16].

Lemma 2.4. Assume that u ∈ W 1,2(Ω) ∩ Lr(Ω) and r ∈ (0, k). Then there exists
a positive constant CGN such that

‖u‖Lk(Ω) ≤ CGN
(
‖∇n‖θL2(Ω)‖u‖

1−θ
Lr(Ω) + ‖u‖Lr(Ω)

)
holds, where θ ∈ (0, 1) satisfies

1
k

= θ
(1

2
− 1
N

)
+

1
r

(
1− θ

)
.

Lemma 2.5. Let N ∈ N, s ≥ 1 and l ≥ 1. Assume that p > 0 and θ ∈ (0, 1) satisfy

1
2
− p

N
= (1− θ) l

s
+ θ
(1

2
− 1
N

)
and p ≤ θ. (2.3)

Then there exists a positive constant C0 such that

‖f‖Wp,2(Ω) ≤ C0‖∇f‖θL2(Ω)‖f‖
1−θ
L
s
l (Ω)

+ C0‖f‖L sl (Ω)
(2.4)

holds for all f ∈W 1,2(Ω) ∩ L s
l (Ω).

3. Proof of Theorem 1.1

In this section, we establish the existence of classical global solutions to (1.1). For
this purpose, the key is to derive the uniform estimate of Lk norm of the solution.
Inspired by an idea in [17, 18] (see also [13]), we establish a combined estimate
on
∫

Ω
uk(x, t)dx +

∫
Ω
|∇w(x, t)|2ldx for appropriately large k and l to obtain the

expecting results. We first recall some basic properties of solutions.
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Lemma 3.1 ([13, Lemma 2.2]). Assume that u0(x) ∈ C2(Ω) is positive and w0(x) ∈
C2(Ω) is nonnegative. Then the classical solution (u,w) to equations (1.1) satisfies
the following inequalities:

‖u(·, t)‖L1(Ω) ≤ max{‖u0‖L1(Ω), |Ω|‖m‖L1(Ω)}, (3.1)

‖w(·, t)‖L1(Ω) ≤ max{‖w0‖L1(Ω), |Ω|‖m‖L1(Ω)}, (3.2)

‖w(·, t)‖L∞(Ω) ≤ max{‖u0‖L1(Ω), |Ω|‖m‖L∞(Ω)} (3.3)

for all t ∈ (0, T ∗). Moreover, for any s ∈ [1, N
N−1 ), there exists a positive constant

C(s) such that

‖w(·, t)‖W 1,s(Ω) ≤ C(s)
(

1 + ‖u0‖L1(Ω) + ‖w0‖W 1,∞(Ω)

)
for all t ∈ (0, T ∗). (3.4)

The following Lemma asserts the Lk-boundedness of solutions, which is the core
of the argument concerning the global existence and boundedness. Our proof fol-
lowed from [13, Lemma 2.5], but we will use the boundary derivative estimates and
the Sobolev trace embedding to remove the convexity assumption on the domain
Ω used by [13].

Lemma 3.2. Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary ∂Ω.
Assume that µ, ν, α, r1, r2 and m(x) satisfy (1.4). Then for all k > 2 and l > 2,
there exist two positive constants Ck and C2l depending only on k, l, ‖u0‖L∞(Ω)

and ‖w0‖W 1,∞(Ω) such that the solution (u,w) to equations (1.1) emanating from
some initial data (u0, w0) ∈ C2(Ω)× C2(Ω) satisfies

‖u(·, t)‖Lk(Ω) ≤ Ck for all t ∈ (0, T ∗), (3.5)

‖∇w(·, t)‖L2l(Ω) ≤ C2l for all t ∈ (0, T ∗). (3.6)

Proof. The L1-boundedness of u(·, t) has been obtained in the proof of Lemma
3.1. Thus by the interpolation, we may pay our attention to the case that k > 2.
Multiplying (1.1)1 by kuk−1 and integrating the resulted equation over Ω, we obtain

d

dt

∫
Ω

ukdx

= −µk(k − 1)
∫

Ω

uk−2|∇u|2dx− αk(k − 1)
∫

Ω

uk−1|∇u|2dx

+ αk(k − 1)
∫

Ω

uk−1∇u · ∇mdx− αk(k − 1)
∫

Ω

uk−1∇u · ∇wdx

+ kr1

∫
Ω

uk(m− u− w)dx

≤ −αk(k − 1)
∫

Ω

uk−1|∇u|2dx+ αk(k − 1)
∫

Ω

uk−1∇u · ∇mdx

− αk(k − 1)
∫

Ω

uk−1∇u · ∇wdx+ kr1‖m‖L∞(Ω)

∫
Ω

ukdx ∀t ∈ (0, T ∗).

(3.7)

Then following the same procedure as Step 1 of [13, Lemma 2.5], we obtain

d

dt

∫
Ω

ukdx+
∫

Ω

ukdx+
αk(k − 1)
(k + 1)2

∫
Ω

∣∣∇u k+1
2
∣∣2dx

≤ αk(k − 1)
∫

Ω

uk−1|∇w|2dx+ C1(k, ‖u0‖L∞(Ω), ‖w0‖W 1,∞(Ω))
(3.8)
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for all t ∈ (0, T ∗). We divide the proof into two cases.

Case (i): N = 1. First of all, for any l ∈ (2,∞), there exists a positive constant
C2l

(
l, ‖u0‖L∞(Ω), ‖w0‖W 1,∞(Ω)

)
such that (3.6) holds, i.e.

∫
Ω
|∇w|2l ≤ C2l by (3.4).

Next, to estimate ‖u(·, t)‖Lk(Ω), we use the Gagliardo-Nirenberg interpolation in-
equality (Lemma 2.4) and (3.1) to obtain

∫
Ω

ukdx = ‖u
k+1
2 ‖

2k
k+1

L
2k
k+1 (Ω)

≤ C(k)
(
‖∇u

k+1
2 ‖θL2(Ω)‖u

k+1
2 ‖1−θ

L
2
k+1 (Ω)

+ ‖u
k+1
2 ‖

L
2
k+1 (Ω)

) 2k
k+1

≤ C3

(
‖∇u

k+1
2 ‖

2kθ
k+1

L2(Ω) + 1
)
,

where θ =
k+1
2 −

k+1
2k

1− 1
2 + k+1

2
∈ (0, 1), and C3 is a positive constant depending only on k and

‖u‖L1(Ω). A simple computation shows that 2kθ
k+1 < 2. It then follows from Young’s

inequality and (3.6) that

∫
Ω

uk−1|∇w|2dx

≤
∫

Ω

ukdx+
∫

Ω

|∇w|2kdx ≤
∫

Ω

ukdx+ C2k

≤ C3‖∇u
k+1
2 ‖

2kθ
k+1

L2(Ω) + C4

(
l, ‖u0‖L∞(Ω), ‖w0‖W 1,∞(Ω)

)
≤ 1

2(k + 1)2

∫
Ω

∣∣∇u k+1
2
∣∣2dx+ C5

(
l, ‖u0‖L∞(Ω), ‖w0‖W 1,∞(Ω)

)
(3.9)

for all t ∈ (0, T ∗). Combining (3.9) with (3.8), and using ODE comparison argu-
ment, we obtain the desired estimate (3.5).

Case (ii): N ≥ 2. In this case, the estimate (3.6) can not be derived from (3.4)
directly. To overcome this difficulty, we will establish a combined estimate on∫

Ω
uk(x, t)dx+

∫
Ω
|∇w(x, t)|2ldx. For this purpose, we differentiate equation (1.1)2

to obtain

(
|∇w|2

)
t

= 2ν∇w · ∇∆w + 2r2∇w · ∇[w(m− u− w)],

which together with the point-wise identity 2∇w ·∇∆w = ∆|∇w|2−2|D2w|2 yields

(
|∇w|2

)
t

= ν∆|∇w|2 − 2ν|D2w|2 + 2r2∇w · ∇[w(m− u− w)]. (3.10)
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Multiplying both sides of (3.10) by l|∇w|2(l−1) and integrating over Ω, we have

d

dt

∫
Ω

|∇w|2ldx

= νl

∫
Ω

|∇w|2(l−1)∆|∇w|2dx− 2νl
∫

Ω

|∇w|2(l−1)|D2w|2dx

+ 2r2l

∫
Ω

|∇w|2(l−1)∇w · ∇[w(m− u− w)]dx

= −νl(l − 1)
∫

Ω

|∇w|2(l−2)|∇|∇w|2|2dx+ lν

∫
∂Ω

|∇w|2(l−1) ∂|∇w|2

∂n
dx

− 2νl
∫

Ω

|∇w|2(l−1)|D2w|2dx

+ 2r2l

∫
Ω

|∇w|2(l−1)∇w · ∇[w(m− u− w)]dx for all t ∈ (0, T ∗).

(3.11)

The estimate for the second term on the right-hand side of (3.11) is very subtle.
We first use Lemma 2.2 to obtain∫

∂Ω

|∇w|2(l−1) ∂|∇w|2

∂n
dx ≤ CΩ

∫
∂Ω

|∇w|2ldx = CΩ

∥∥|∇w|l∥∥2

L2(∂Ω)
(3.12)

for all t ∈ (0, T ∗). Then let us fix a constant r ∈
(
0, 1

2

)
. Since the embedding

W r+ 1
2 ,2(Ω)(↪→W r,2(∂Ω)) ↪→ L2(∂Ω) is compact by Lemma 2.3, we have

‖|∇w|l‖L2(∂Ω) ≤ C‖|∇w|l‖W r+ 1
2 ,2(Ω)

. (3.13)

To estimate the right-hand side of (3.13), we take two constants s ∈
[
1, N

N−1

)
and

θ ∈
(
0, 1
)

such that

1
2
−
r + 1

2

N
= (1− θ) l

s
+ θ
(1

2
− 1
N

)
.

Noticing that l > 1 implies that r + 1
2 ≤ θ < 1, we can apply the fractional

Gagliardo-Nirenberg inequality (Lemma 2.5) to the right hand side of (3.13) to
obtain

‖|∇w|l‖
W r+ 1

2 ,2(Ω)
≤ C0‖∇|∇w|l‖θL2(Ω)‖|∇w|

l‖1−θ
L
s
l (Ω)

+ C̃0‖|∇w|l‖L sl (Ω)

= C0‖∇|∇w|l‖θL2(Ω)‖∇w‖
(1−θ)l
Ls(Ω) + C̃0‖∇w‖lLs(Ω)

≤ C
(
‖∇|∇w|l‖θL2(Ω) + 1

)
for all t ∈ (0, T ∗).

(3.14)

Here we used the boundedness of ‖w(·, t)‖W 1,s(Ω) in the last inequality (see Lemma
3.1). Substituting (3.13) and (3.14) into (3.12), and applying Young’s inequality
with ε, we have∫

∂Ω

|∇w|2l−2 ∂|∇w|2

∂n
dx ≤ C

(
‖∇|∇w|l‖2θL2(Ω) + 1

)
= C

(∫
Ω

|∇|∇w|l|2dx
)θ

+ C

≤ ε
∫

Ω

|∇|∇w|l|2dx+ C(ε)

(3.15)

for all t ∈ (0, T ∗), where ε is a positive constant to be specified later. For the last
term on the right hand of (3.11), we follow the same procedure as [13, (2.26)–(2.29)]
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and obtain

2r2l

∫
Ω

|∇w|2(l−1)∇w · ∇[w(m− u− w)]dx

≤ 2νl
∫

Ω

|∇w|2(l−1)|D2w|2dx+
(l − 1)νl

2

∫
Ω

|∇w|2(l−2)|∇|∇w|2|2dx

+ C4

∫
Ω

|∇w|2(l−1)dx+ C5

∫
Ω

u2|∇w|2(l−1)dx,

(3.16)

where C4 and C5 are positive constants depending on l, ‖u0‖L∞(Ω) and ‖w0‖W 1,∞(Ω).
Since

|∇w|2(l−2)|∇|∇w|2|2 =
4
l2
|∇|∇w|l|2,

we combine (3.15) and (3.16) with (3.11), and utilize Young’s inequality to obtain

d

dt

∫
Ω

|∇w|2ldx+
∫

Ω

|∇w|2ldx+
(ν2(l − 1)

l
− lνε

)∫
Ω

|∇|∇w|l|2dx

≤
∫

Ω

|∇w|2ldx+ C4

∫
Ω

|∇w|2(l−1)dx+ C5

∫
Ω

u2|∇w|2(l−1)dx+ C(ε)

≤ 2
∫

Ω

|∇w|2ldx+ C5

∫
Ω

u2|∇w|2(l−1)dx+ C(ε, |Ω|, l) for all t ∈ (0, T ∗).

(3.17)

For any s ∈
[
1,min{ N

N−1 , 2l}
)
, we take

θ̃ =
(1

2
− l

s

)(1
2
− 1
N
− l

s

)−1
.

Then the Gagliardo-Nirenberg inequality gives∫
Ω

|∇w|2ldx = ‖|∇w|l‖2L2(Ω)

≤ C(l)‖∇|∇w|l‖2θ̃L2(Ω)‖|∇w|
l‖2(1−θ̃)
L
s
l (Ω)

+ C(l)‖|∇w|l‖2
L
s
l (Ω)

≤ C6

(
‖∇|∇w|l‖2θ̃L2(Ω) + 1

)
for all t ∈ (0, T ∗), where C6 is a positive constant depending on l, ‖u0‖L∞(Ω)

and ‖w0‖W 1,∞(Ω). Here we used the boundedness of ‖w(·, t)‖W 1,s(Ω) in the last
inequality. Since s < 2l, a simple computation shows that θ̃ ∈ (0, 1), i.e, 2θ̃ < 2.
Thus by utilizing Young’s inequality, we have

2
∫

Ω

|∇w|2ldx ≤ lνε
∫

Ω

|∇|∇w|l|2dx+ C(ε).

Upon substituting into (3.17), and taking ε = l−1
l2 , we obtain

d

dt

∫
Ω

|∇w|2ldx+
∫

Ω

|∇w|2ldx+
ν(l − 1)

l

∫
Ω

|∇|∇w|l|2dx

≤ C5

∫
Ω

u2|∇w|2(l−1)dx+ C7

(3.18)
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for all t ∈ (0, T ∗), where C7 is a positive constant depending on l, |Ω|, ‖u0‖L∞(Ω)

and ‖w0‖W 1,∞(Ω). Now adding (3.18) to (3.8), we have

d

dt

(∫
Ω

ukdx+
∫

Ω

|∇w|2ldx
)

+
∫

Ω

ukdx+
∫

Ω

|∇w|2ldx

+
αk(k − 1)
(k + 1)2

∫
Ω

∣∣∇u k+1
2
∣∣2dx+

ν(l − 1)
l

∫
Ω

|∇|∇w|l|2dx

≤ αk(k − 1)
∫

Ω

uk−1|∇w|2dx+ C5

∫
Ω

u2|∇w|2(l−1)dx+ C8

(3.19)

for all t ∈ (0, T ∗), where C8 is a positive constant depending only on k, l, |Ω|,
‖u0‖L∞(Ω) and ‖w0‖W 1,∞(Ω). Following the same procedure as [13, (2.35)–(2.43)],
we can find a positive constant C9 depending on k, l, |Ω|, ‖u0‖L∞(Ω) and ‖w0‖W 1,∞(Ω)

such that

αk(k − 1)
∫

Ω

uk−1|∇w|2dx+ C5

∫
Ω

u2|∇w|2(l−1)dx

≤ αk(k − 1)
2(k + 1)2

∫
Ω

∣∣∇u k+1
2
∣∣2dx+

ν(l − 1)
l

∫
Ω

|∇|∇w|l|2dx+ C9 for all t ∈ (0, T ∗).

Combing this with (3.19), and setting yδ(t) :=
∫

Ω
|∇w|2ldx+

∫
Ω
wkdx, we conclude

that y′δ(t)+yδ(t) ≤ C9 for all t ∈ (0, T ∗). Thus an ODE comparison argument yields
the uniform boundedness of yδ(t) on (0, T ∗), which implies that ‖u(·, t)‖Lk(Ω) and
‖∇w(·, t)‖L2l(Ω) are uniformly bounded on (0, T ∗). This completes the proof of
Lemma 3.2. �

Proof of Theorem 1.1. By Lemma 2.1, there exists a unique local-in-time classical
solution (u,w) to equations (1.1) on [0, T ∗). By [17, Lemma A.1] and Lemma 3.2,
we can establish the uniform boundedness of u and ∇w in Ω × (0, T ∗). Then we
can deduce that T ∗ = ∞ by using the extension criterion in Lemma 2.1. Hence
we have completed the proof of Theorem 1.1 under the condition that (u0, w0) ∈
C2(Ω)×C2(Ω). For the case that u0 is merely Hölder continuous and nonnegative
in Ω and that v0 belongs to W 1,∞(Ω) only, we can follow the corresponding proof
in [13] to conclude the proof. �
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