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LONG-TERM BEHAVIOR OF A CYCLIC MAX-TYPE SYSTEM
OF DIFFERENCE EQUATIONS

TATJANA STEVIĆ, BRATISLAV IRIČANIN

Abstract. We study the long-term behavior of positive solutions of the cyclic
system of difference equations

x
(i)
n+1 = max

n
α,

(x
(i+1)
n )p

(x
(i+2)
n−1 )q

o
, i = 1, . . . , k, n ∈ N0,

where k ∈ N, min{α, p, q} > 0 and where we regard that x
(i1)
n = x

(i2)
n when

i1 ≡ i2 (mod k). We determine the set of parameters α, p and q in (0,∞)3

for which all such solutions are bounded. In the other cases we show that the
system has unbounded solutions. For the case p = q we give some sufficient

conditions which guaranty the convergence of all positive solutions. The main
results in this paper generalize and complement some recent ones.

1. Introduction

Unlike the linear difference equations and systems, there is no unified theory for
nonlinear ones. The lack of the theory, among other reasons, motivated numerous
experts to study various concrete nonlinear equations and systems, which seem or
look like good prototypes. Since the beginning of 1990’s there have been published
a lot of papers on such equations and systems (see, e.g., [1]-[9], [11], [12], [14]-[30],
[32]-[66]). Many of these papers study only positive solutions of the equations and
systems. This is not so unexpected since many of the equations and systems appear
in some applications (see, e.g., [10, 13, 31, 34, 39] and the references cited therein).

After studying numerous special cases of rational equations of the form

xn+1 = α+
xn−k
xn−l

, n ∈ N0, (1.1)

where α > 0, k, l ∈ N0, k 6= l (see, e.g., [1, 2, 3, 4, 5, 11, 15, 36, 37, 40, 42, 65]),
the topic began developing in a natural direction, that is, into the study of special
cases of the non-rational difference equation

xn+1 = α+
xpn−k
xqn−l

, n ∈ N0, (1.2)
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where k, l ∈ N0, k 6= l, and min{α, p, q} > 0. The critical moment for investigating
positive solutions of equation (1.2) seems the publication of paper [38], where the
case p = q > 0, k = l + 1 = 1 was studied, which was the initial motivation for
further investigations. Since that time equation (1.2) and its extensions have been
extensively studied by several authors (see, e.g., [6, 16, 17, 20, 30, 40, 41, 44, 45])

The first problem studied was the boudedness character of positive solutions of
equation (1.2). One of the first steps in the study was [36, Theorem 2] where it was
given an elegant proof for the boundedness of positive solutions of the following
equation with a variable coefficient

xn+1 = αn +
xn
xn−k

, n ∈ N0, (1.3)

where k ∈ N and (αn)n∈N0 is a sequence of real numbers such that 0 < M1 ≤
αn ≤M2 < +∞, n ∈ N0. Another important source related to nonlinear difference
equations with variable coefficients is note [35], because it gives some conditions
which guarantee the monotonicity of the subsequences (x2n) and (x2n+1) for all
solutions of a related difference equation, which along with the boundedness of the
solutions produce the eventual periodicity.

On the other hand, Papaschinopoulos and Schinas initiated the study of sym-
metric systems of difference equations in the second half of 1990’s, and since that
time there have been published a lot of papers in the topic (see, e.g., [7, 8, 12, 23,
24, 25, 26, 27, 28, 29, 32, 33, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63]).

In 2006 appeared paper [18] which could be the first paper which suggested in-
vestigation of cyclic systems of difference equations. There are just a few papers on
the topic. Recently, in [57] was studied the boundedness character of the following
cyclic system of difference equations, which is a natural extension of the equation
in [41] and the system in [62]

x
(i)
n+1 = α+

(x(i+1)
n )p

(x(i+2)
n−1 )q

, i = 1, . . . , k, n ∈ N0, (1.4)

where k ∈ N, min{α, p, q} > 0, and where we regard that

x(i1)
n = x(i2)

n , when i1 ≡ i2 (mod k). (1.5)

Note that i+ 2 > k, for i ∈ {k− 1, k}, but we will also have some situations in the
paper where the superscript is bigger than k + 2.

Another topic of recent interest is the investigation of, so called, max-type differ-
ence equations and systems, which appeared for the first time in the mid of 1990’s.
For some results in the area up to 2004, see monograph [14]. A systematic study of
non-rational max-type difference equations started in the mid of 2000’s (see, e.g.,
[41, 43, 46, 47, 48, 49, 51, 53, 55, 56, 63, 66]).

The corresponding max-type system of difference equations to (1.4) is

x
(i)
n+1 = max

{
α,

(x(i+1)
n )p

(x(i+2)
n−1 )q

}
, i = 1, . . . , k, n ∈ N0, (1.6)

where k ∈ N, min{α, p, q} > 0, and where we also accept the convention in (1.5).
Motivated by above mentioned line of investigations and especially by papers

[56, 61, 62] here we study the long-term behavior of positive solutions of system
(1.6). Our results generalize and complement some results in these papers.
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For a solution (~xn)n≥−1 = (x(1)
n , . . . , x

(k)
n )n≥−1 of system (1.6) is said that is

bounded if there is L ≥ 0 such that

sup
n≥−1

‖~xn‖2 = sup
n≥−1

( k∑
i=1

(x(i)
n )2

)1/2

≤ L. (1.7)

Of course, in the definition, instead of the Euclidean norm in Rk we could use any
equivalent one (for example, maximum norm). If we say that a solution (~xn)n≥−1

of system (1.6) is positive, it will mean that x(i)
n > 0 for every 1 ≤ i ≤ k and

n ≥ −1.

2. Boundedness character of system (1.6)

Prior to stating and proving our theorems we want to mention an obvious esti-
mate which will be frequently used from now on. Namely, note that for any positive
solution of system (1.6) the following estimate holds

x(i)
n ≥ α, (2.1)

for every 1 ≤ i ≤ k and n ∈ N.

Theorem 2.1. If 2
√
q ≤ p < 1 + q and q ∈ (0, 1), then all positive solutions of

(1.6) are bounded.

Proof. It is easy to see that the conditions 2
√
q ≤ p < 1 + q and q ∈ (0, 1), imply

that λ2−pλ+q = (λ−λ1)(λ−λ2) for λ1 and λ2 such that 0 < λ2 ≤ λ1 < 1. Hence

x
(i)
n+1 = max

{
α,

(x(i+1)
n )λ1+λ2

(x(i+2)
n−1 )λ1λ2

}
.

From this and (2.1), for every positive solution of system (1.6) we have

x
(i)
n+1

(x(i+1)
n )λ1

= max
{ α

(x(i+1)
n )λ1

,
( x

(i+1)
n

(x(i+2)
n−1 )λ1

)λ2
}

≤ max
{
α1−λ1 ,

( x
(i+1)
n

(x(i+2)
n−1 )λ1

)λ2
} (2.2)

for every 1 ≤ i ≤ k and n ∈ N. Let

y(i)
n =

x
(i)
n+1

(x(i+1)
n )λ1

, i = 1, . . . , k, n ∈ N0,

and

zn = kα1−λ1 + kzλ2
n−1, n ∈ N, (2.3)

where

z0 =
k∑
i=1

y
(i)
0 . (2.4)
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From (2.2) it follows that
k∑
i=1

y(i)
n ≤

k∑
i=1

max
{
α1−λ1 , (y(i)

n−1)λ2

}
≤ kα1−λ1 +

k∑
i=1

(y(i)
n−1)λ2

≤ kα1−λ1 + k
( k∑
i=1

y
(i)
n−1

)λ2

, for n ∈ N.

(2.5)

Since the function f(x) = kα1−λ1 + kxλ2 is nondecreasing on the interval (0,∞)
and by using (2.4) in (2.5) with n = 1, we obtain

k∑
i=1

y
(i)
1 ≤ z1.

From this, by using (2.5), a simple inductive argument yields
k∑
i=1

y(i)
n ≤ zn, n ∈ N0. (2.6)

On the other hand, since λ2 ∈ (0, 1), function f is also concave on (0,∞). Hence,
there is a unique solution x∗ of the equation f(x) = x, and

(f(x)− x)(x− x∗) < 0, x ∈ (0,∞) \ {x∗}. (2.7)

Moreover, from f(1) = kα1−λ1 + k > 1, it follows that x∗ > 1. So, if z0 ∈ (0, x∗],
then (zn)n∈N0 is nondecreasing and zn ≤ x∗, n ∈ N0, while if z0 ≥ x∗, it is
nonincreasing and zn ≥ x∗, n ∈ N0. Hence, (zn)n∈N0 is bounded. This and (2.6)
imply the existence of M1 ≥ x∗ > 1 such that

k∑
i=1

y(i)
n ≤M1, n ∈ N0,

and consequently
x

(i)
n+1 ≤M1(x(i+1)

n )λ1 ,

for every 1 ≤ i ≤ k and n ∈ N0. Hence
k∑
i=1

x(i)
n ≤ kM1

( k∑
i=1

x
(i)
n−1

)λ1

, n ∈ N,

from which we have
k∑
i=1

x(i)
n ≤ (kM1)

1−λ1
n

1−λ1

( k∑
i=1

x
(i)
0

)λ1
n

≤ (kM1)
1

1−λ1 max
{

1,
k∑
i=1

x
(i)
0

}
,

from which the boundedness of any positive solution follows. �

Before we state the next result we introduce a notation in order to save some
space in writing some long formulas. Namely, if aj , j = 1, . . . , l, are nonnegative
numbers and r is a positive real number then the notation

max{a1, a2, . . . , al}r

has the same meaning as (max{a1, a2, . . . , al})r, that is, as max{ar1, ar2, . . . , arl }.

Theorem 2.2. If p2 < 4q, then all positive solutions of system (1.6) are bounded.
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Proof. Since (1.6) is cyclic it is sufficient to prove the boundedness of (x(1)
n )n≥−1.

Let p0 = 0 and

pk+1 =
q

p− pk
, k ∈ N0. (2.8)

We have

x
(1)
n+1 = max

{
α,

(x(2)
n )p

(x(3)
n−1)q

}
= max

{
α,
( x

(2)
n

(x(3)
n−1)

q
p

)p}
= max

{
α,
( x

(2)
n

(x(3)
n−1)p1

)p}
= max

{
α,max

{ α

(x(3)
n−1)p1

,
(x(3)
n−1)p−p1

(x(4)
n−2)q

}p}
= max

{
α,max

{ α

(x(3)
n−1)p1

,
( x

(3)
n−1

(x(4)
n−2)

q
p−p1

)p−p1}p}
= max

{
α,max

{ α

(x(3)
n−1)p1

,
( x

(3)
n−1

(x(4)
n−2)p2

)p−p1}p}
= max

{
α,max

{ α

(x(3)
n−1)p1

,max
{ α

(x(4)
n−2)p2

,
(x(4)
n−2)p−p2

(x(5)
n−3)q

}p−p1}p}
.

(2.9)

Now assume that for some m such that 1 ≤ m ≤ n+1 we have proved the following

x
(1)
n+1 = max

{
α, . . . ,max

{ α

(x(m)
n−m+2)pm−2

,
(x(m)
n−m+2)p−pm−2

(x(m+1)
n−m+1)q

}p−pm−3

. . .
}
. (2.10)

Then by using (1.6) in (2.10) we have

x
(1)
n+1

= max
{
α, . . . ,max

{ α

(x(m)
n−m+2)pm−2

,
( x

(m)
n−m+2

(x(m+1)
n−m+1)

q
p−pm−2

)p−pm−2
}p−pm−3

. . .
}

= max
{
α, . . . ,max

{ α

(x(m)
n−m+2)pm−2

,
( x

(m)
n−m+2

(x(m+1)
n−m+1)pm−1

)p−pm−2
}p−pm−3

. . .
}

= max
{
α, . . . ,max

{ α

(x(m+1)
n−m+1)pm−1

,
(x(m+1)
n−m+1)p−pm−1

(x(m+2)
n−m )q

}p−pm−2

. . .
}
.

From this, (2.9) and the method of induction we see that (2.10) holds for every
1 ≤ m ≤ n + 2. We have to say that if pm = p for some m ∈ N, then the above
(iterating) procedure is stopped.

If p2 ≤ q, which is equivalent to p ≤ p1, by using (2.1) and (2.9) for n ≥ 3, we
obtain

x
(1)
n+1 = max

{
α,max

{ α

(x(3)
n−1)

q
p

,
(x(3)
n−1)p−

q
p

(x(4)
n−2)q

}p}
≤ max

{
α,

1
αq−p

,
1

αq−p2+pq

}
,

which proves the boundedness of x(1)
n in this case.
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Since 0 = p0 < p1 = q/p and the function g(x) = q/(p − x) is increasing for
x < p, we have that pk is increasing as far as pk < p. Assume that pk < p, k ∈ N0.
Then as a monotone and bounded sequence it would have a finite limit p∗ such that

(p∗)2 − pp∗ + q = 0. (2.11)

On the other hand, since p2 < 4q then equation (2.11) does not have real zeros.
This implies that there is a k0 ∈ N such that pk0−1 < p and pk0 ≥ p.

Using (2.10) for m = k0 + 2 and (2.1), we obtain

x
(1)
n+1 = max

{
α, . . . ,max

{ α

(x(k0+2)
n−k0 )pk0

,
(x(k0+2)
n−k0 )p−pk0

(x(k0+3)
n−k0−1)q

}p−pk0−1

. . .
}

≤ max
{
α, . . . ,max

{ 1
αpk0−1 ,

1
αq−p+pk0

}p−pk0−1

. . .
}
,

for n ≥ k0 + 2, as desired. �

Theorem 2.3. If α > 0, p = q + 1 and q ∈ (0, 1), then all positive solutions of
(1.6) are bounded.

Proof. We may suppose α = 1, since the change of variables

x(i)
n = αx̂(i)

n , i = 1, . . . , k, n ≥ −1,

transforms system (1.6) into the same with α = 1.
Assume that sequences (an)n∈N0 and (bn)n∈N0 are defined by

a0 = q, b0 = q + 1,

a2n+1 = (q + 1)b2n − a2n, b2n+1 = qb2n, n ∈ N0,

b2n+2 = (q + 1)a2n+1 − b2n+1, a2n+2 = qa2n+1, n ∈ N0.

(2.12)

Using (1.6) and (2.12) we have

x
(1)
n+1 = max

{
1,

(x(2)
n )q+1

(x(3)
n−1)q

}
= max

{
1,

(x(2)
n )b0

(x(3)
n−1)a0

}
= max

{
1,

1

(x(3)
n−1)a0

(x(3)
n−1)(q+1)b0−a0

(x(4)
n−2)qb0

}
= max

{
1,

1

(x(3)
n−1)a0

(x(3)
n−1)a1

(x(4)
n−2)b1

}
(2.13)

= max
{

1,
1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

,
(x(4)
n−2)(q+1)a1−b1

(x(5)
n−3)qa1

}
= max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

,
(x(4)
n−2)b2

(x(5)
n−3)a2

}
(2.14)

Now assume that for some m, 4 ≤ 2m ≤ n we have proved the following two
equalities

x
(1)
n+1

= max
{

1,
1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m−1)
n−2m+3)a2m−4

,
(x(2m−1)
n−2m+3)a2m−3

(x(2m)
n−2m+2)b2m−3

}
(2.15)



EJDE-2015/234 CYCLIC SYSTEM OF DIFFERENCE EQUATIONS 7

= max
{

1,
1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m)
n−2m+2)b2m−3

,
(x(2m)
n−2m+2)b2m−2

(x(2m+1)
n−2m+1)a2m−2

}
. (2.16)

By using (1.6) in (2.16) we obtain

x
(1)
n+1

= max
{

1,
1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m)
n−2m+2)b2m−3

,
(x(2m)
n−2m+2)b2m−2

(x(2m+1)
n−2m+1)a2m−2

}
= max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m+1)
n−2m+1)a2m−2

,
(x(2m+1)
n−2m+1)(q+1)b2m−2−a2m−2

(x(2m+2)
n−2m )qb2m−2

}
= max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m+1)
n−2m+1)a2m−2

,
(x(2m+1)
n−2m+1)a2m−1

(x(2m+2)
n−2m )b2m−1

}
= max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m+2)
n−2m )b2m−1

,
(x(2m+2)
n−2m )(q+1)a2m−1−b2m−1

(x(2m+3)
n−2m−1)qa2m−1

}
= max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2m+2)
n−2m )b2m−1

,
(x(2m+2)
n−2m )b2m

(x(2m+3)
n−2m−1)a2m

.
}

From this, (2.13), (2.14) and by the method of induction we see that (2.15) and
(2.16) hold for 4 ≤ 2m ≤ n+ 2.

From the relations in (2.12) it is easy to see that

b2n =
a2n+1 + a2n

q + 1
, n ∈ N0,

a2n+3 − (q2 + 1)a2n+1 + q2a2n−1 = 0, n ∈ N,

from which we obtain

a2n+1 =
1− q2n+3

1− q
, n ∈ N0. (2.17)

Letting n→ +∞ in (2.17) and (2.12) we also obtain

lim
n→+∞

a2n = lim
n→+∞

b2n+1 =
q

1− q
, (2.18)

lim
n→+∞

b2n = lim
n→+∞

a2n+1 =
1

1− q
, (2.19)

(see [62] for a detailed explanation).
Now note that from (2.15) and (2.16) we have that

x
(1)
2n+1 = max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2n+2)
0 )b2n−1

,
(x(2n+2)

0 )b2n

(x(2n+3)
−1 )a2n

}
(2.20)

x
(1)
2n = max

{
1,

1

(x(3)
n−1)a0

1

(x(4)
n−2)b1

, . . . ,
1

(x(2n+1)
0 )a2n−2

,
(x(2n+1)

0 )a2n−1

(x(2n+2)
−1 )b2n−1

}
, (2.21)

for n ∈ N.
Using that

min
i∈N

x(i)
n = min

1≤i≤k
x(i)
n ≥ 1, for n ∈ N,
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(2.18) and (2.19), in (2.20) and (2.21), the boundedness of (x(1)
n )n≥−1 follows, which

along with the cyclicity of system (1.6) implies the boundedness of (x(i)
n )n≥−1 for

every 1 ≤ i ≤ k, as claimed. �

Remark 2.4. Note that from the proofs of Theorems 2.2 and 2.3 is seen that the
value of superscript i ∈ N in x

(i)
n does not influence at the many points. This is

why we introduced the convention in (1.5). In fact, an important fact in the proof
of Theorem 2.2 is estimate (2.1), while the inequality min1≤i≤k x

(i)
n ≥ 1, n ∈ N, is

the corresponding important fact in the proof of Theorem 2.3.

Theorem 2.5. If α > 0, p2 ≥ 4q > 4, or p > 1 + q, q ≤ 1, or p = q + 1 = 2, then
system (1.6) has positive unbounded solutions.

Proof. Since from (1.6) we have

x
(i)
n+1 ≥

(x(i+1)
n )p

(x(i+2)
n−1 )q

, i = 1, . . . , k, n ∈ N0, (2.22)

the same arguments as in the proof of [57, Theorem 2] can be used. So, we will
only sketch the proof for the completeness.

Let yn = ln
∏k
i=1 x

(i)
n , n ≥ −1, then by using (2.22), we obtain

yn+1 − pyn + qyn−1 ≥ 0, n ∈ N0. (2.23)

If p2 ≥ 4q > 4, then the polynomial λ2 − pλ + q has two zeroes λ1 and λ2, such
that λ1 > 1 and λ2 > 0, while if p > 1 + q, q ≤ 1, then λ1 > 1 > λ2 > 0.

From (2.23) and some simple iterations we obtain∏k
i=1 x

(i)
n+1

(
∏k
i=1 x

(i)
n )λ1

≥
( ∏k

i=1 x
(i)
0

(
∏k
i=1 x

(i)
−1)λ1

)λn+1
2

, n ∈ N0. (2.24)

If x(i)
−1, x

(i)
0 , i = 1, . . . , k, are chosen, for example, such that

k∏
i=1

x
(i)
0 > 1 and

k∏
i=1

x
(i)
0 ≥

( k∏
i=1

x
(i)
−1

)λ1

, (2.25)

then by employing (2.24) and (2.25), it is obtained
k∏
i=1

x(i)
n ≥

( k∏
i=1

x
(i)
0

)λn1
→ +∞ as n→∞, (2.26)

which along with the inequality between the arithmetic and geometric means gives
‖~xn‖2 → +∞ as n → ∞, showing the existence of unbounded solutions in these
two cases. If p = q + 1 = 2, then we can get unbounded solutions by choosing the
initial values satisfying the strict inequalities in (2.25). �

3. Global attractivity

For the case p = q, we give here some sufficient conditions which guaranty the
global attractivity of all positive solutions of system (1.6).

Theorem 3.1. If p ∈ (0, 1) and α ∈ (0, 1), then every positive solution of (1.6)
converges to the k-dimensional vector (1, . . . , 1).
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Proof. Using (2.1) in the equality

x
(i)
n+1 = max

{
α,

αp

(x(i+2)
n−1 )p

,
1

((x(i+2)
n−1 )1−p(x(i+3)

n−2 )p)p

}
, i = 1, . . . , k, n ∈ N, (3.1)

which is obtained by iterating the relations in (1.6), we obtain

α ≤ x(i)
n+1 ≤ max

{
α, 1,

1
αp

}
=

1
αp
, for n ≥ 3. (3.2)

We write the equations in (1.6) as follows

x
(i)
n+1

x
(i+1)
n

= max
{ α

x
(i+1)
n

,
1

(x(i+1)
n )1−p(x(i+2)

n−1 )p

}
, n ∈ N0, (3.3)

for i = 1, . . . , k. Using (2.1) and (3.2) in (3.3), and since p ∈ (0, 1), we obtain

αp ≤
x

(i)
n+1

x
(i+1)
n

≤ 1
α
, for n ≥ 5; (3.4)

for i = 1, . . . , k.
Using p, α ∈ (0, 1) and (3.4) in (1.6), we obtain

αp
2
≤ x(i)

n+1 ≤
1
αp
, for n ≥ 6; (3.5)

for i = 1, . . . , k.
From (2.1), (3.3) and (3.5) it follows that

αp ≤
x

(i)
n+1

x
(i+1)
n

≤ 1
αp2

, for n ≥ 8, (3.6)

for i = 1, . . . , k. Using (3.6) in (1.6) it follows that

αp
2
≤ x(i)

n+1 ≤
1
αp3

, for n ≥ 9,

for i = 1, . . . , k.
Assume that for some m ∈ N

αp
2m
≤ min

1≤i≤k
x

(i)
n+1 ≤ max

1≤i≤k
x

(i)
n+1 ≤

1
αp2m+1 , (3.7)

for n ≥ 6m+ 3, and

αp
2m+2

≤ min
1≤i≤k

x
(i)
n+1 ≤ max

1≤i≤k
x

(i)
n+1 ≤

1
αp2m+1 , (3.8)

for n ≥ 6m + 6. Then, an induction argument shows that (3.7) and (3.8) hold for
every m ∈ N0.

Letting m→∞ in (3.7), (3.8) and using p ∈ (0, 1), we obtain

lim
n→∞

‖(x(1)
n , . . . , x(k)

n )− (1, . . . , 1)‖2 = 0,

as desired. �
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[48] S. Stević; Periodicity of max difference equations, Util. Math. 83 (2010), 69-71.
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