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BOUNDARY-VALUE PROBLEMS FOR RIEMANN-LIOUVILLE
FRACTIONAL DIFFERENTIAL INCLUSIONS IN

BANACH SPACES

SAMIRA HAMANI, JOHNNY HENDERSON

Abstract. In this article, we sudy the existence of solutions of boundary-

value problems for Riemann-Liouville fractional differential inclusions of order

r ∈ (2, 3] in a Banach space.

1. Introduction

This article concerns the existence of solutions for boundary-value problems
(BVP for short), for fractional order differential inclusions. We consider the bound-
ary-value problem

Dry(t) ∈ F (t, y), for a.e. t ∈ J = [0, T ], (1.1)

y(0) = 0, y′(0) = 0, y′′(T ) = 0, (1.2)

where 2 < r ≤ 3, Dr is the Riemann-Liouville fractional derivative, F : J × E →
P(E) is a multivalued map, P(E) is the family of all nonempty subsets of E, and
(E, | · |) denotes a Banach space.

Differential equations of fractional order have recently proved to be valuable
tools in the modeling of many phenomena in various fields of science and engineer-
ing. Indeed, there are numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetism, and so on. There has been a significant
development in fractional differential equations in recent years; see the monographs
of Hilfer [22], Kilbas et al. [26, 27], Delbosco et al. [18], Miller et al. [29], Heymans et
al. [21], Podlubny[32, 33], Kaufman et al. [25], Karakostas et al. [24], Momani and
Hadid [30], and the papers by Agarwal et al. [1, 2, 3], Bai et al. [8, 9], Benchohra
et al. [11, 12, 13], and Hamani et al. [19].

In this article, we present existence results for the problem (1.1)-(1.2), when
the right hand side is convex valued. This result relies on the set-valued analog
of Mönch’s fixed point theorem combined with the technique of measure of non-
compactness. Recently, this has proved to be a valued tool in solving fractional
differential equation and inclusions in Banach spaces; for details, see the papers
of Lasota et al. [28], Agarwal et al. [4] and Benchohra et al. [14, 15, 16]. This

2010 Mathematics Subject Classification. 26A33, 34A60.
Key words and phrases. Differential inclusion; Riemann-Liouville fractional derivative;

fractional integral; Banach space; fixed point.
c©2015 Texas State University - San Marcos.

Submitted July 10, 2014 Published September 11, 2015.

1



2 S. HAMANI, J. HENDERSON EJDE-2015/233

result extends to the multivalued case some previous results in the literature, and
constitutes an interesting contribution to this emerging field.

2. Preliminaries

In this section, we introduce definitions, and preliminary facts that will be used
in the remainder of this paper. Let C(J,E) be the Banach space of all continuous
functions from J into E with the norm

‖y‖ = sup{|y(t)| : 0 ≤ t ≤ T},
and we let L1(J,E) denote the Banach space of functions y : J → E which are
Bochner integrable with norm

‖y‖L1 =
∫ T

0

|y(t)|dt.

AC1(J,E) is the space of functions y : J → E, which are absolutely continuous
whose first derivative, y′, is absolutely continuous.

Let (E, | · |) be a Banach space. Let Pcl(E) = {A ∈ P(E) : A closed}, Pc(E) =
{A ∈ P(E) : A convex}, Pcp,c(E) = {A ∈ P(E) : A compact and convex}. A
multivalued map G : E → P(E) has a fixed point if there is x ∈ E such that
x ∈ G(E). The fixed point set of the multivalued operator G will be denoted by
FixG. A multivalued map G : J → Pcl(R) is said to be measurable if for every
y ∈ R, the function t 7→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)} is measurable.

Let X,Y be two sets, and N : X → P(Y ) be a set-valued map. We define the
graph of N , as

graph(N) = {(x, y) : x ∈ X, y ∈ N(X)} .
For more details on multivalued maps see the books of Deimling [17], Aubin et al.
[6, 7] and Hu and Papageorgiou [23].

Let R > 0, and

B = {x ∈ E : |x| ≤ R}, U = {x ∈ C(J,E) : ‖x‖ ≤ R},
Clearly U is a closed subset of C(J,B).

Definition 2.1 ([27, 32]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order r ∈ R+ is defined by

Irah(t) =
∫ t

a

(t− s)r−1

Γ(r)
h(s) ds,

where Γ is the gamma function. When a = 0, we write Irh(t) = h(t) ∗ϕr(t), where
ϕr(t) = tr−1

Γ(r) for t > 0, and ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0, where δ is
the delta function.

Definition 2.2 ([27, 32]). For a function h given on the interval [a, b], the r
Riemann-Liouville fractional-order derivative of h, is defined by

(Dr
a+h)(t) =

1
Γ(n− r)

( d
dt

)n ∫ t

a

(t− s)n−r−1h(s) ds.

Here n = [r] + 1 and [r] denotes the integer part of r.

For convenience, we recall the definition of the Kuratowski measure of noncom-
pactness.
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Definition 2.3 ([5, 10]). Let E be a Banach space and let ΩE be the family of
bounded subsets of E. The Kuratowski measure of noncompactness is the map
α : ΩE → [0,∞) defined by

α(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj ,diam(Mj) ≤ ε} ,

where M ∈ ΩE .

Properties:

(1) α(M) = 0⇔M is compact (M is relatively compact).
(2) α(M) = α(M).
(3) M1 ⊂M2 ⇒ α(M1) ≤ α(M2).
(4) α(M1 +M2) ≤ α(M1) + α(M2).
(5) α(cM) = cα(M), c ∈ R.
(6) α(convM) = α(M).

More properties of α can be found in [5, 10].

Definition 2.4. A multivalued map F : J ×E → P(E) is said to be Carathéodory
if

(1) t→ F (t, u) is measurable for each u ∈ E.
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈ C(J,E), define the set of selections of F by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Theorem 2.5 ([20]). Let E be a Banach space and C ⊂ L1(J,E) be countable with
|u(t)| ≤ h(t) for a.e. t ∈ J , and every u ∈ C, where h ∈ L1(J,R+). Then the
function φ(t) = α(C(t)) belongs to L1(J,R+) and satisfies

α
({∫ T

0

u(s) ds : u ∈ C
})
≤ 2

∫ T

0

α(C(s)) ds.

Let us now recall the set-valued analog of Mönch’s fixed point theorem.

Theorem 2.6 ([31]). Let K be a closed, convex subset of a Banach space E,U
a relatively open subset of K, and N : U → Pc(K). Assume graph(N) is closed,
N maps compact sets into relatively compact sets, and that, for some x0 ∈ U , the
following two conditions are satisfied:

M ⊂ U , M ⊂ conv(x0 ∪ N(M)) and M = U with C ⊂ M
countable imply that M is compact

, (2.1)

x ∈ (1− λ)x0 + λN(x) for all x ∈ U\U, λ ∈ (0, 1). (2.2)

Then there exists x ∈ U with x ∈ N(x).

Lemma 2.7 ([28]). Let J be a compact real interval. Let F be a Carathéodory
multivalued map and let Θ be a linear continuous map from L1(J,E) → C(J,E).
Then the operator

Θ ◦ SF,y : C(J,E)→ Pcp,c(C(J,E)), y 7→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C(J,E)× C(J,E).
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3. Main results

Let us start by defining what we mean by a solution of the problem (1.1)–(1.2).

Definition 3.1. A function y ∈ AC2([0, T ], E) is said to be a solution of (1.1)–
(1.2) if there exist a function v ∈ L1(J,E) with v(t) ∈ F (t, y(t)), for a.e. t ∈ J ,
such that Dry(t) = v(t) on J , and the condition y(0) = 0, y′(0) = 0, y′′(T ) = 0 are
satisfied.

For the existence of solutions for the problem (1.1)–(1.2), we need the following
auxiliary lemma.

Lemma 3.2 ([9]). Let r > 0, and h ∈ C(0, T ) ∩ L1(0, T ). Then

IrDrh(t) = h(t) + c1t
r−1 + c2t

r−2 + . . .+ cnt
r−n

for some ci ∈ R, i = 1, . . . , n, where n is the smallest integer greater than or equal
to r.

Lemma 3.3. Let 2 < r ≤ 3 and let h : [0, T ] → E be continuous. A function y is
a solution of the fractional integral equation

y(t) =
1

Γ(r)

∫ t

0

(t− s)r−1h(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3h(s) ds.
(3.1)

if and only if y is a solution of the fractional BVP

Dry(t) = h(t), t ∈ [0, T ], (3.2)

y(0) = 0, y′(0) = 0, y′′(T ) = 0. (3.3)

Proof. Assume y satisfies (3.1). Then Lemma 3.2 implies that

y(t) = c1t
r−1 + c2t

r−2 + c3t
r−3 +

1
Γ(α)

∫ t

0

(t− s)r−1h(s) ds.

From (3.3), a simple calculation gives

c1 = − 1
(r − 1)(r − 2)Γ(r − 3)

∫ T

0

(T − s)r−3h(s) ds,

c2 = 0, quadc3 = 0 .

Hence we get equation (3.1). Conversely, it is clear that if y satisfies equation (3.1),
then equations (3.2)-(3.3) hold. �

Theorem 3.4. Assume the following hypotheses hold:
(H1) F : J × R→ Pcp,c(R) is a Carathéodory multivalued map.
(H2) For each R > 0, there exists a function p ∈ L1(J,E) and such that

‖F (t, u)‖P = sup{|v|, v(t) ∈ F (t, y)} ≤ p(t)

for each (t, y) ∈ J × E with |y| ≤ R, and

lim
R→+∞

inf

∫ T
0
p(t)dt
R

= δ <∞.
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(H3) There exists a Carathéodory function ψ : J × [0, 2R]→ R+ such that

α(F (t,M)) ≤ ψ(t, α(M)), a.e. t ∈ J and each M ⊂ B,

and φ ≡ 0 is the unique solution in C(J, [0, 2R]) of the inequality

φ(t) ≤ 2[
1

Γ(r)

∫ t

0

(t− s)r−1ϕ(s, φ(s)) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3ϕ(s, φ(s)) ds],
(3.4)

for t ∈ J .
Then the BVP (1.1)–(1.2) has at least one solution on C(J,B), provided that

δ <
[ T

Γ(r + 1)
+

T 2

(r − 1)(r − 2)Γ(r − 1)

]
. (3.5)

Proof. First we transform problem (1.1)–(1.2) into a fixed point problem. Consider
the multivalued operator

N(y) =
{
h ∈ C(J,E) : (Ny)(t) =

1
Γ(r)

∫ t

0

(t− s)r−1v(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3v(s) ds, v ∈ SF,y
}
.

Clearly, from Lemma 3.3, the fixed points of N are solutions to (1.1)–(1.2). We
shall show that N satisfies the assumptions of the set-valued analog of Mönch’s
fixed point theorem. The proof will be given in several steps.
Step 1: N(y) is convex for each y ∈ C(J,E). Indeed, if h1, h2 belong to N(y),
then there exist v1, v2 ∈ SF,y such that for each t ∈ J we have

hi(t) =
1

Γ(r)

∫ t

0

(t− s)r−1vi(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3vi(s) ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t)

=
1

Γ(r)

∫ t

0

(t− s)r−1[dv1(s) + (1− d)v2(s)] ds

+
tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3[dv1(s) + (1− d)v2(s)] ds.

Since SF,y is convex (because F has convex values), we have dh1 +(1−d)h2 ∈ N(y).

Step 2: N(M) is relatively compact for each compact M ⊂ U . Let M ⊂ U be a
compact set and let (hn) by any sequence of elements of N(M). We show that (hn)
has a convergent subsequence by using the Arzéla-Ascoli criterion of compactness
in C(J,E). Since hn ∈ N(M) there exist yn ∈M and vn ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

0

(t− s)r−1vn(s) ds
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− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3vn(s) ds.

Using Theorem 2.5 and the properties of the measure of noncompactness of Kura-
towski, we have

α({hn(t)}) ≤ 2[
1

Γ(r)

∫ t

0

α({(t− s)r−1vn(s)}) ds

− tα−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

α({(T − s)r−3vn(s)}) ds].
(3.6)

On the other hand, since M(s) is compact in E, the set {vn(s) : n ≥ 1} is compact.
Consequently, α({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ J . Furthermore

α({(t− s)r−1vn(s)}) = (t− s)r−1α({vn(s) : n ≥ 1}) = 0,

α({(T − s)r−1vn(s)}) = (T − s)r−1α({vn(s) : n ≥ 1}) = 0,

for a.e. t, s ∈ J . Now (3.6) implies that {hn(t) : n ≥ 1} is relatively compact in E,
for each t ∈ J . In addition, for each t1 and t2 from J , t1 < t2, we have

|hn(t2)− hn(t1)|

=
∣∣∣ 1
Γ(r)

∫ t1

0

[(t2 − s)r−1 − (t1 − s)r−1]vn(s) ds+
1

Γ(r)

∫ t2

t1

(t2 − s)r−1vn(s) ds
∣∣∣

+
(t2 − t1)r−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3|vn(s)| ds

≤ p(t)
Γ(r)

∫ t1

0

[(t1 − s)r−1 − (t2 − s)r−1] ds+
p(t)
Γ(r)

∫ t2

t1

(t2 − s)r−1 ds

+
p(t)(t2 − t1)r−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3 ds

≤ p(t)
Γ(r + 1)

[(t2 − t1)r + tr1 − tr2] +
p(t)

Γ(r + 1)
(t2 − t1)r +

p(t)(t2 − t1)r−1

Γ(r − 1)

≤ p(t)
Γ(r + 1)

(t2 − t1)r +
p(t)

Γ(r + 1)
(tr1 − tr2) +

T rp(t)(t2 − t1)r−1

Γ(r − 1)
.

(3.7)
As t1 → t2, the right-hand side of the above inequality tends to zero. This shows
that {hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively
compact in C(J,E).

Step 3: The graph of N is closed. Let (yn, hn) ∈ graph(N), n ≥ 1, with ‖yn − y‖,
‖hn − h‖ → 0,as n→∞. We must show that (y, h) ∈ graph(N).

(yn, hn) ∈ graph(N) means that hn ∈ N(yn), which means that there exists
vn ∈ SF,yn

, such that for each t ∈ J ,

hn(t) =
1

Γ(r)

∫ t

0

(t− s)r−1vn(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3vn(s) ds.
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Consider the continuous linear operator Θ : L1(J,E)→ C(J,E),

Θ(v)(t) 7→ hn(t) =
1

Γ(r)

∫ t

0

(t− s)r−1vn(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3vn(s) ds.

Clearly, ‖hn(t)− h(t)‖ → 0 as as n→∞. From Lemma 2.7 it follows that Θ ◦ SF
is a closed graph operator. Moreover, hn(t) ∈ Θ(SF,yn

). Since yn → y, Lemma 2.7
implies

h(t) =
1

Γ(r)

∫ t

0

(t− s)r−1v(s) ds− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3v(s) ds,

for some v ∈ SF,y.
Step 4. Suppose M ⊂ U , M ⊂ conv({0}∪N(M)), and M = C for some countable
set C ⊂M . Using an estimation of type (3.7), we see that N(M) is equicontinuous.
Then from M ⊂ conv({0} ∪N(M)), we deduce that M is equicontinuous, too. To
apply the Arzéla-Ascoli theorem, it remains to show that M(t) is relatively compact
in E for each t ∈ J . Since C ⊂M ⊂ conv({0}∪N(M)) and C is countable, we can
find a countable set H = {hn : n ≥ 1} ⊂ N(M) with C ⊂ conv({0} ∪H). Then,
there exist yn ∈M and vn ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

0

(t− s)r−1vn(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3vn(s) ds.

From M ⊂ C ⊂ conv({0} ∪H)), and according to Theorem 2.5, we have

α(M(t)) ≤ (α(C(t)) ≤ α(H(t)) = α({hn((t) : n ≥ 1}).
Using(3.6), we obtain

α(M(t)) ≤ 2[
1

Γ(r)

∫ t

0

α({(t− s)r−1vn(s)}) ds

− tα−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

α({(T − s)r−3vn(s)}) ds].

Now, since vn(s) ∈M(s), we have

α(M(t)) ≤ 2[
1

Γ(r)

∫ t

0

α({(t− s)r−1vn(s) : n ≥ 1}) ds

− tα−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

α({(T − s)r−3vn(s) : n ≥ 1}) ds].

Also, since vn(s) ∈M(s), we have

α({(t− s)r−1vn(s); n ≥ 1}) = (t− s)r−1α(M(s)),

α({(T − s)r−1vn(s); n ≥ 1}) = (T − s)r−1α(M(s)).

It follows that

α(M(t)) ≤ 2[
1

Γ(r)

∫ t

0

(t− s)r−1α(M(s)) ds
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− tα−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3α(M(s)) ds]

≤ 2[
1

Γ(r)

∫ t

0

(t− s)r−1ψ(s, α(M(s))) ds

− tα−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3ψ(s, α(M(s))) ds].

Also, the function φ given by φ(t) = α(M(t)) belongs to C(J, [0, 2R]). Consequently
by (H3), φ ≡ 0; that is, α(M(t)) = 0 for all t ∈ J . Now, by the Arzéla-Ascoli
theorem, M is relatively compact in C(J,E).

Step 5. Let h ∈ N(y) with y ∈ U . Since |y(s)| ≤ R and by (H2), we have
N(U) ⊆ U , because if it were not true, then there exists a function y ∈ U , but
‖N(y)‖P > R and

h(t) =
1

Γ(r)

∫ t

0

(t− s)r−1v(s) ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3v(s) ds,

for some v ∈ SF,y. On the other hand,

R ≤ ‖N(y)‖P

≤ 1
Γ(r)

∫ t

0

(t− s)r−1|v(s)| ds

− tr−1

(r − 1)(r − 2)Γ(r − 2)

∫ T

0

(T − s)r−3|v(s)| ds

≤ T

Γ(r + 1)

∫ t

0

p(s) ds

− T 2

(r − 1)(r − 2)Γ(r − 1)

∫ T

0

p(s) ds

≤
[ T

Γ(r + 1)
+

T 2

(r − 1)(r − 2)Γ(r − 1)
] ∫ T

0

p(s) ds.

Dividing both sides by R and taking the lower limits as R→∞, we conclude that[ T

Γ(r + 1)
+

T 2

(r − 1)(r − 2)Γ(r − 1)
]
δ ≥ 1

which contradicts (3.5). Hence N(U) ⊆ U .
As a consequence of Steps 1-5 and Theorem 2.6, we conclude that N has a fixed

point y ∈ C(J,B) which is a solution of problem (1.1)-(1.2). �
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