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MONOTOCITY PROPERTIES OF OSCILLATORY SOLUTIONS
OF TWO-DIMENSIONAL SYSTEMS OF DIFFERENTIAL

EQUATIONS

MIROSLAV BARTUŠEK

Abstract. Sufficient conditions for the monotonicity of the sequences of the

absolute values of all local extrema of components of a two-dimensional systems

are obtained.

1. Introduction

In this article, we study the system of differential equations
y′1 = f1(t, y1, y2)

y′2 = f2(t, y1, y2) ,
(1.1)

where f1 and f2 are continuous on D = {(t, u, v) : t ∈ R+ = [0,∞), u, v ∈ R}
R = (−∞,∞), and

f1(t, u, v)v > 0 on D, v 6= 0 , (1.2)

f2(t, u, v)u < 0 on D, u 6= 0 . (1.3)

Definition 1.1. A function y = (y1, y2) : I = [ty, t̄y) ⊂ R+ → R2 is called a
solution of (1.1) if yi ∈ C1(I), i = 1, 2, and (1.1) holds on I. A solution y is
oscillatory on I if there exist two sequences of zeros of y1 and y2 tending to t̄y, and
y1, y1 are nontrivial in any left neighbourhood of t̄y.

Remark 1.2. The definition of an oscillatory solution y of (1.1) is not restric-
tive. If y1 has a sequence of zeros tending to t̄y and y1 is nontrivial in any left
neighbourhood of t̄y, then according to (1.2) and (1.3) the same is valid for y2.

Sometimes, solutions are studied on finite intervals since (1.1) may have solutions
that cannot be defined in a neighbourhood of∞ (so called noncontinuable solutions,
singular solutions of the 2-nd kind, see e.g. [9, 10, 12]).

The prototype of (1.1) is the second-order equation with p-Laplacian(
y[1]
)′ + f

(
t, y, y[1]

)
= 0 (1.4)

where

y[1](t) = a(t)
∣∣y′(t)∣∣p sgn y′(t) (1.5)
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p > 0 , a ∈ C0(R+) , a > 0 on R+ , f ∈ C0(R+ × R2),

f(t, u, v)u > 0 on D , u 6= 0 ; (1.6)

Equation (1.4) is equivalent to the system

y′1 = a−1/p(t)|y2|1/p sgn y2 ,

y′2 = −f(t, y1, y2)
(1.7)

with the relation between solutions of (1.4) and (1.7) given by

y1 = y , y2 = y[1] .

Note, that (1.4) is a special case of (1.1)–(1.3) with

f1(t, u, v) = a−1/p(t)|v|1/p sgn v , f2(t, u, v) = −f(t, u, v) . (1.8)

The study of oscillatory solutions of (1.1) or (1.4) is of interest to many authors
at the present time; see e.g. [8, 12].

Let y be an oscillatory solution of (1.4) defined on I = [ty, t̄y) ⊂ R+ such that
it has no accumulation point of zeros on I. Then a left neighbourhood of t̄y exists
such that all zeros of y and y[1] in it can be described by two increasing sequences
{tk}∞k=1 and {τk}∞k=1, respectively. Note, that by virtue of (1.4) and (1.6), y(τk)
and y[1](tk), k = 1, 2, . . . are local extrems of y and y[1], respectively (see [6]). Then,
the following problem for (1.4) has a long history.

Problem. Find sufficient conditions for the sequence
{
|y(τk)|

}∞
k=1

(
|y[1](tk)|∞k=1

)
of the absolute values of the local extrema of y (of y[1]) to be monotone.

This problem was initiated by Milloux [11] and then it was considered by many
authors for linear (e.g. [9]) and special types of nonlinear equations of the form

y′′ + f(t, y, y′) = 0 (1.9)

(the first results are given by Bihari [7]); the history of this problem is described
more precisely in monograph [5] and paper [1].

Concerning equation (1.4), some results of [6] are summed up in the following
theorems. Let y be an oscillatory solution of (1.4) and let {tk}∞k=1 and {τk}∞k=1 be
given as above.

Theorem 1.3 ([6]). Let |f(t, u, v)| be non-decreasing with respect to t in D and a
be non-decreasing on R+.

(i) Let f(t,−u, v) = −f(t, u, v) on D, f(t, u, v) be non-increasing with respect
to v on D ∩ {v ≥ 0, u ≥ 0}, and be non-decreasing with respect to v on D ∩ {v ≤
0, u ≥ 0}. Then

{
|y(τk)|

}∞
k=1

is non-increasing.
(ii) Let f(t, u,−v) = f(t, u, v) on D, |f(t, u, v)| be non-decreasing with respect

to v on D ∩ {v ≥ 0}. Then
{
|y[1](tk)|

}∞
k=1

is non-decreasing.

For a special case of (1.4), the results in Theorem 1.3 are proved under weaker
assumptions, the monotonicity with respect to t of a1/p(t)|f(t, u, v)| is supposed
instead of the monotonicities of a and |f(t, u, v)|.

Theorem 1.4 ([6]). Let f(t, u, v) ≡ r(t)h(u), where r ∈ C0(R+) and r > 0, let
h ∈ R be an odd function with h(u) > 0 for u > 0, and let a1/pr ∈ C1(R+) be
non-increasing. Then

{
|y(τk)|

}∞
k=1

is non-decreasing and
{
|y[1](tk)|

}∞
k=1

is non-
increasing.
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Remark 1.5. If we change “non-decreasing” to “non-increasing”, and “non-in-
creasing” to “non-decreasing”, then Theorems 1.3 and 1.4 still hold.

The same Problem is studied for (1.1) in [2]. Our goal is to generalize the results
of [2] and of Theorems 1.3 and 1.4 to equation (1.1). We prove them under weaker
assumptions and under different ones as well. We will remove the assumption that
the oscillatory solution is defined on the interval without accumulation points of
zeros of y1; it will be shown that oscillatory solutions of (1.1) have no such points
on their definition intervals under the assumptions in our theorems.

In Theorem 1.3, some kind of monotonicity of f with respect to v is used; we
show that this assumption is not needed. We are also able to weaken the assumption
concerning to the monotonicity with respect to t.

The basics of the method of the proofs are used in [1, 5] for (1.9) and in [2] for
(1.1). We study a solution y of (1.1) locally on two consecutive quarter-waves using
the inverse functions to y1 on each of them.

The structure of zeros of a solution of (1.1) can be complicated (see [3] for
equation (1.9)). So, we introduce the following definition (see [4] for (1.1)).

Definition 1.6. Let y be a solution of (1.1) defined on [ty, t̄y). A number c ∈ [ty, t̄y)
is called an H-point of y if there are sequences {τk}∞k=1 and {τ̄k}∞k=1 of numbers
from [ty, t̄y) tending to c such that

y1(τk) = 0 , y1(τ̄k) 6= 0 , (τk − c)(τ̄k − c) > 0 , k = 1, 2, . . .

In Definition 1.6, it is sufficient to work only with y1, as according to (1.1)–(1.3),
y1 has a sequence of zeros tending to c from the left (right) side and y1 is nontrivial
in any left (right) neighbourhood of c if and only if the same properties hold for y2.
Moreover, if c is an H-point of y, then

y1(c) = y2(c) = 0 . (1.10)

Conditions for the nonexistence of H-points of a solution (1.1) are given in [4]; for
equation (1.9), see also e.g. [10]. On the other side, there exists an equation of the
form (1.9) with a solution with infinitely many H-points tending to ∞, see [3].

Definition 1.7. Let i ∈ {1, 2} and y be a solution of (1.1) defined on [ty, t̄y). Then
yi has a local extreme at t = T if a neighbourhood I (a right neighbourhood I) of
T exists such that either yi(t) ≥ yi(T ) or yi(t) ≤ yi(T ) for t ∈ I in case T > ty
(and y′i = 0 in case T = ty).

2. Preliminary results

At first, we give some auxiliary results concerning zeros of a solution of (1.1).

Lemma 2.1. Let y be a solution of (1.1) defined on I, let c ∈ I be such that

y1(c) = y2(c) = 0 , (2.1)

and let y be nontrivial in any right (left) neighbourhood of c. Then there is a
sequence {tk}∞k=1 of zeros of y1 such that tk > c (tk < c) for k = 1, 2, . . . and
limk→∞ tk = c. Hence, c is H-point of y.

Proof. Suppose y is a nontrivial solution in any right neighbourhood of c and (2.1)
holds. Let, contrarily, a right neighbourhood I of c exist such that

y1(t) > 0 for t ∈ I . (2.2)
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Then (1.1) (i = 2) and (1.3) imply y2 is decreasing on I, and due to (2.1), we have
y2(t) < 0 on I. From this, from (1.1) (i = 1), and (1.2), we have f1

(
t, y1(t), y2(t)

)
<

0 on I or y1 is decreasing on I. As y1(c) = 0, we can conclude y1(t) < 0 on I. The
contradiction with (2.2) proves the statement.

The case y1(t) < 0 for t ∈ I can be studied similarly. �

Lemma 2.2. Let a solution y of (1.1) be oscillatory on I = [ty, t̄y) ⊂ R+ without
H-points. Then all zeros of either y1 or y2 are simple and isolated, and sequences
{tk}∞k=1 and {τk}k∈N0 exist such that either N0 = {1, 2, . . . } or N0 = {0, 1, 2, . . . },

ty ≤ tk < τk < tk+1 < t̄y , k = 1, 2, . . . , lim
k→∞

tk = t̄y , (2.3)

y1(tk) = 0 , y1(t) 6= 0 for t 6= tk , t ∈ I , k ∈ {1, 2, . . . } ,
y2(τk) = 0 , y2(t) 6= 0 for t 6= τk , t ∈ I , k ∈ N0 .

Moreover,
y1(t) y2(t) > 0 on (tk, τk) ,

y1(t) y2(t) < 0 on (τk, tk+1) , k = 1, 2, . . .
(2.4)

Proof. Note that y is not trivial on I due to y being oscillatory. As y has no H-
point, Lemma 2.1 implies (2.1) is not valid for any c ∈ I, and according to (1.1) and
(1.2) any zero of y1 is simple and isolated. Let y2(c) = 0 = y′2(c). Then, according
to (1.1) and (1.3), y1(c) = 0, which contradicts the proved part. Hence, any zero
of y2 is simple and isolated.

Let T1 < T2 be successive zeros of y1 and let, for the sake of simplicity, y1(t) > 0
on (T1, T2). Then (1.1) and (1.3) imply y2 is decreasing on (T1, T2). By Rolle’s
Theorem y′1 has a zero T3 ∈ (T1, T2), so we obtain from (1.1) and (1.3) that y2(T3) =
0 and

y2(t) > 0 on [T1, T3) , y2(t) < 0 on (T3, T2] .
Inequalities (2.3) and (2.4) follow from this. If y1(t) < 0 on (T1, T2), the proof is
similar. �

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then {y1(τk)}k∈N0 (resp.
{y2(tk)}∞k=1) is the sequence of all local extrema of y1 (of y2) on I.

Proof. By Lemma 2.2, tk are simple zeros of y1, and y1 changes its sign when t is
going through tk; hence, using (1.1) and (1.3), a neighbourhood of tk exists such
that y′2(t) y1(t) < 0 in it. Thus, y2 has a local extreme at t = tk. Similarly, it can
be proved that y1 has a local extrum at t = τk using (1.1) and (1.2). �

Lemma 2.4. Let y be a solution of (1.1) defined on [ty, t̄y) without H-points,∣∣f2(t, u, v)
∣∣∣∣f1(t, u, v)
∣∣ be non-decreasing with respect to t (2.5)

on D with uv < 0. For any integer m, let there be a continuous function gm :
(0,m]→ (0,∞) such that

g(|v|)
∣∣f2(t, u, v)

∣∣
f1(t, u, v)

is non-decreasing (2.6)

with respect to v for |v| ∈
[

1
m ,m

]
, t ∈ [0,m], and |u| ≤ m with uv < 0.

(i) Then the sequence of all positive (the absolute values of all negative) local
extrema of y1 is non-increasing.
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(ii) Let, moreover,

f1(t,−u, v) = f1(t, u, v) , f2(t,−u, v) = −f2(t, u, v) on D . (2.7)

Then the sequence of the absolute values of all local extrema of y1 is non-increasing,
i.e.,

{
y1(τk)

}
k∈N0

is non-increasing, where {τk}k∈N0 is given by Lemma 2.2.

Proof. Let y be defined on [ty, t̄y) without H-points. We use the notation from
Lemma 2.2, and first we prove case (ii). Let n− 1 ∈ N0 be fixed and put

T0 = τn−1 , T1 = tn , T2 = τn , J0 = [T0, T1] , J1 = [T1, T2] .

Suppose, without the loss of generality, y2(t) > 0 on (T0, T2) (if y2 < 0 the proof is
similar). For convenience, we describe the situation more precisely using (1.1)–(1.3)
and (2.4). We have

y1 < 0 is increasing, y2 > 0 is increasing,

f1

(
t, y1(t), y2(t)

)
> 0 , f2

(
t, y1(t), y2(t)

)
> 0 on (T0, T1),

y1 > 0 is increasing, y2 > 0 is decreasing,

f1

(
t, y1(t), y2(t)

)
> 0 , f2

(
t, y1(t), y2(t)

)
< 0 on (T1, T2).

(2.8)

Define s0(z), z ∈
[
0, |y1(T0)|

]
(s1(z), z ∈ [0, y1(T2)) as the inverse function to |y1|

(to y1) on J0 (on J1). Let z̄ = min
(
|y1(T0)|, y1(T2)

)
. We prove that

y2

(
s0(z)

)
≥ y2

(
s1(z)

)
for z ∈ [0, z̄] . (2.9)

Note that y2(s0(0)) = y2(s1(0)) > 0. Assume, to the contrary, that there exists
z̃ ∈ (0, z̄) such that

y2

(
s0(z̃)

)
< y2

(
s1(z̃)

)
. (2.10)

Thus, an integer m exists such that

T2 ≤ m, 0 < z̃ ≤ m, y2

(
si(z)

)
∈
[

1
m ,m

]
(2.11)

for i = 1, 2, z ∈ [0, z̃], and the function

gm(v)
∣∣f2(t, u, v)

∣∣
f1(t, u, v)

is non-decreasing with respect to v (2.12)

for t ∈ [0,m], 0 < |u| ≤ m and v ∈
[

1
m ,m

]
. Put

G(v) =
∫ v

0

gm(σ) dσ , H(z) = G
(
y2(s0(z))

)
−G

(
y2(s1(z))

)
.

Note that for z ∈ (0, z̃],

y2

(
s0(z)

)
< y2

(
s1(z)

)
⇔ H(z) < 0 . (2.13)

Furthermore, using (2.5), (2.7), (2.8), we have

d

dz
H(z) = −gm(y2(s0))f2(s0,−z, y2(s0))

f1(s0,−z, y2(s0))
− gm(y2(s1))f2(s1, z, y2(s1))

f1(s1, z, y2(s1))

≥ −gm(y2(s0))f2(s1,−z, y2(s0))
f1(s1,−z, y2(s0))

+
gm(y2(s1))f2(s1,−z, y2(s1))

f1(s1,−z, y2(s1))

(2.14)

for z ∈ (0, z̃], s0 = s0(z), and s1 = s1(z). Then (2.11), (2.12), (2.13) and (2.14)
imply

z ∈ (0, z̃] , and H(z) < 0⇒ d

dz
H(z) ≥ 0 . (2.15)



6 M. BARTUŠEK EJDE-2015/225

As (2.10) and (2.13) imply H(z̃) < 0, we have from (2.15) that

H(z) ≤ H(z̃) < 0 for z ∈ (0, z̃] ,

which contradicts H(0) = G
(
y2(T1)

)
− G

(
y2(T1)

)
= 0. Hence, (2.9) holds. Fur-

thermore, we prove that
|y1(T0)| ≥ y1(T2) . (2.16)

Assume, to the contrary, that

|y1(T0)| < y1(T2) . (2.17)

Then z̄ = |y1(T0)| and (2.9) imply

0 = y2(T0) = y2

(
s0(z̄)

)
≥ y2

(
s1(z̄)

)
.

From this and from (2.8), s1(z̄) = T2. As (2.17) implies |y1(T0)| = z̄ = y1(s1(z̄)) <
y1(T2), we have from (2.8) that s1(z̄) < T2. This contradiction proves(2.16). Hence,
as n was arbitrary, (ii) holds.

Case (i). The proof is similar to case (i). We study the solution on intervals
[τn−1, tn] and [τn+1, tn+2] instead of on J0 and J1. Note, that y1(τn−1) and y1(τn+1)
are two consecutive local extrema with the same signs. As y2(t) y2(s) > 0 for
t ∈ [τn−1, tn) and s ∈ [τn+1, tn+2), condition (2.7) is not necessary (see (2.14)). �

Remark 2.5. If “non-decreasing” and “non-increasing” is replaced by “non-in-
creasing” and “non-decreasing”, respectively, with the exception of (2.6), then
Lemma 2.4 holds, too. It is important to note that (2.6) must have the given
form.

Lemma 2.6. Let y be a solution of (1.1) defined on [ty, t̄y) without H-points,∣∣∣f2(t, u, v)
f1(t, u, v)

∣∣∣ be non-decreasing with respect to t on D, uv > 0. (2.18)

For any integer m, assume there is a continuous function gm : (0,m]→ (0,∞) such
that

g(|v|)
∣∣f2(t, u, v)

∣∣
f1(t, u, v)

is non-increasing (2.19)

with respect to v for v ∈ (0,m], and for v ∈ [−m, 0), and for any t ∈ [0,m],
1
m ≤ |u| ≤ m, uv > 0.

(i) Then the sequence of all positive (the absolute values of all negative) local
extrema of y2 is non-decreasing.

(ii) If, moreover,

f1(t, u,−v) = −f1(t, u, v) , f2(t, u,−v) = f2(t, u, v) , (2.20)

then the sequence of the absolute values of all local extrema of y2 is non-decreasing,
i.e.

{
|y2(tk)|

}∞
k=1

is non-decreasing, where {tk}∞k=1 is given by Lemma 2.2.

Proof. Let y be defined on [ty, t̄y) without H-points. We use the notation in
Lemma 2.2. First we prove case (ii). Let n ∈ {1, 2, . . . } be fixed. Put T1 = tn,
T2 = τn, T3 = tn+1, J1 = [T1, T2] and J2 = [T2, T3]. Suppose, without loss of
the generality, that y1(t) > 0 on J1 ∪ J2, the proof is similar in case y1 < 0. For
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convenience, we describe the situation more precisely using (1.1)–(1.3) and (2.4).
We have

y1 > 0 is increasing , y2 > 0 is decreasing

f1

(
t, y1(t), y2(t)

)
> 0 , f2

(
t, y1(t), y2(t)

)
< 0 on (T1, T2),

y1 > 0 is decreasing, y2 < 0 is decreasing

f1

(
t, y1(t), y2(t)

)
< 0 , f2

(
t, y1(t), y2(t)

)
< 0 on (T2, T3) .

(2.21)

Let z ∈ [0, y1(T2)]. Define s1(z) and s2(z) as the inverse functions to y1 on J1 and
J2, respectively. We prove that

y2

(
s1(z)

)
≤
∣∣y2

(
s2(z)

)∣∣ for z ∈
[
0, y1(T2)

]
. (2.22)

Assume to the contrary that there exists z̄ ∈
(
0, y1(T2)

)
such that

y2

(
s1(z̄)

)
>
∣∣y2

(
s2(z̄)

)∣∣ . (2.23)

Then there exist an integer m such that

T3 ≤ m,
[
z̄, y1(T2)

]
⊂
[

1
m ,m

]
, (2.24)

max
{
y2

(
s1(z̄)

)
,
∣∣y2

(
s2(z̄)

)∣∣} ≤ m, (2.25)

gm(v)|f2(t, u, v)|
f1(t, u, v)

is non-increasing in v

for t ∈ [0,m], u ∈
[

1
m ,m

]
, and v ∈ (0,m). (2.26)

Put

G(v) =
∫ v

0

gm(σ) dσ , H(z) = G
(
y2(s1(z))

)
−G

(
|y2(s2(z))|

)
.

Note, that

y2

(
s1(z))

)
− |y2

(
s2(z)

)
| > 0⇔ H(z) > 0 for z ∈ [0, y1(T2)] . (2.27)

Furthermore, using (2.18), (2.20) and (2.21),

d

dz
H(z) =

gm(y2(s1))f2(s1, z, y2(s1))
f1(s1, z, y2(s1))

+
gm(y(s2))f2(s2, z, y2(s2))

f1(s2, z, y2(s2))

≥ gm(y2(s1))f2(s2, z, y2(s1))
f1(s2, z, y2(s1))

− gm(y(s2))f2(s2, z, |y2(s2)|)
f1(s2, z, |y2(s2)|)

for z ∈
[
z̄, y1(T2)

)
, s1 = s1(z), and s2 = s2(z). As t = si(z), u = z, v = |yj(si)|

satisfies (2.26) for z ∈
[
z̄, y1(T2)

]
, i = 1, 2 and j = 1, 2, (2.25), (2.27), (2.28) imply

z ∈
(
z̄, y1(T2)

)
, H(z) > 0⇒ d

dz
H(z) ≥ 0 .

By (2.23) and (2.27), H(z̄) > 0 and we can conclude

H(z) ≥ H(z̄) > 0 , z ∈
[
z̄, y1(T2)

]
which contradicts H

(
y1(T2)

)
= 0. Hence, (2.22) holds and

y2(tn) = y2(s1(0)) ≤
∣∣y2(s2(0))

∣∣ = |y2(tn+1)| .

As n was arbitrary, the conclusion holds. Case (i) can be proved from case (ii) as
in the proof of Lemma 2.4. �
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Remark 2.7. If “non-decreasing” and “non-increasing” is replaced by “non-in-
creasing” and “non-decreasing”, respectively, with the exception of (2.19), then
Lemma 2.6 holds, too. Again (2.19) must have the given form.

Remark 2.8. The results of Lemmas 2.4 (ii) and 2.6 (ii) are proved in [2] under
stronger assumptions concerning the monotonicity with respect to t.

In Lemmas 2.4 and 2.6 no assumptions are made on functions f1 and f2 with
respect to the second variable. The following results are obtained without assump-
tions on f1 and f2 with respect to the third variable.

Lemma 2.9. Let y be a solution of (1.1) defined on [ty, t̄y) without H-points,∣∣f2(t, u, v)
∣∣∣∣f1(t, u, v)
∣∣ be non-decreasing with respect to t on D, uv 6= 0.

(i) For any integer m, assume there exists a continuous function gm : (0,m] →
(0,∞) such that

g(|u|)
∣∣f1(t, u, v)

∣∣
f2(t, u, v)

is non-increasing

with respect to u for |u| ∈ [ 1
m ,m], for any t ∈ [0,m], and |v| ∈

(
0,m

]
. Then the

results of Lemma 2.6 hold.
(ii) For any integer m, assume there exists a continuous function ḡm : (0,m]→

(0,∞) such that
ḡ(|u|)

∣∣f1(t, u, v)
∣∣

f2(t, u, v)
is non-decreasing (2.28)

with respect to u for u ∈ (0,m], and for u ∈ [−m, 0), for any t ∈ [0,m], and
|v| ∈

[
1
m ,m

]
. Then the results of Lemma 2.4 hold.

Proof. By the transformation

z1(t) = −y2(t) , z2(t) = y1(t) , (2.29)

system (1.1) is equivalent to

z′i = Fi(t, z1, z2) , i = 1, 2, (2.30)

where F1(t, z1, z2) = −f2(t, z2,−z1), F2(t, z1, z2) = f1(t, z2,−z1) in D. From (1.2)
and (1.3),

F1(t, z1, z2)z2 = −f2(t, z2,−z1)z2 > 0 for z2 6= 0 ,

F2(t, z1, z2)z1 = f1(t, z2,−z1)z1 < 0 for z1 6= 0 ,

Remarks 2.5 and 2.7 can be applied to (2.30). If we use the back transformation
(2.29), we can obtain the results of the lemma. Note that case (i)

(
(ii)
)

follows
from Remark 2.5 (Remark 2.7). �

The following lemmas give sufficient conditions for the validity of either (2.19)
or (2.28).

Lemma 2.10. Let m be an integer and let ∂
∂v

f2(t,u,v)
f1(t,u,v) be continuous on D for

uv 6= 0. Then there is a function gm : (0,m]→ R+ such that

J(v) =
gm(|v|)|f2(t, u, v)|

f1(t, u, v)
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is non-increasing in v for v ∈ (0,m] and for v ∈ [−m, 0), for any t ∈ [0,m], and
|u| ∈

[
1
m ,m

]
.

Proof. Put D̄ =
{

(t, u) : t ∈ [0,m], |u| ∈
[

1
m ,m

]}
,

g(z) = exp
{
−
∫ m

z

min
(
A1(σ), A2(−σ)

)
dσ
}
, z ∈ (0,m] ,

with

B(t, u, v) = − d

dv

( |f2(t, u, v)|
f1(t, u, v)

) |f1(t, u, v)|
|f2(t, u, v)|

,

A1(z) = min
(t,u)∈D̄

B(t, u, z) , A2(−z) = min
(t,u)∈D̄

B(t, u,−z) .

Let v ∈ (0,m] and (t, u) ∈ D̄. Then (1.2) implies f1(t, u, v) > 0,

g′(v)
g(v)

= min
(
A1(v), A2(−v)

)
≤ B(t, u, v)

or

g′(v)
|f2(t, u, v)|
f1(t, u, v)

≤ −g(v)
d

dv

|f2(t, u, v)|
f1(t, u, v)

and, hence J ′(v) ≤ 0.
Let v ∈ [−m, 0). Then (1.2) implies f1(t, u, v) < 0,

g′(−v)
g(−v)

= −min
(
A1(−v), A2(v)

)
≥ −B(t, u, v)

= − d

dv

( |f2(t, u, v)|
f1(t, u, v)

) f1(t, u, v)
|f2(t, u, v)|

,

or

g′(|v|) |f2(t, u, v)|
f1(t, u, v)

≤ −g(|v|) d
dv

|f2(t, u, v)|
f1(t, u, v)

,

and so J ′(v) ≤ 0. �

The following lemma can be proved similarly as Lemma 2.10.

Lemma 2.11. Let m be an integer and let ∂
∂u

f1(t,u,v)
f2(t,u,v) be continuous on D for

uv 6= 0. Then there is a function gm : (0,m]→ R+ such that

J(u) =
gm(|u|)|f1(t, u, v)|

f2(t, u, v)

is non-decreasing in u for u ∈ (0,m] and for u ∈ [−m, 0), for any t ∈ [0,m], and
|v| ∈

[
1
m ,m

]
.

3. Main results

Theorem 3.1. Suppose∣∣∣f2(t, u, v)
f1(t, u, v)

∣∣∣ is non-decreasing (non-increasing) on D for uv 6= 0

and either

(i)
∂

∂u

f2(t, u, v)
f1(t, u, v)

is continuous on D, uv 6= 0, or
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(ii) for any integer m, there is a continuous function gm : (0,m]→ (0,∞) such
that

gm(|u|)|f1(t, u, v)|
f2(t, u, v)

is non-decreasing

with respect to u for u ∈ (0,m] and with respect to u for u ∈ [−m, 0), and for any
t ∈ [0,m] and |v| ∈

[
1
m ,m

]
; or

(iii) for any integer m, there is a continuous function ḡm : (0,m]→ (0,∞) such
that

ḡm(|v|)|f2(t, u, v)|
f1(t, u, v)

is non-decreasing

with respect to v for |v| ∈
[

1
m ,m

]
and for any t ∈ [0,m] and |u| ∈ (0,m].

Let y be an oscillatory solution of (1.1) defined on [ty, t̄y] ⊂ R+. Then
(1) There exists no H-point of y, y can not be defined at t = t̄y, and all zeros

of y1 can be described by the increasing sequence {τk}∞k=1.
(2) The sequence of all positive local extrema of y1 is non-increasing (is non-

decreasing).
(3) The sequence of the absolute values of all negative local extrema of y1 is

non-increasing (is non-decreasing).
(4) If, moreover,

f1(t,−u, v) = f1(t, u, v) , f2(t,−u, v) = −f2(t, u, v)

on D, then the sequence
{
|y1(τk)|

}∞
k=1

of the absolute values of all local
extrema of y1 is non-increasing (is non-decreasing).

Proof. As y is oscillatory, Ty ∈ [ty, t̄y) exists such that y1(Ty) 6= 0. Let [Ty, T̄y) ⊂
[ty, t̄y) be the maximal interval to the right on which y has no H-points. We prove
that

T̄y = t̄y . (3.1)
Assume, to the contrary, that T̄y < t̄y. Then T̄y is H-point of y, and according to
(1.10),

y1(T̄y) = y2(T̄y) = 0 . (3.2)
From this and from Lemma 2.1, y is oscillatory on [Ty, T̄y). Moreover, Lemmas 2.4,
2.9 (ii) and 2.11 applied to y and the interval [Ty, T̄y) imply the validity of (1)–(4)
in all cases (i)–(iii). Note, that case (i) follows from Lemmas 2.9 (ii) and 2.11,
case (ii) from Lemma 2.9 (ii), and case (iii) from Lemma 2.4. But, according to
Lemmas 2.4 and 2.6, the sequences of the absolute values of all local extrema of
y1 and y2 are monotone and they have the opposite kind of monotonicity. Hence,
the only case where (3.2) holds is y1(t) ≡ y2(t) ≡ 0 in a left neighbourhood of T̄y.
But that contradicts y being oscillatory; thus (3.1) holds and y has no H-points on
[Ty, t̄y).

If either ty = Ty or if y has no H-points on [ty, Ty), then the statement follows
from Lemmas 2.4, 2.9 (ii) and 2.11. Let c ∈ [ty, Ty) be the maximal H-point of y.
Then (1.10) implies

y1(c) = y2(c) = 0 , (3.3)
and according to Lemma 2.1, a decreasing sequence {t̄k}∞k=1 exists such that t̄k ∈
(c, Ty], y1(t̄k) = 0, k = 1, 2, 3, . . . and limk→∞ t̄k = c. From this and from (1.1)–
(1.3), a sequence {τ̄k}∞k=1, of zeros of y2 exists such that t̄k > τ̄k > t̄k+1 and
limk→∞ τ̄k = c. As the intervals Jk = [t̄k, Ty) are without H-points, we can apply
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Lemmas 2.4, 2.9 (ii) and 2.11 on Jk. If, for simplicity, y1(Ty) > 0, then the sequence
of all local maxima of y1 on Jk is non-increasing and greater or equal to y1(Ty).
Hence, if k → ∞, {y1(τ̄y)}∞k=1 is non-decreasing and y1(c) = limk→∞ y1(τ̄k) ≥
y1(Ty) > 0. This contradicts (3.3) and proves that H-points do not exist on [ty, t̄y),
which is impossible. �

The following result can be proved similarly as in Theorem 3.1.

Theorem 3.2. Suppose∣∣∣f2(t, u, v)
f1(t, u, v)

∣∣∣ is non-decreasing (non-increasing) with respect to t

on D, uv 6= 0, and either
(i)

∂

∂v

f2(t, u, v)
f1(t, u, v)

is continuous on D, uv 6= 0,

or
(ii) for any integer m there is a continuous function gm : (0,m] → (0,∞) such

that
gm(|u|)|f1(t, u, v)|

f2(t, u, v)
is non-increasing

with respect to u for |u| ∈
[

1
m ,m

]
, for any t ∈ [0,m], and |v| ∈ (0,m], or

(iii) for any integer m there is a continuous function ḡm : (0,m]→ (0,∞) such
that

ḡm(|v|)|f2(t, u, v)|
f1(t, u, v)

is non-increasing

with respect to v for v ∈ (0,m] and v ∈ [−m, 0), for any t ∈ [0,m], and |u| ∈
[

1
m ,m

]
.

Let y be an oscillatory solution of (1.1) defined on [ty, t̄y] ⊂ R+. Then:
(1) There exists no H-point of y, y can not be defined at t = t̄y and all zeros

of y2 can be described by increasing sequence {tk}∞k=1.
(2) The sequence of all positive local extrema of y2 is non-decreasing (is non-

increasing).
(3) The sequence of the absolute values of all negative local extrema of y2 is

non-decreasing (is non-increasing).
(4) If, moreover,

f1(t, u,−v) = −f1(t, u, v) , f2(t, u,−v) = f2(t, u, v)

on D, then the sequence
{
|y2(tk)|

}∞
k=1

of the absolute values of all local
extrema of y2 is non-decreasing (is non-increasing).

4. Applications

We apply our results to equation (1.4).

Theorem 4.1. Suppose f(t,−u, v) = −f(t, u, v) on D and

a1/p(t)|f(t, u, v)| is non-decreasing (non-increasing)

with respect to t on D. Let y be an oscillatory solution of (1.4) defined on [ty, t̄y)
and {τk}∞k=1 be the increasing sequence of all zeros of y[1] on [ty, t̄y). Let either

(i) ∂
∂uf(t, u, v) be continuous on D, uv 6= 0, or
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(ii) For any integer m there is a positive function gm ∈ C0(0,m] such that

gm(u)f(t, u, v) is non-decreasing with respect to u

for u ∈ (0,m], t ∈ [0,m] and |v| ∈
[

1
m ,m

]
, or

(iii) for any integer m there is a positive function ḡm ∈ C0(0,m] such that

ḡm(|v|)f(t, u, v) sgn v is non-decreasing with respect to v

for |v| ∈
[

1
m ,m

]
, t ∈ [0,m] and u ∈ (0,m].

Then
{
|y(τk)|

}∞
k=1

is non-increasing (non-decreasing).

Proof. The result follows from Theorem 3.1 since f1(t, u, v) = a−1/p(t)|v|1/p sgn v
and f2(t, u, v) = −f1(t, u, v). If we denote the function gm from Theorem 3.1 (ii)
by g̃m, then g̃m(z) = 1/gm(z). Similarly, if we denote ḡm from Theorem 3.1 (iii)
by ḡm, then ḡm(z) = ḡm(z)z1/p. �

Theorem 4.2. Suppose f(t, u,−v) = f(t, u, v) on D and a1/p(t)|f(t, u, v, )| is non-
decreasing (non-increasing) with respect to t on D. Let y be an oscillatory solution
of (1.4) defined on [ty, t̄y) and {tk}∞k=1 be the increasing sequence of all zeros of y
on [ty, t̄y). Let either

(i) ∂
∂vf(t, u, v) be continuous on D, uv 6= 0, or

(ii) for any integer m there is a positive function gm ∈ C0(0,m] such that
gm(|u|)f(t, u, v) is non-increasing with respect to u for |u| ∈

[
1
m ,m

]
, t ∈ [0,m]

and v ∈ (0,m], or
(iii) for any integer m there is a positive function ḡm ∈ C0(0,m] such that

ḡm(v)|f(t, u, v)| is non-increasing with respect to v for v ∈∈ (0,m], t ∈ [0,m] and
|u| ∈

[
1
m ,m

]
.

Then
{
|y[1](tk)|

}∞
k=1

is non-decreasing (non-increasing).

The proof of the above theorem is similar to that of Theorem 4.1, using Theorem
3.2.

Remark 4.3. Theorem 1.3 (i) is a special case of Theorem 4.1 (iii) and Theorem
1.3 (ii) follows from Theorem 4.2 (iii).

Finally, we formulate our results for the equation

y[1] + r(t) f̄(y)h(y[1]) = 0 (4.1)

where p > 0, y[1] is given by (1.5), f̄ ∈ C0(R), h ∈ C0(R), f̄(u)u > 0 for u 6= 0,
and h(v) > 0 on R.

Corollary 4.4. Suppose a1/pr is non-decreasing (non-increasing) on R+. Let y be
an oscillatory solution of (4.1) defined on [ty, t̄y) and {tk}∞k=1 and {τk}∞k=1 be the
increasing sequences of all zeros of y and y[1] on [ty, t̄y), respectively.

(i) If f̄(−u) = −f̄(u) on R, then the sequence
{
|y(τk)|

}∞
k=1

is non-increasing
(non-decreasing).

(ii) If h(−v) = h(v) on R, then the sequence
{
|y[1](tk)|

}∞
k=1

is non-decreasing
(non-increasing).

Proof. Suppose a−1/pr is non-decreasing. Put f(t, u, v) = r(t) f̄(u)h(v). Case
(i) follows from Theorem 4.1 (ii) with gm(u) = (f̄(u))−1. Case (ii) follows from
Theorem 4.2 (iii) with ḡm(v) = 1

h(v) . �
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Remark 4.5. Note that [6, Theorems 3.6 and 3.7] and Theorem 1.4 are special
cases of Corollary 4.4 for h ≡ 1. Some results in [13, Theorems 4.2 and 4.6] are
special cases of Corollary 4.4 (with p = 1, h ≡ 1).
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