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PERIODIC ORBITS IN HYPERCHAOTIC CHEN SYSTEMS

SUSANNA MAZA

Abstract. In this work, we show a zero-Hopf bifurcation in a Hyperchaotic
Chen system. Using averaging theory, we prove the existence of two periodic

orbits bifurcating from the zero-Hopf equilibria located at the origin of the
Hyperchaotic Chen system.

1. Introduction and statement of the results

Hyperchaos has been widely investigated since in 1979 when Otto Rössler [20]
proposed one of the first hyperchaotic attractors. A hyperchaotic system is a chaotic
system in which two or more Lyapunov exponents are positive indicating that the
chaotic dynamics are expanded in more than one direction. This feature gives rise
to complex attractors harder to control than chaotic ones. Thus, hyperchaos has
been found to be useful in many fields such as: encryption, secure communications
[4], nonlinear circuits [12], liquid mixing, lasers [9], and many more.

It is worth to say that the minimal dimension of the phase space that embeds
a hyperchaotic attractor must be four, so the typical examples of hyperchaotic
systems have been introduced usually as extensions of known autonomous three-
dimensional chaotic systems. Besides the hyperchaotic attractor of Rössler, the
hyperchaotic Lorenz-Haken system [16], the Chua’s circuit [11] and the hyperchaotic
Lü system [13] are well-known examples of hyperchaotic models as extensions of
three-dimensional chaotic systems. The book [22] presents a catalog of systems
exhibiting chaos.

In this work we study the hyperchaotic Chen system
ẋ = a(y − x) + w,

ẏ = dx+ cy − xz,
ż = xy − bz,
ẇ = yz + rw.

(1.1)

This system was introduced in [5], as an extension of a three-dimensional chaotic
Chen system. Its study has generated considerable research, techniques of chaos
synchronization, studies of controlling chaos, secure communications, power system
protection and so on, see [10, 6, 17, 21] and the references therein.
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The dynamics of Hyperchaotic systems has been studied mainly numerically
and by computer simulations. In this work we perform an analytic analysis on the
existence of periodic orbits of the differential system (1.1) by applying averaging
theory of first order. More precisely, we prove that a zero-Hopf bifurcation occurs in
system (1.1) bifurcating two limit cycles from the zero-Hopf equilibria as parameters
vary. As far as I know, this is the first time that an analytic analysis of a zero-Hopf
bifurcation in hyperchaotic Chen system is performed.

We recall that an equilibrium of a differential system ẋ = f(x) with f : A→ Rn
and A an open subset of Rn is a zero-Hopf equilibrium if it has two pure imaginary
conjugated eigenvalues and n − 2 zero eigenvalues. The bifurcation of periodic
orbits from zero-Hopf equilibria of three dimensional differentials systems has been
studied via averaging theory in [14]. See also [8] for a study in systems with two
slow and one fast variables. In [7] is performed an analysis of the periodic orbits
bifurcating in the chaotic prototype-4 system of Rössler. Recently, was published
[3], a paper on a zero-Hopf bifurcation in the hyperchaotic lorenz system. The main
result of this work reads as follows.

Theorem 1.1. Consider the hyperchaotic Chen system (1.1) with c = a for small
values of b and r, and satisfying b(a+d) r > 0 and a(a+d) < 0. Then a zero-Hopf
bifurcation occurs emerging two limit cycles from the origin.

In section 2 we give a summary of the averaging theory of first order for finding
limit cycles and we proof Theorem 1.1 in section 3.

2. Averaging theory: perturbing an isochronous system

We consider the problem of bifurcation of T -periodic solutions for a differential
system of the form

ẋ = F0(t,x) + εF1(t,x, ε) , (2.1)
where ε is a small positive parameter, x ∈ A, where A is an open subset of Rn,
t ≥ 0. Moreover we assume that both F0(t,x) and F1(t,x, ε) are C2 functions and
T -periodic in t.

The classical theory of averaging reduce the problem of finding T -periodic solu-
tions of (2.1) for ε > 0 small to the problem of finding simple zeros of the so-called
bifurcation functions. Many methods encountered in the literature are based on
this idea, see [2, 15, 18].

We study here the particular case in which all the solutions of the unperturbed
system

ẋ = F0(t,x) (2.2)
are T -periodic. Then we assume that the unperturbed system is isochronous and
the problem in what we are interested in is the problem of the persistence of the
periodic orbits under some perturbation.

We denote the linearization of (2.2) along a periodic solution x(t,u) of (2.2)
such that x(0,u) = u by

ẏ = DxF0(t,x(t,u))
where DxF0 is the Jacobian matrix of F0 with respect to x and let Φu(t) be some
fundamental matrix of (2.2). Assume that there exists an open set V with closure
V̄ ⊂ A such that for each u ∈ V̄ , x(t,u) is T -periodic. The following result gives
an answer to the question of bifurcating periodic solutions from the T -periodic
solutions x(t,u).
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Theorem 2.1. We assume that there exists an open set V with V̄ ⊂ A such that
for each u ∈ V̄ , x(t,u) is T -periodic. Consider the function f : V̄ 7→ Rn given by

f(u) =
1
T

∫ T

0

Φ−1
u F1(t,x(t,u)) dt . (2.3)

If there exists p ∈ V with f(p) = 0 and det(Duf(p))) 6= 0 then there exists a T -
periodic solution γ(t, ε) of system (2.1) such that γ(0, ε)→ p as ε→ 0. Moreover,
if all the eigenvalues of det(Duf(p))) have negative real part, the corresponding
periodic orbit γ(t, ε) is asymptotically stable for ε sufficiently small.

For a proof of Theorem 2.1 see [15, 19, 1].

3. Proof of Theorem 1.1

The origin of system (1.1) is always an equilibrium point of it under under any
choice of parameters. The characteristic polynomial p(λ) of the linearization of
system (1.1) at the equilibrium point located at the origin is given by

p(λ) = (r − λ)(b+ λ)(a(c+ d− λ) + (c− λ)λ)

The eigenvalues associated at the origin are

λ1 = r, λ2 = −b, λ3,4 =
1
2
(
− a+ c±

√
a2 + 2ac+ c2 + 4ad

)
.

This suggest to consider small values of the parameters r and b introducing the
small parameter ε in the following way (r, b) 7→ (εr, εb). Thus, taking c = a the
eigenvalues of system (1.1) at the origin becomes λ1,2 = 0 and λ3,4 = ±

√
a(a+ c)

when ε 7→ 0. It follows that the origin is a zero-Hopf equilibrium when ε 7→ 0 if
a(a+ c) < 0. So, for this choice of parameters we have system (1.1) written as

ẋ = a(y − x) + w,

ẏ = dx+ ay − xz,
ż = xy − bεz,
ẇ = yz + rεw.

(3.1)

Re-scaling the variables (x, y, z, w) 7→ (εx, εy, εz, εw), system (3.1) becomes
ẋ
ẏ
ż
ẇ

 =


a(y − x) + w
dx+ ay

0
0

+ ε


0
−xz

xy − bz
yz + rw

 . (3.2)

Now we have the Chen system (1.1) written as differential system of the form (2.1),
and we can consider the problem of bifurcating periodic solutions of it by using
averaging theory. We have to solve first the unperturbed system of (3.2). The
solution x(t,u) = (x(t), y(t), z(t), w(t)) of

ẋ = a(y − x) + w,

ẏ = dx+ ay,

ż = 0,
ẇ = 0,

(3.3)
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satisfying the initial condition u = (x(0), y(0), z(0), w(0)) = (x0, y0, z0, w0) ∈ R4 is

x(t) =
1

a+ d
(w0 + ((a+ d)x0 − w0) cosh (

√
a(a+ d) t)

+
√
a+ d√
a

(w0 + a(y0 − x0)) sinh (
√
a(a+ d) t)),

y(t) =
1

a(a+ d)
((dw0 + a(a+ d)y0) cosh (

√
a(a+ d) t)− dw0

+
√
a
√
a+ d(dx0 + ay0) sinh (

√
a(a+ d) t)),

w(t) = w0,

z(t) = z0.

(3.4)

Notice that if a(a + d) < 0 then cosh (
√
a(a+ d)t) = cos (

√
−a(a+ d)t) and

sinh (
√
a(a+ d)t) = i sin (

√
−a(a+ d)t) being i2 = −1. Hence, when a(a+ d) < 0

the solution (3.4) of the unperturbed system (3.3) is

x(t) =
1

a+ d
(w0 + ((a+ d)x0 − w0) cos (Ωt)− Ω

a
(w0 + a(y0 − x0)) sin (Ωt)),

y(t) =
1

a(a+ d)
((dw0 + a(a+ d)y0) cos (Ωt)− dw0 − Ω(dx0 + ay0) sin (Ωt)),

w(t) = w0,

z(t) = z0.

(3.5)
where Ω =

√
−a(a+ d). We have that any solution (3.5) of the unperturbed system

(3.3) is periodic of period T = 2π
Ω . So system (3.2) is, in fact, a perturbation of an

isochronous system when a(a + c) < 0 and we can apply Theorem 2.1. The first
variational system of (3.3) along the solution (3.5) coincides with the unperturbed
system (3.3), so the inverse of fundamental matrix solution Φu(t) of (3.3) is

cos (Ωt) + a
Ω sin (Ωt) − a

Ω sin (Ωt) 0 1
(a+d) (1− cos (Ωt) + Ω

a sin (Ωt))
− d

Ω sin (Ωt) cos (Ωt)− a
Ω sin (Ωt) 0 d

a(a+d) (cos (Ωt)− 1)
0 0 1 0
0 0 0 1

 .

The bifurcation function (2.3) is given by

f(u) =
Ω
2π

∫ 2π
Ω

0

Φ−1
u F1(t,xu) dt = (f1, f2, f3, f4) ,

where

f1(u) =
rw0

a+ d
+
dz0((a+ d)x0 − 3w0)

2a(a+ d)2
− (a(y0 − x0) + w0)z0

2(a+ d)
,

f2(u) =
d(3dw0 + a(a+ d)y0)z0

2a2(a+ d)2
− drw0

a(a+ d)
− (dx0 + ay0)z0

2(a+ d)
,

f3(u) =
d2(x2

0 + 2bz0)
2(a+ d)2

+
a(2abz0 − y0(2w0 + a(y0 − 2x0))

2(a+ d)2

− (3w2
0 + 2aw0y0)d
2a(a+ d)2

+
ad(x2

0 + 2x0y0 − y2
0 + 4bz0))

2(a+ d)2
,
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f4(u) = w0

(
r − dz0

a(a+ d)

)
.

The isolated zeros of the map u 7→ f(u) = (f1(u), f2(u), f3(u), f4(u)) are

p1,2 =
(
±
a
√
b(a+ d)r
d

,∓
√
b(a+ d)r,

a(a+ d)r
d

,±
a
√
b(a+ d)r(a+ d)

d

)
Notice that p1,2 ∈ R because of conditions of Theorem 1.1. The determinant of the
Jacobian matrix of f at the points p1,2 is

det(Df(p1,2)) =
b(a4 + a3d− d2)r3

2d2
.

From condition a(a + d) < 0 we have that d 6= 0 and a4 + a3d − d2 = a2(a(a +
d) − d2) 6= 0. Moreover, from b(a + d)r < 0 we have br 6= 0. Then we get
det(Df(p1,2)) 6= 0 and p1,2 are simples zeroes of f . Hence, the averaging theory
stated in Theorem 2.1 predicts the existence of two T -periodic orbits γ1,2(t, ε) of
system (3.1) with period 2π

Ω such that γ1,2(0, ε)→ (p1,2) as ε→ 0.
Since we have performed the re-scaling (x, y, z, w) 7→ (εx, εy, εz, εw) for bringing

system (1.1) to system (3.1), the solutions γ1,2(t, ε) of system (3.1) provides the
periodic orbits εγ1,2(t, ε) of system (1.1) tending to the zero-Hopf equilibrium as
ε→ 0. This completes the proof.

Remark 3.1. Regarding the stability of the bifurcated periodic orbits, we know
that the eigenvalues of Df(p1,2) are

λ1,2 =
1
2

(
b±

√
b(b+ 8r)

)
, λ3,4 =

r

2

(
1± iaΩ

d

)
.

Therefore, under our parameter restrictions we cannot have all the eigenvalues with
negative real part. In consequence we cannot use Theorem 2.1 for the analysis of
the periodic orbits γ1,2(t, ε).
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