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EXISTENCE OF SOLUTIONS TO SYSTEMS OF EQUATIONS
MODELLING COMPRESSIBLE FLUID FLOW

DIANE L. DENNY

ABSTRACT. We study a system of nonlinear equations that models the flow of
a compressible, inviscid, barotropic fluid. The value of the density is known at
a point in the spatial domain and the initial value of the velocity is known. The
purpose of this paper is to prove the existence of a unique, classical solution
to this system of equations under periodic boundary conditions.

1. INTRODUCTION

In this article, we consider the following system of equations which arises from
a model of the multi-dimensional flow of a compressible, inviscid, barotropic fluid:

0
a—¥+v-Vv+p*1Vp=0 (1.1)
V-v= —wfl%lf—@zrlv-vzp (1.2)
p=p(p) (1.3)

where v is the velocity, p is the density, p is the pressure, and 1 is a given positive
smooth function.

The fluid’s thermodynamic state is determined by the density p, and the pressure
p is determined from the density by an equation of state p = p(p). We assume that p
is a given smooth function of p, and we assume that p and g—ﬁ are positive functions.

It follows from (|1.1)) and (1.3)) that

%)
87‘; +v-Vv+p 1 (p)Vp=0 (1.4)

The density p is a positive function which satisfies the condition that p(xg,t) =
b(t), where x¢ is a given point in the domain © and where b is a given positive
smooth function of ¢. The initial condition for the velocity is v(x,0) = vo(x).

The purpose of this paper is to prove the existence of a unique classical solution v,
p to the system of equations (1.2), (1.4), where p(xo,t) = b(t) and v(x,0) = vo(x),
for 0 < ¢ < T and under periodic boundary conditions. That is, we choose for our
domain the N-dimensional torus TV, where N =2 or N = 3.
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We will also present a proof that the standard conservation of mass equation
+v-Vp+pV-v =0 is approximately satisfied by the solution p, v to equations
, . Equations , are an approximation to Euler’s equations for a
compressible, barotropic fluid (see, e.g., [2]).

In our previous related work, the existence of a unique classical solution to a
similar system of equations modelling the flow of an incompressible, barotropic fluid
was proven in [3], with the condition that p(xo,t) was given and where V- v = 0.
In this paper, the fluid is compressible and V - v = —w_l%—lf — ¢~ v - Ve. The
proof uses new inequalities which are proven in Section 4.

The proof of the existence theorem is based on the method of successive approx-
imations, in which an iteration scheme, based on solving a linearized version of the
equations, is designed and convergence of the sequence of approximating solutions
to a unique solution satisfying the nonlinear equations is proven. The framework
of the proof follows one used, for example, by A. Majda to prove the existence of a
solution to a system of conservation laws [8]. Embid [7] also uses the same general
framework to prove the existence of a solution to equations for zero Mach number
combustion. Under this framework, the convergence proof is presented in two steps.
In the first step, we prove uniform boundedness of the approximating sequence of
solutions in a high Sobolev space norm. The second step is to prove contraction of
the sequence in a low Sobolev space norm. Standard compactness arguments finish
the proof.

The paper is organized as follows. First the main result, Theorem [2.1] is pre-
sented and proven in the next section. Next, we present a proof that the standard
conservation of mass equation % +v-Vp+ pV v =0 is approximately satisfied
by the solution p, v to equations (|1.2)), . Finally, lemmas supporting the proof
of the existence theorem are provided in Section 3 (which presents a proof of the
existence of a solution to the linearized equations used in the iteration scheme) and
in Section 4 (which contains other lemmas used in the proof of the theorem).

2. EXISTENCE THEOREM

The main tools utilized in the existence proof are a priori estimates. We will work
with the Sobolev space H*()) (where s > 0 is an integer) of real-valued functions in
L?(9)) whose distribution derivatives up to order s are in L?(2), with norm given by
[ull2 = 32 0<s Jo [Dul*dx and inner product (u,v)s = 32|, <, Jo(D¥u)-(D*v)dx.
Here, we adopt the standard multi-index notation. We will also use the notation
ull2 = Y o<r<s Jo D ul?dx, where D"u is the set of all space derivatives D*u
with |af =7, and [D"ul? = 37, _, [D%ul*, where r > 0 is an integer. Also, we let
both Vu and Du denote the gradient of u. We will use standard function spaces.
L*>([0,T], H*(?)) is the space of bounded measurable functions from [0, 7] into
H*(§2), with the norm [[u||2 ; = supo<i<7 [[u(t)||?. C([0,T], H*()) is the space
of continuous functions from [0,7] into H*(2). The purpose of this paper is to
prove the following theorem:

Theorem 2.1. Let Q = TV, the N-dimensional torus, where N = 2,3. Let 1 be
a given positive smooth function of x and t, and let ¥(x,t) > ¢o for x € Q and
0 <t < T, where ¢y is a positive constant. And let %fg wdx = 0. Let p be a
given smooth function of p, and let p and Z—i be positive functions. Let b be a given
positive smooth function of t, and let xo be a given point in Q. Then for time interval
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0 <t<T, equations , , subject to the condition that p(xg,t) = b(t) for
0 <t < T and the initial condition v(x,0) = vo(x) € H*(2) where s > § +2, have
a unique classical solution p, v, where p is a positive function, provided that ||vol|s,
lolls,rs |eells—1,7, and maxo<i<7 b(t) are sufficiently small. The regularity of the
solution is

p € C([0,T),C*(Q2)) N L>([0,T], H*1(2))
v € C([0,T],C*(Q)) N L>([0, ], H* (%))

ov o .

5 €co.1.C L) N L=([0, T), H*~H()

Proof. We begin by making a change of variables. First, we let h = In(p), and

we define the composite function g = p’ o exp, where exp (h) = e, so that g(h) =

(p/ oexp)(h) = p'(e") = p'(e™(P)) = p/(p). Then equation (I.4) can be equivalently

written as v
N +v-Vv+g(h)Vh =0 (2.1)

Note that ¢ is a given positive, smooth function of h. We define the interval
G1 C R by Gy = (2 ming<y<r In (b(t)), 3 maxo<;<r In (b(t))), where In (b(t)) < 0

2
for 0 < t < T, since b(t) < 1 by assumption. Let the positive constant c3 =
min, & g(h.). We will prove that h(x,t) € Gy for x € Q, 0 < ¢t < T. Recall
that (x,t) > co > 0. We now define f = ——1, and therefore f(x,t)g(h(x,t)) =

Px)g(h(x.t)) >1forx e Q,0<t<T. Under this change of variable, equation

CocC3

(1.2) can be equivalently written as

=Yy (22)
Next, we let u = fv. Then equatlons , can be equivalently written as
ou 1 1 af
o

We now use the Helmholtz decomposition u = Pu + Qu = w + V¢, where
w=Puand V¢ = Qu and V-w = 0 (see, e.g., [2], [6]). Here, P and Q =1 — P
are orthogonal projection operators. Then equations (2.3)), (2.4) become

ow  0Ve 1

E__W_?(erV(b)'V(erwﬁ)

1o/ (2.5)
f2( f-(W+ Vo)) (w+ Vo) + (w+ V¢)?§ — fg(h)Vh
V-w=0 (2.6)
of
Agp = ~ 5 (2.7)

At time t = 0, we have u(x,0) = f(x,0)v(x,0) € H*(Q), and w(x,0) is the
solenoidal component of u(x,0), so that w(x,0) = Pu(x,0) and V - w(x,0) = 0.
The compatibility condition for solving the elliptic equation (2.7]) is 0 = fQ %dx =
% fQ fdx, where Q = TV, the N-dimensional torus. Therefore we require that
& Jodx =0, where f = Ly
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We will prove the existence of a unique solution w, h, V¢ to (2.5)), (2.6), (2.7)).
It follows that u, & is a solution to (2.3)), (2.4), where u = w + V¢. And therefore
12), [C9),

it follows that v, p is a solution to where v = %u, where f = ﬁw,
and where p = e/

We now proceed with the proof. We will construct the solution w, h, V¢ to ,
, through an iteration scheme. To define the iteration scheme, we will
let the terms of the sequence of approximate solutions consist of the functions w*
and h*. Note that V¢ is immediately determined by solving the elliptic equation
([2.7), since f is a given function. For k = 0,1,2,..., construct w*™! A" from
the previous iterates w*, h¥ by solving the linear system of equations

k+1
Ow' ™ _ OV Lk ive) . viwtt 4 vg)

ot o f
+ 5 (V1 - (W £ Vo) (w1 + V) (2.8)
W V) L fol T,

V-whtl =, (2.9)

under periodic boundary conditions, and satisfying h**!(x¢,t) = In(p(xo,t)) =
In(b(t)), and with the initial data w**1(x,0) = w(x,0). Set the initial iter-
ate w'(x,t) = w(x,0), the initial data. And set the initial iterate h0(x,t) =
In (p(xo, £)) = In (b(t)):

Existence of a sufficiently smooth solution to the system of equations ,
for fixed k which satisfies h**1(xq,t) = In (b(t)) follows from the proof given in
Lemma [3.] in Section 3. We proceed now to prove convergence of the iterates as

k — oo to a unique classical solution of (2.5, (2.6), (2.7). First, we will prove
uniform boundedness of the approximating sequence in a high Sobolev space norm.

Then, we will prove contraction of the approximating sequence in a low Sobolev
space norm. A standard compactness argument completes the proof (see Embid
[6], Majda [8]).

Proposition 2.2. Assume that the hypotheses of Theorem are satisfied. Let
€ = maxg<i<7 b(t) and let

mmasx{[[vo 2, o2 fell2-0.0} < i b(6) =

where € < 1, and suppose that € is sufficiently small. Let R be a given positive
constant such that R < 1| maxo<;<7In (b(t))|. Then there ezist positive constants
Ly, Ly, L, Ly, Ls such that the following hold for k =1,2,3...,

(a) [[WH|2 < €L,
(b) [VA*[2 7 < eLo,

(©) 1R*121 7 < L,

(d) [[ow*/ot]3_y r < La,

(e) [P* —R°|p=r < R

(£) llg(n*(x, 1)l 7 < Ls
where s > % +2, N =2,3, and where eL1 <1, eLo < 1. And there exist constants
€1, 2, 3, ¢4 such that ¢ < hF(x,t) < co < 0 and 0 < c3 < g(h*(x,t)) < ¢4 for
x€N,0<t<T, k=1,23....
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Proof. The proof is by induction on k. We show only the inductive step. We
will derive estimates for VA*T1 h**1 and w**! and then use these estimates to
prescribe Ly, Ly, Ls, Ly, Ls a priori, independent of k, so that if VA*, h* w* satisfy
the estimates in (a)-(f), then VA*+1 pF+1 wh+l also satisfy the same estimates.
In the estimates that follow, we use C' to denote a generic constant whose value
may change from one instance to the next, but is independent of €, Ly, Lo, L3, Ly,
Ls.

We frequently use the well-known Sobolev space inequality |[uv||? < C||ul?||v||?
for r > 2 (from Lemma in Section 4) while making the needed estimates. And
in the estimates, s > ——|—2 So = [2]—1—1 =2for N =2,3,and s > 4, and s1 =
max{s—1,s9} =s—1. Also we will frequently use the estimate | V|2 < C|| f¢|?_,
for r > 1 from Lemma in Section 4, where A¢ = ~ar

Estimate for ||VA**1(|2: Applying the divergence operator to equation (2.8)) yields

V- (fg(h*)VRF)

‘8§7¢ - (W%(Wk + V)T + (VW + V) - %(w’f +V9)-VAS (510,
FT (T (W4 Vo) 4 90) T (w4 V0) £ )

Applying estimate (£.20) from Lemma[£.7]in Section 4 to equation (2.10)), where
we use the inequality f(x,t)g(h¥(x,t)) > 1 by the induction hypothesis, yields

[ 2
< cz (=
Z
" ||<v<}<wk LV (Vw4 VI,
+CX%HD N (e ( F1Ve)- VA,
]
+ (VS (ko V) (W + V)
+CjiOID(fg(h’“))||§{( Wkt 1 vg) L L
<c§joufg O T2 + IV GO+ TN [T+ Vol )
j

s 1
+ CZ Hfg(hk)”3](”?”371”Wk + Vel IVAGIE-

s BIV I + 2wt + Vo)
10
0D g W + vl L

7=0
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0A 1
< CZ £ g () I (] ¢II H?Hi(\lwklli +HIVoID W + Vel)
7=0
+ CZ 11 19( h’“)HQJII*II LIWRIE + Vel llAel2
7=0
+CZHf||2]Ilg h’“)HzJII SIEIVFIRAWRIE + Vo2 (W™ HE + 1Vell3)
J=0

+ CZ £ Mg (R (w2 + V912 )H*II [ £elI2

7=0

o 1
< CZ LI (L) Il feellZ-y + H?HE(GI& 2D AW+ 1L Fel1Z-0))

J=0

s ) . 1

+CY Hf”i](LS)j(H}”3—1(61/1 +IFlZ)l1f 2
j=0
1

+ II?HfiIIVflli(eLl AN DU + I fel20)

+OY NI (LY (w2 + IIftllil)II%II?IIftH?

=0
<cZHf|| Lo (e IR el + W+ )+ I F I s (eLn +0)(0))
+CZHf|| (||f|| 2IVLI2 p(eLn + (W2 + ¢)

+ (w2 + e)H;niT(e))
< Cife+ [IwH ) (2.11)

where ||g(h*)||2 < Ls by the induction hypothesis. And L5 = C’|g|§§1, where we

define |g, 7, = maX{|th (he)| : by € G1,0 < j < s}. And we used the estimate
|[w¥[|2 < eL; by the induction hypothesis, where eL; < 1. We used the fact that
A¢ = — f;, and we used the estimate ||V¢||2 < C||f:]|?_; for r > 1 from Lemma
in Section 4. And we used the assumptions that || fy|?2_; < € and ||fi]|> < e. The

constant C; depends on sy IV flls.r, and 9,3,

s, T

Estimate for |[w**1||2: Recall that the initial condition w**1(x,0) = w(x,0) =
Pu(x,0) = P(f(x,0)vg), where P is an orthogonal projection operator. Then by
applying estimate (4.21)) from Lemma to equation ([2.8) we obtain the estimate

lw" 2

)2+ ||f< F 4 V6) - V(VS)|2)dr

ft||2

< [P(f(x,0)vo) |2 + 6ﬁtc/o (I

t
4 efiC / (II%(W wh L VO)VOI2 + IVOLL 2 + |7 g (W) VR |2)dr
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6V¢”2

< e f(x, 0)Vo||2+65t0/ (I +||*H Iw" + VoIVl 1)dr

+65t0/ (5 IV AW + VoIEIVSIE + IVl H*II [1fell?
+ /113 ||9(h’“)H IV 2)dr
ov
< MO f(x,0)|2 HVO||2+eﬁtC/ (I ¢||2+||*|| (IW" 12+ IVolDIVoIZ,)dr
+65t0/ (I 1NV AEAWEZ + IVlDIVel: + Va2 II*II I £elI3
+ IIst||9(h’“)Hs||Vh’““Hs)dT
t
1
< C|IfIZ rllvoll2 +eﬁtC/0 (I feells- + H;II?(GLl LDl dr
1
+eﬂt0/ (I IEIVFIE Ly + [Lfell3- )I\ft||§_1+IIftH?_lH?IIintllﬁ

+ IIst||g(h’“)H301(E + Wt 2))dr

1 1
< O FIZr + e OT (e + I (eLr + e+ 15

PV (el + €)e)
t
+TOTE 2 2+ TCTIf 2 LaCre + TCI S Er LsCr [ [ e
0

t
<ePTC(14+1T) + eﬂTcz/ |w* L) 2dr (2.12)
0

where we used the estimates |[w¥||?2 < eL; < 1 and ||g(h*)||? < Ls, by the induction
hypothesis, where Ly = C|g|§’§1. And we used estimate for ||[VREFY|2. We
also used the estimates [|[Vo|2 < C| f:|>_; and |[Vo||? < C| ful?>-; for r > 1
from Lemma where A¢ = —f;. And we used the assumptions that || f¢||2 ; < e,
||ftt|\§71’T <¢, and ||vg||? < e. Here Cy depends on sz, IV£llsr, and

s, T

‘g|s 61 M
From Lemma [4.8 in Section 4 we obtain the estimate:

1 1
g<C+ II*IIS1+1,T(IIW’“HS1+1,T FIVSlst1.r) + Cligz s

10f
XNV fllsy 10w s 11,0 + VY511, T)+C||f 5y lsi+1.7

1 2.13
C+ 151 (LY? + 1 fillrr)) (213)

1
+ C”? z”S,T

<Cs

1
1/2
2 PV Fllo (€202 (| fellsmn.) + Cll

where s; = s — 1 and s > 4. We used the estimate ||[w*||, < 61/2L1/2 < 1, by the
induction hypothesis. And we used the assumption that || f;[|Z, < e < 1. And C3

1
Flls, T

s, T-



8 D. L. DENNY EJDE-2015/216

By applying Gronwall’s inequality to (2.12), we obtain for wk*1 the estimate
[wFTH12 < eCy(1 +T)(1 + CyTe%T) (2.14)

where Cy = e“3TCy. We now define Ly = Cy(1+ T)(1 4+ CyTeT). It follows that
[whHL)|2 < 6L1, Where We choose e sufficiently small so that eL; < 1. Substituting

inequality (2.14]) into (2.11)) yields
Hth“H2 < Cile+ [wFHE) < eCi(1+ Ly) (2.15)

We now define Ly = C1(1+Ly). It follows that | VA*+1||2 < Lo, where we choose €
sufficiently small so that eLy < 1. And L1, Ly depend on || f|s,1, H%HS,T’
and [g|, 7, . This completes the proof of parts (a) and (b) of Proposition

Estlmate for [[RF|2,;: By Lemma in Section 4, and using inequality

(2:15)), we obtain
2, < OO (0, 20 + [V 0 (0, )2+ [VRF )
< k41 2
< C(19f max [h" (xo,)|” + eL2) (2.16)

s, T

< C(9| max |1n (b)) +1) = Ls

since h¥*1(xg,t) = In(b(t)) and €Ly < 1. This completes the proof of part (c) of
Proposition [2.2]
Estimate for ||w;
ing:

F+1)2_,: We immediately obtain from equation (2.8) the follow-

w12

aw 1
<Cll—5- 132 + CH?IIL(IIW’“HL + VI ) (W2 + ([ Vell2)

+CH S VAR AW E 2 + VoI (W + 1V 8l12-y)

10f ,
fat”

< Clfeellior +Cll5 |Is vr(ely + [ fellio o) (eLa + 1 fell3-1 1)

C(IIW’““IIL +IVelZ_)l 1+ CIFIE g (RO VRS2

1
+ CH*” -1, V2 1r(els + I1fell2_o 7)€Ly + ||ft||§f2,T)

1
+ C(eLy + || ]2, T)”?Hgfl,THft”ifl,T + CHf”ifLTLB(EL?)

<Cs
(2.17)
Where we used the estimates |[wFT!||2 < eL; < 1 and |[|[VR*L2_, < ely < 1
from (2.14), (2.15). And we used the estimates |[w"||2 < eL; < 1, |lg(h¥)||? < Ls,

by the 1nduct10n hypothe51s where Ly = C \g|§ G And we used the estimate
IVol2 < C|fell?-; for r > 1 by Lemma where A¢ = —f;. And we used
the assumptions that || fi[|?, < e < 1 and [[full?_; 7 < € < 1. And Cs depends

on || ¢lls—1,rs IVFlls—1r5 [ flls—1,75 and |g], 5, We now define Ly = Cs. This
completes the proof of part(d) of Proposition
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Estimate for |[h**! — b0 <: By Lemma we obtain the inequality
IWFH = RO e < C|V(RFHE = BO)||y = C|| VR, < CeV2LY? < R (2.18)

where we used estimate , and where we choose ¢ sufficiently small so that
Cel/2Lé/2 < R. Here we used the facts that h**1(xg,t) = h%(x¢,t) and that
hO(x,t) = In (b(t)). This completes the proof of part (e).

Since R < 1| maxo<i<7 In (b(t))|, |R*T! — k%] < I maxo<i<r In (b(t))|. And since
hO(x,t) = In (b(t)), where maxo<;<7 b(t) = € and € < 1, so that In (b(t)) < 0, we
obtain the inequalities

R (x,t) < hO(x,t) + %| Jmax In (b(t))| =In(b(t)) — %Orélta%XT In (b(t))
. = ='= (2.19)
< 5 28, In (b(t)) = 3 In ()
1 _ 1
R0, 0) 2 1005, 0) = ] mass 10 (6(0)] = I (0(0) + 5 o n (6(0) -

«Q
—~
)
[a
Q
n
~
Il
—
I
=
u—
—
S
—~
~
~—
~—
IS
"
u—
=}
—~
=
—~
~—
~
~

so that h*T1(x,t) € Gy for x € Q, 0 <t < T. Since g is a smooth, positive
function of h, there exist constants c3 = min, g g(h«), c4 = max, g g(h), so
that 0 < c3 < g(hs) < ¢4 for all b, € G1. And s0 0 < c3 < g(h**1(x,t)) < ¢4 for
xeN0<t<T.

Since g(h) = (p' oexp)(h) = p'(e"), where p’ is a smooth function, it follows that

d
ﬁ(h*)| _ |ﬁ"(eh*)6h* X \ﬁ”(eh*) ilne < Cel/? (2.21)
dh h.€Gi
d’g X A
=5 ()l = 10" (" )el + 9" (e") (e")?|
dh (2.22)
S max |ﬁ//(6h*) 1ne+ max |p///( )|(e2]ne) S 061/2
hi€G1 h.€G1
for h, € G1, where we assume that max, & [p”(e"*)| < C and that
61/2 max ‘p///( ) <
h.€Gy
where C' does not depend on €. From ([2.21]), , it follows that
d
Sl g, < Ce? (2.23)

where we define |f|, 7, _max{uh7 ho)| s he € G1,0< 5 <7}
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Estimate for ||g(h**1)|?: By Lemma and by (2.15) and by the inequality
g(hF*+1(x,t)) < ¢4 which was just proven, it follows that

lg(r* D)% < ||9(hk+1)||§ +CD(g(R* )12,

<+ 0| 2P 5 S IDn

1<j<s

<&I0l+ 2[5 Y Ly

1<5<s

(2.24)

< C|9|§,5l =Ls
where we used that eLy < 1, and we used the fact that ¢j = (max, gz, g(h.))?

= | g|(2),§1. This completes the proof of Proposition O

Next, we give the proof of contraction in a low Sobolev space norm.

Proposition 2.3. Assume that the hypotheses of Theorem hold. Then
(a) e o(IwWrHt — w3 7 4 e[ V(R = hF)|12 1) < oo,
(b) 2ono IRFHE = h¥|3 1 < o0,
(c) Zk o”WIH_1 _WtHOT < 0.

Proof. Subtracting equation (2.8)) for w*, Vp* from equation (2.8)) for wh*1, vpk+!
yields

0
a(VVIchl _ Wk)
- —%(wk +V6) - V(wh! - wh) - F(W*ﬂ — W) V(w4 Vo)
t 7 L (VF - (WF 4 T (W - wh) o+ ( fo(wh—wEh)(wh + Vo)
W wh) L O fah e - h’“) ~ Fgh) - g(n 1)) vht
(2.25)

where V - (wFt! — wF) = 0 and where w**!(x,0) — w*(x,0) = 0.
In the estimates that follow, we will frequently use the well-known Sobolev space
inequalities [[uv[|f < Cllull3]|v[l}, and [luv|[} < CllulZ]|v]? for r > 2, and |u[f~ <

C|lul|2,, where so = [§]+1 =2 for N =2,3 (from Lemma in Section 4).
Estimate for ||V (h¥*! — h¥)||2: Applying the divergence operator to (2.25) yields

V- (fg(h")V (R —nb))

= —(V( (W + V)" : (VW' —wh))

1
7
-V (%(wk —wh) v (wP
(2.26)
£V0)) + V- (G(7F - (W + Vo) (wh - wh))
FT (G(TF W)t 4 90)) T (k- wh) L)

f
(fg(h*) = g(n*=1))VR*)
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Applying estimate (4.20) from Lemma [£.7] to equation (2.26)), and using the fact
that f(x,t)g(h*(x,t)) > 1, and using Lemma yields

IV (Rt = h9)I}

< O ID(Fgh NI I(V( (w4 V)T (Vw2

Jj=0

~ |

+C S IDCIE (I3 (w* = W) - Tk + Vo)
§=0

+l73(VF - (w4 V) (whH = wh) )

O3 DG (I55(VF - (= )+ Vo) I
7=0

1of

k+1
S

2)+ 02 ID(F g I3 1 (9(h") = g(h=1)VhH3

< c}_j 1£9(rH) (1V 5w+ V)3 [V = )
HIF o = wE DIV + o)1)
¥ CZ £ (155 (97 - (w* + D)l = wh
g (TF - (= wh ) +v¢\|)

1
£ 0N oA (1w — w1 23+ () — ()10 90 3)
§=0

1
; , 1
< O D I o) (19 (5 w* + Vo) BIwt — wh|
=0
1 2 k k—1)2 k 2
IR =R+ Vo)
1
+ OISR o)1 (I V7 1Bl* + V3wt — w2
VAWt = w4+ 90]3)
. . 1
O3 I g (e = w1 I31L703 + o (4)
§=0

— g NI IBIVAE )
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< OZ 1918 (L (15105 + V1wt = w
+ H—n%nwk — WAL (W R + 6l
+cZ 1913 (L) (155 VI 13 + 991 [ = w1

Tl VAW — w B + HV¢H§))

F
+OZ||fH 5 (It = w1310
ot - g(h’H)II?Hfll%\th‘“lli)

<cz||fu Lo (I (el + LA [ = w2

" H;ank = WLy + 1 fill3 ) )

)W — w2

L5 f H3 T”Vf”?) T(ELl + ||ft

H3 T||Vf||3 rlwh — w3 (eLy + ||ft||2 T

1
+CZ||f|\ (IIW W’“II?H?II?,TIIftII?,TJr lg(h*)

g(h’f-1>||1||f||3,T<eL2>)
< CollWH ! — w2 + Collwh = whL 3 + Colg(*) — g(h* )3 (2:27)

where we used the estimates ||[w*||? < eL; <1, [|[VA¥|2 < €Ly <1, ||g(h¥)|2 < Ls,
where Ly = C’|g|2 , from Proposition [2.2l We used the assumption that ||ft|\§,T <

e < 1. And we used the estimate |Vo|* < C||f||?_, for 7 > 1 from Lemma
And Cs depends on || £[ls7, IV fllszll flls.r, 9], a, -
By Lemma and Lemma we obtain the estimate

lg(R*) = g(R*H)II} <C|

= |1 & (L IVAM S+ VAR — hH 13

_ 2.2
f O [} 5, (1 2eLo) [V (0" — BE)| (2.28)
< Cenvw’“ — BE)2

where we used the estimate } al G < Ce by inequality (2.23]), and we used the

estimates |[VRF||2 < eL, <1, ||th 112 < €Ly < 1 from Proposition [2.2] We used
Lemma[4.3|from Section 4, as well as the fact that h*(xq,t) = h¥~1(x, ), to obtain
the estimate |h* — R*1|3 < C||V(R* — h*~1)|13.
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Substituting into yields
IV (R*E —n")|
< Crf|w*Ht —wh T + Orl|w® — wh [ 4 eCr |V (R — RF 7|12
where C7 = Cg(1 + C).

Estimate for |w**!—wF¥||?: Applying estimate ([&.21]) from Lemmato equation
(2.25), and using Lemma yields

k k
-whE

(2.29)

Iw
< Cest /t IS (wh = wh1) - V(W + Vo) 2dr
>~ 0 f 1
t
+0e [ (I55(TF - (k= s )t + VO + 1)V — kR )ar
t
ke [ ()~ o) VAt s
0
t
1
<o [ (15wt =W IVt + o)
VS (o =Wt + Vo) ar
t
+ 0 [ (g RNV = RO + o) = o) 11 )
< e [ (LIBIWE W R IE + 19
=~ 0 f 3 1 4 4
1
VBl =W (w4 VoI)ar

t
+065t/0 LI NgREIZNT (B = 5T + llg(R*) — g(W*DIRIFIZI VA" (13)dr

+

< e [ (113wt - w e + 1)
e s AR P
# 0 [ 13 (Crlw ™~ w1+ ol =
+Cr| V(R = WE) ) dr

t
+CePt / [V (R* — BE1) 2] £ 3 (L) dr

t t
< Cs/ (IwW* = w* 1T + e V(R" = h* 1) |D)dr + Cs/ Wt —w*|idr
0 0
(2.30)

where

g <01+ I3l (Iw

3+ ||V

1
ls,T) + ||P||3,T||Vf| 3,7 ([ W51
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10f
?EHB,T) < Cs

from estimate (2.13). Here we used estimate (2.29) for |V (¥t — h¥)||2, and we

used estimate (2.28)) for ||g(h*) — g(h*~1)||2. And we used the estimates ||[w*||2 <
€Ly < 1, |[Vh¥|2 < €Ly < 1, and |g(h*¥)||3 < Ls, where Ly = C’|g\2a , from
S,G1
Proposition And we used the assumption that ||f;]|2 < e < 1. And Cs depends
on ||%||3,T, IVflis.z, I flls,z, and |9|3761~
Applying Gronwall’s inequality to (2.30) yields

+IVellsr) + |

t
W= wHE < Co [ (Wt - w4 e T - R Ry (23
0

where Cg = Cg(1 + CgTe“T). Substituting (2.31)) into (2.29) yields
IV (¥ = h")|] < Cro(lw" — wh [ + e[ V(RF = hF )11
! k k—1)2 k k—1y2 (2:32)
+Cuo [ (It =W+ T = 1 Ry
where 010 = 07(1 + 09)
Multiplying (2.32)) by € and then adding the resulting inequality to (2.31)), yields
[Wh — w1} + €| V(REH = 0|12

< cCur(|Iw* = Wi+ €[ V(0 - ) (2.33)

t
e / (lw* — w12 + | T — 1) [2)dr
0

where C11; = Cg + C1p.
Applying Lemmato (2-33)), where we define Z*(t) = ||[wk —w*~1||2+¢||V (RF -
RE=1)|13, yields the inequality

[Wr = wh(2 .+ e V(R — 1F)|12
< (2eCn)ket (|wh — w3 + €| V(R — hO)|3 1)

where we choose € sufficiently small so that 2¢C7; < 1. Then it follows from (2.34)
that

(2.34)

oo
SO = W+ e T hb)
k=0
This completes the proof of part (a) of Proposition [2.3
By Lemma and the fact that h*+1(xq,t) = h*(xg,t), we have the inequality
|[REFL — B¥||3 < C||V(R*F+T — h¥)||3. Then from (2.35)), it follows that

DR —RF 5 < CY IV = WM 7 < oo (2.36)
k=0 k=0
This completes the proof of part (b) of Proposition
Estimate for |w"™' — w¥|2: From we obtain the inequality
0
15
< CllF(w" + V) - T = wh)[f + Cl 5w = w) - Tk + Vo) ]

(wh = wh)[3
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+cn%<w (W 4 V) (WL — wh)|2

10f

1
FOl5(VF - (wh =W ) (V6 + Ol wh) S 08

+ Ol fg(hE)V (R = WG+ ClLf (g(h*) — g(h*= 1) VA¥|F
= CHLm ([W*[Fee + VI )[V (W — w3

2 _
+ C!ﬂm\lwk —w" B (IDWF |7~ + [ D(V)|7)
12
C!F]mef\%wﬂw’“\ix + Vo =) W't —wh |3

12 _
+ C|ﬁ’Lm|Vf\2Loo||Wk — W (W T + [Vel7)
Lo
f ot'L=
+ C|f17llg(n*) — g(h* )5 VA" [}

+ Ollwt = w3 + O f[Loe lg (B 2o IV (REFY = BM)[G

1 1
< CllFleLs + IAIDINS* =W+ Cll 7 1w = w e + 1 £il3)
1
+ C!!}\!4\\Vf\|§(eL1 AR It~ wh
+0|5 H IV FIBIw" = wh= L3 (L + 1l3)

+Cllw = wH RS LA + CU BV = k)
+ CILFIBllg(h) — g 3(eL2)
< Cia (IWHH = wh g+ W = w2 g+ [V RF B9

G (2.37)

where we used the estimates |g(h*)|2. < C|lg(h*)||3 < CLs, where Ls = Clgl? & K

and |wF|2. < C||wF|j3 < CeLy, |DWF|2. < C||wF |3 < CelLy, and |th|L°° <
C||Vh¥||3 < CeLs from Lemmaand Proposition [2.2] where el; <landeLy <1.
And we used the estimate ||g(h*) — (hk Hig <ol N G1 |hE —hF=1)|2 < Ce||h* —

h’“_1||2 by Lemma and estimate (2.23), where we use the fact that ‘ |0 z <
’dh L@, < Ce. And we used the estimates Vo2 < C|IVo|3 < C|f]|3 and
|ID(Vo)|2 < C||ch§||3 < C||f:||3 from Lemma And we used the assumption

that || f¢[3 < | and |gl, 7, -
Then by ([2.35)), (2.36)), (2.37), it follows that
= 6
Sl 5 (v wh T — wh) |8 < oo (2.38)
k=0

This completes the proof of Proposition [
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Us1ng Proposition 2.2 and Proposition 2:3] we now complete the proof of The-
orem From Proposwionn 2.3 [|[wrt! — wH |3, — 0 and ||AFHT — AF|5 . — 0
as k — oo. Therefore, we conclude that there exist w € C([0,T], H*(2)) and h €
C([0,T), H*(Q)) such that ||w*—w]| 17 — 0, and ||h* k|27 — 0, as k — oc. Using
the interpolation inequalities ||gls < Cllg[7]lglls™" and ||9||s 1 < Clgll3llglls3T,
where v = ijsl,, and 1 < s’ < s, and s > 4 (see Lemma , and using Propo-

sition we can conclude that ||[w* — w|¢ 7 — 0 and ||h* — h||¢31.0 — 0 as
k— ooforl<s <s. Fors > % + 2, Sobolev’s lemma implies that w* — w
in C([0,T],C%(2)) and B* — h in C([0,T],C3(2)). From the linear system of
equations (2.8), it follows that ||[wF — wy|s+—1.7 — 0, as k — oo, so that
wF — w, in C([O T] C1(Q)), and w, h is a classical solution of the system of
equations (2.5), The additional facts that w € L°°([0,T], H*(Q)), and
h € L*=(]0, T HQ‘H(Q)) can be deduced using boundedness in high norm and
a standard compactness argument (see, for example, Embid [0], Majda [§]). The
uniqueness of the solution follows from the proof of Proposition 2:3] by a standard
argument using estimates similar to the estimates used in the proof of Proposition
And therefore v, p is a unique classical solution of the system of equations
, , where v = %w, f= v L4, and p = €. This completes the proof of
the theorem. O

A final remark We now present a proof that the standard conservation of mass
equation at L +v-Vp+ pV V= O is approximately satisfied by the solution p, v to
the system of equations (|1.2 , , provided that the hypotheses of Theorem [2.1| -

are satisfied and that maxo<¢<7 |l;)(—(tt))|2 < C, where C' is a generic constant which
does not depend on €.
We use the following inequality:
| + v-Vp+pV - v]is
s c|pt|Lw + O[3 [Vl o + Clpl3 |V - V[3 (2.39)
< Clptlte + C13/Vpliw + Crslpli=

where we used the estimate
(W4 Vo)
f ||2

1
< CII;H%(IIWII% +IVel3)

vii~ < ClvIz=Cll

1 1
< OllZ 3L + |1 f:lD) < Ol 132
f f
Similarly,

Vvl < CIV -3 < C|VIE

\Y 1
Wn% < ClI7 (w13 + V6l

1 1
< CH;II%(GLl +£l3) < C”?”%,T‘

=

We used the estimate ||w||? < eL; < 1, and the assumption that [|f;[|3 < e < 1.
Also we use C13 = CH%H%T
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We next obtain estimates for [p|3., |Vp|3e, and |pt|2« to use in inequality
(12.39).
Estimate for |p|2.: By inequality (2.19), and using the fact that p = e!® (P) = el
we have: )
P = [ < (HIMO)2 = ¢ (2.40)
Estimate for |Vp|2..: Using the fact that Vp = pV(In (p)) = pVh, we obtain the
estimate
Vol = pVh[i~ < |pl1= VAT~ < e(Cels) < eC (2.41)
where we used (2.40)) and we used the estimate |[Vh|2.. < C||Vh||3 < C(eL2), where
€L2 < 1.
Estimate for |p:|?.: Using the fact that p; = p(In (p)): = pht, and using (2.40),
we obtain

|0t o0 = |phelToe < |plEoc helToe < €lhelToe < €Cllhull3 (2.42)
By Lemma in Section 4 and by the fact that h(xq,t) = ’;:((;;0’;)) = b((tt)), we

obtain the estimate
1]l < C(l[he(x0, )13 + IV (ha(x0, 1)) + [V ReI})
< C(19] max [he(xo,t)|* + [[Vhil[7)
(2.43)

< c<m|0<t<Ty—\ +19R3)

< C(1Q] + [ VhlI?)

where we used the assumption that maxo<i<r | 10 t) | < C.

Estimate for || Vh||3: Applying 2 to equation (2.3) yields

62
0 )
B 8t(}(w+v¢) V(£ V) + (5 (V1 - (wo+ V) (w+ V) (2,40
1of dg Oh Vo
(W Vo) 550 — frg(h)Vh — f 3 5 Vh = =5

Next, applying the divergence operator to ( - yields

V- (fg(h)Vhi)

=—V-((§t(})><w+w> V(w+ Vo))~ V- <§<wt+wt)-ww+w>)>
0

v A w Vo) V(we £ V) 4V - (<8t( Loy (W+V¢)) (W + Vo))

; 2
V(G5 (T (W + Vo)) (w5 V) + V- (55(TF - (w5 V) (wi + )
V(w4 9o )+ 9wV 5 (2)) - v (o
V(I RTR) = V(D) (FheVR) P9 (e h) — e~ T

(2.45)
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We will use the well-known inequality ||uv||? < ||uv||? < C|lul/3]|v]]3 (see Lemma

. Then applying estimate (4.20) from Lemma to (2.45]), and using the fact
that f(x,t)g(h(x,t)) > 1, yields

o
< Y DU (5) v+ 96 - T + Tl

3=0

+ ||3<wt +Véy) - V(W + V)

L O IDGa): <||§<w+v¢>~v<wt+v¢t>||%
7=0

+ (;<f2 VI (w4 90)) (v VR)

£ O 1D (||%<Vf'<wt+v¢t>><w+v¢>n%

7=0

+ ||i<Vf (W V) (Wi + VSo)II2)

0
O DG v+ o0 7 + w4 90 2 ()
7=0

+ 1 feg(R)VAIR + IV - ( hch )5)

+CZIID ON (IIV( )(fhch)||o+||f (Vht Vh)|I5

7=0

1P anE + ||8;f2¢||
<cZ||f|| oI 5 () lw + Vol (w + V)]
+IF 13w + BT (o + V)
+cz||f|| o (1 131w + V131V (e + Vo)1
+ ;( fQVf)u 2w+ Vol + Vol3)
+CZ||f|| lg ()" (75 VBl + Vol lw + Vol

+ |

Vf|| Iw + Vol3[lw: + Ve 3)
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1
; f

+CZ||f||§]H9(h)II§ (||Wt+v¢t||2|| 3+ [lw + Vo3 ||3t(ft)||2

=0
+ ||ftH2||g( )31V A]3)

dg

+CZ||f||§JHg I3 (IVfI%ooI%I%w\ht\iwllwllﬁ
+||V( )II | fl7 o0 [he| 7o VAT o0)

+CZ||f||§ng(h)||§ (If\LooI |L<>CHVhtH VAL

7=0
O%2A
+|f\Loo| 91 el | ARBI + 155 ¢||>
<CZIIfII ( Y IB(eLy + 170 (L

+II£3) + ||*||§(L4 + 1 feellP) (eLy + (1 £112))

+cZ 1918 B (13T + 1D L+ 1 ]B)
8
i g ( fQVf)H 3eLy + I3 eLs + [I£11)

+CZ I£113 Vfll (La+ [ el Ly + [ £e]13)

+ || Vfll (eLy + Ifell ) (La + [ felD)

+cZ||f|| (L Il + (e + IR (13
- ||ftu Ls(eL2) + |V F13(e) Il 3(eL2)
+cZ||f|| Y (L) FIBIRB(L2) + | FIBEI el (eL)
+ 113 heleLa) + 1Sl
< Cua(1+ el 3) (2.46)

Here we used the estimates |V(w, + V,)|3 < Cllwi + V|2 < C(|we]|2 +
IV6:13) < C(Ls + [fulR), and [V(w + VIR < Cllw + Vi3 < Clwll3 +
IVo||3) < C(eLy + || f¢||3), where eL; < 1. We used the fact that A¢ = —f;, and
we used the estimate [|[V||3 < C| fi]|3 from Lemma in Section 4. And we
used the estimate ||AR||2 < C||Vh||? < C(eLs), where €Ly < 1. And we used the

inequalities ||f,5H3 <e< 1, I feel3 < e <1, ||lg(h)||3 < Ls. We used the estimate

g—fb 2. < ’dh 0 < ‘dh G < Ce by inequality (2.23). And we used Lemma
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. . d d2qg12 dg |2
to obtain the estimate [|[V(52)||5 < |TZ}OEI||VhH(2) < |ﬁ 17§1||Vh|\3 < (Ce)(eLs).
Here Cy4 depends on || flls.r, |7 ]ls,7: IV flls,7s 9], and | freello,r-
By substituting estimate (2.46|) into (2.43)), it follows that

1hell3 < CUQL + VA ]1T) < CUIQ] + Cra(1 + elle][3)) (2.47)

Choosing e sufficiently small so that CC14e < 3, and re-arranging terms in (2.47),
yields

Ihell3 < CQI + Cra) (2.48)

By substituting estimate (2.48]) into estimate (2.42)), it follows that
[pt|Z0e < €Cllhel3 < €C(1Q] + Cra) = €C1s (2.49)

where C15 depends on || f[|s.z, [ £]ls.7, [V flls.7, 19],,, and || fusello.r-

From substituting estimates (2.40), (2.41)), (2.49) into (2.39), we obtain

0
|87§ +v- Vp + PV : V‘%x < C|pt|%oo + 013|Vp\%oo + 013|p|%oe < 6016 (250)

s,z 15l IV Flls,rs 9], > and || feello,r-
It follows from (2.50) that the standard conservation of mass equation % +v-
Vp+ pV - v = 0 is approximately satisfied by the solution p, v to the system of

equations (1.2)), (1.4)).

3. EXISTENCE FOR THE LINEAR SYSTEM OF EQUATIONS

where Cy6 depends on || f

In this section we present the proof of the existence of a solution to the linear
equations (2.8), (2.9)) used in the iteration scheme in Section 2. Lemmas supporting
the proof appear in Section 4.

Lemma 3.1. Let wo € H*(Q2) where V- wq =0, and let by € C([0,T], H°()) N

L*>([0,T),H*(Q)), ba € C([0,T], H*(Q))NL>([0,T], H*(Q)), b3 € C([0,T], H*(£2))N
L>([0,T), H*(2)), g € C([0,T], H*(2)) N L>°([0, T], H*(Q2)), where s > % +2, for

N = 2,3, and where by(x,t) > 1 forx € Q =TN, 0 <t < T. Letb be a given

positive smooth function of t for 0 <t < T. Let xg € 2 be a given point. Then

there exists a unique classical solution w, h for x € Q and 0 <t <T of

ow

E +b1 VW+b2W+b3Vh =g, (31)
h(xg,t) =1In(b(t)), w(x,0)=wo(x), V- -wg=0, (3.3)

and
w € C([0,T],C%*(Q)) N L>=([0,T), H*(2)),
h e C([0,T],C3*(Q)) N L>([0,T], H¥(Q)).

Proof. First, we change the equations to an equivalent system by employing the
projections P and Q = I — P, where P is the orthogonal projection of L?(£2) onto
the solenoidal vector field and @ is the orthogonal projection of L2(f2) onto the
gradient vector field. Applying the operator P to , and using the fact that
Pw = w, we obtain the equation

88—‘: +by - Vw +bow = J := Q(by - VPW) + Q(b2Pw) — P(b3Vh) + Pg  (3.4)
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Applying the operator @ to (3.1, and using the fact that Pw = w, we obtain
the equation

Q(bl VPW+b2PW+b3Vh—g) =0. (35)

With the given initial data wg, where V - wy = 0, the system of equations (3.1)),

(3-2)) and the system of equations (3.4)), (3.5]) are equivalent. (The proof is standard;
see, for example, Embid [6]).
From the definition of @, it follows that equation (3.5)) is equivalent to

V(b1 VPw+ byPw +b3Vh —g) =0. (3.6)
Re-arranging terms yields
V. (b3Vh) ==V - (b; - VPw) -V (byPw)+V g
=—(Vb)" :V(Pw) —Vby- (Pw)+V-g

Next, we construct the solution w, h of the system of equations (3.4), (3.7
using the method of successive approximation as follows: Set the initial iterate
w'(x,t) = wo(x), the initial data, and set the initial iterate h°(x,t) = In (b(t)).

(3.7)

For k =0,1,2,... define wFt1 hF*+1 as the solution of the equations
o k+1
V;t by Vw4 hywhtl = gk (3.8)
V- (bsVhF Y = —(Vby)T : V(Pw") — Vb, - (PW") + V - g, (3.9)

where J*¥ = Q(by - VPwW*) + Q(byPw*) — P(b3Vh* 1) + Pg, and w**1(x,0) =
wo(x).

The first step is to solve for h*+1. By the induction hypothesis, (Vb)T :
V(Pw*) € C([0,T], H°(2)) N L>=([0,T], H*~1()) and Vb, - (Pw*) belongs to
C([0,T], H°(Q)) N L*([0,T], H*~1(£2)).

Also V-g € C([0,T], H*(Q)) N L>([0,T], H*~1(Q)) and b3 € C([0,T], H*(2)) N
L>°([0,T], H*()), and bs > 1. Therefore, by Lemmal[4.7] there exists a unique zero-
mean solution hk+1 € C([0, T}, HO(Q2)) N L>([0,T], H**1(2)) to equation (3.9). It
follows that h**1(x,t) = h*+1(x,t) 4+ In (b(t)) — h¥+1(xg,) is a unique solution to
equation which satisfies the condition h*+1(xg,t) = In (b(t)).

The next step is to solve for wFt1. By Lemma and by the induction
hypothesis, Q(by - VPw*) € C([0,T], H°(2)) N L>=([0,T], H*()). And by the
induction hypothesis, Q (b Pw*) € C([0,T], H°(Q))NL>([0,T], H*(2)). And from
the previous step, P(bsVA*T1) € C([0,T], H°(2)) N L>=([0,T], H*()). And Pg ¢
C([0,T), H*(Q))NL>([0,T], H*(£2)). Therefore, by Lemmathere exists a unique
solution w*t1 € C([0,T], H(©2)) N L>([0, T}, H*(Q)) to equation (3.8).

Next, we obtain estimates for |V (hF+t1—n¥)||2 ., [[RFT1—h¥|2 | 0 and [whH!—
wk||f7T. From equations , we obtain the following system of equations
for h*+1 — h* and wht!l—wk:

a(wk+1 _ Wk)
ot

V- (b3V(RFT — bFY)) = —(Vb)T - V(P(WF — wF™1)) — Vby - P(wh — wh™1),
(3.11)
where J¥ — JF~1 = Q(by - VP(wF —wk=1)) + Q(bo P(WF —wF 1)) — P(b3V(RF+! —
hk)). TInitially we have (wft! — wF)(x,0) = 0. And hk*1(xq,t) = h¥(xo,t) =

In (b(t)).

+by - V(W —wh) by (wh T —wh) = g8 — g1 (3.10)
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Next, applying Lemma[4.7]to equation (3.11)), and using the fact that bs(x,¢) > 1,
yields

IV 192 < 03 Db 2 (I(Tb1)T : T(Pwh —wh )2
=0

+ Vb - P(w* = wh |12,

< CZ [Dbs|[27, (| Db |2y + || Dbl|2_;) w" — wh=12
7=0
< Cyflwh — w2
(3.12)
where s > & +2 and s; = s — 1. And C; depends on || Db |s—1,7, || Dbs|ls—1,7,
[ Dbs|[s—1,7-
By Lemma and by the fact that h*+1(xg,t) = h¥(xg,t), we have the in-
equality

IR = AP < CIV (M = h"))2 (3.13)
From (3.12)), (3.13)) , it follows that
IR = RFZ < CIV (M = R |2 < Coflwh — w12 (3.14)

where Cy depends on || Dby ||s—1,7, ||Dba|ls—1,1, || Dbsl|s—1,7-

Applying Lemmato equation (3.10)), and using estimate (3.14)) for |V (hF+1 —
hF)|[2, yields

lw" = wh|F < ce’T /t 1Q(b1 - VP(w* —w*=1)|2
+ Q2 P(w* — wET)) 2+ [[P(bsV (A — b)) 2dr
< CeﬁT/ o[l 2w — w2+ [[ba 2]l w" — w12 (3.15)
+ IIbsllztilv(hk+1 — hM)|2dr

t
<0y / Wk — w1 2dr
0

where we used Lemma [4.2] to obtain the estimate ||Q(b; - VP(w* — wF=1))||2 <
C”bl”znwk — Wk71||§. Here ﬂ = C(l + ||b1||31+17T —+ ||62H31+17T), and 03 depends
on [[ballsz, [b2llsz, [|bs]lsz-

Repeated application of yields [[wFH! — wh||2 ;< (CgT) [w! — w2 1,
from which it follows that Y72 [|w* ™! —wF||2 . < o0, and therefore Y reo ||ka+1
hF|I24 7 < oo by (B.14).

Therefore, there exists w € C([0, T], H°(£2))NL> ([0, T], H*(2)) such that w* —
w as k — oo strongly in C([0,T], H(Q))N L*([0,T], H*(Q)), and there exists
h € C([0,T], H°(2)) N L>=([0,T], H**1(2)) such that h* — h as k — oo strongly
in C([O T] HO(Q)) N L>([0,T), H**1(2)). And the fact that w and h is a solution
to , , ) follows by a standard argument (see, e.g., Majda [§], Embid
[6])~ 0
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4. LEMMAS SUPPORTING THE PROOF

Lemma 4.1 (Standard Calculus Inequalities). (a) If f € H*(2), g € H2(Q) and
s3 = min{sy, 82,81 + s2 — so} > 0, where sg = [%] + 1, then fg € H®3(Q)), and
1fgllss < Cllfllsillglls,- We note that so = 2 for N = 2 or N = 3. Here, the
constant C depends on s1, $2, §2.

(b) If f € H*(Q) N L>®(2), where so = [5]+ 1, then |f|r= < C| flls,-

(c) If f € H2(Q) and r = 0r; + (1 — O)ra, with 0 < 0 <1 and r < 12, then
£l < CIFNENfIIE?. Here C is a constant which depends on 11, 2, €.

The above inequalities are well known. They appear, for example, in Embid [6].

Lemma 4.2. If w, v € H"(Q), r > ¥+ 1, Q =TV, then Q(v-VPw) € H"(Q)
and ||Q(v-VPw)|, < C|v|,||w|.. Here P, Q are the projection operators from
the Helmholtz Decomposition u = Pu+ Qu, where V- Pu = 0 and Qu is a gradient
vector field.

A proof of the above lemma appears in Embid [7].

Lemma 4.3. Let f, g be H"(Q) functions on a bounded domain Q, where r > 2.
And let f(xo) = g(x0) at a point xg € Q. Then f — g and [ satisfy the estimates

If = glls < CIV(f - 9)lIE, (4.1)

If = gll? < CIV(f = 97y, (4.2)

[f = gli~ <CIV(f - 9T (4.3)

IF1I7 < Cligll? + CIVglli_y + CIV A7 (4.4)

where C is a constant which depends on Q and on r.
Proof. A proof of inequality (4.1) appears in Denny [4]. From (4.1)) we obtain the
inequality
1f=gll? < If = gll5 + CIV(f = 9IIF s
<CIV(f =T+ CIV =9Il <CIV(f = 9)l7-s
for » > 2. This completes the proof of (4.2). From (4.2)) with » = 2, and from
Lemma [£.1] we obtain
|f = gli= < Clf =9l < CIV(f =9I}
This completes the proof of (4.3]). From (4.2) we obtain the inequality
117 =1f =g+l < Clf = glF +Cllgll7 < CIV(F — 9)ll71 + Cllgll?
< OIVFIE-1 +ClIVylli—1 + Cllg?
for » > 2. This completes the proof of the lemma. O
Lemma 4.4. Let f be a smooth function on an interval G C R, and let u be

a continuous function such that u(x) € Gy for x € Q, where G; C G and u €
H™Y(Q), where r > 2. Then

d
IDG NI < |22 1Dul, (4.5)

df |2

IDF DI < Cl 5| &, (IDul} + [Dulz] Dul5), (4.6)
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df 2 .
DGz <el DL S o, (4.7
1<j<r+1

where r > 2 and C depends on v, Q. And we define |g|, 5, = max{|%?(u*)| DU €
G1,0<j <7}

Proof. We immediately obtain the estimate

ID(f (u ))Ilo—ll D ||o<| IOGIH ullg
Next, we obtain the inequahty
I1D(f ( ))Ill—ll D I3
daf
—II D HoJrHD( DU)Ho
df |2
<||*D \\o+C|D( )|L°°HD I\o+C| OGIIIDQUH%
Du|?2 + C|=—=D D c df 2 |D2u? (4.8)
—II* I3+ |7 ul oo || Dl + |20z 1P ulls :
df 2 df 2
< |4 IDulE + O 12 1Dl Dul + O 2 0%
df 2
<=, &, (IDull} + |Dulf || Dul|3)
df 2
<Ol 1, (IDull§ + [[ Dul 3] Dull3)

where we used Lemma to obtain the estimate |Dul?.. < C||Dulj3.
If r > 2, then we obtain the inequality

df

IDCf )7 = Il Dull? < Cll || [ D7
(4.9)
<C(ll ||o+||D( )Hr DIDull?
By (4.9) and by repeating the above argument applied to the terms ||D( T ) 1% o

for j = 1 2 ,r—2, that appear on the right-hand side of the inequality, we obtain

HD(())||2<C(H Ho HD( )|| D[ Dl

(H HoHI D 2= DI Dull?

(H H0+H ||3_1IIDUII3_1)IIDUII7Zi
, (4.10)
(H Ho H ||r 1 Dul7) [ D7
d2 2 2
(H Ho (II*HoHlD(d 2)” o) [|1Dul[2) [ Dulf;
<0 Y ISLRIDuE + I (G IDule
0 dur—1 1 r
1<j<r—1

where C' is a generic constant which changes from one instance to the next.
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Substituting estimate (4.8)) for the term HD(dm 1) |% into ([4.10)) yields
ID(f (w))lI?

dr— 1f .
<Cc ) || || 1wl + ClID(5——¢ ———1) [ DulFV
1<j<r—1
d f 2 _
<C ) || || [ D77 =1z, (IDull} + | Dull3]| Dul|3) || Dul7
1<]<7" 1
df 2
<o|Tp o X a0 L puiz - ue)
1<j<r—1
o
YCI A SN 120
1<j<r+1
This completes the proof of the lemma. ([

Lemma 4.5. Let f be a smooth function on an interval G C R, and let uy, ug be
continuous functions such that ui(x) € Gy, ua(x) € Gy for x € Q, where G C G,
and uy € H"(Q), ug € H"(Q), where r > 2. Then

df |2
I1f(ur) = f(uz)lf < |@ 0.5, lun — uzll3, (4.11)
df 2
1f(ur) = flug)|[§ < C| 1.5, L+ [Dua[[§ + | Duz|§) ur — uslf3, (4.12)
where C' depends on (). Here we define |g|r max{|du] u*)| tuy € G1,0<5 <

r}.
Proof. We begin by writing the calculus identity

flur) = fluz) = Iy(ur,uz)(ur — u2) (4.13)
where I¢(u1,us) is defined as follows:

b df

| —(Tu1 4+ (1 — T)ug)dr (4.14)

]f(Uh u2) =

and where the following estimates hold for Iy (uq,us):

df |2
[y, u2)lz < |57, (4.15)

df 2
DIy (u, u))[§ < CI 1.5, (1D ][5 + IIDU2||2) (4-16)

A proof of inequalities - appears in Embid [7]. From , , it

follows that
I1f(ur) = f(u2)lI§ = I (u, uz) (ur —uz) Il

df |2
< p(u, ug) |7 oo [Jun — ualff < | 0 G1||U1 — ugllp

From (4.13)), (4.15)), (4.16) and the estimate for ||f(u1) — f(u2)||3, it follows that
1f(ur) = flu2)|l?
= |1 (ur) = flu)[[§ + 1D(f (ur) = f(u2))]13
1f(ur) = flu2)llg + CIID(Ls (w1, ug)) (ur — uz) |5 + CllLs(ur, u2) D(ur — us) |3
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< f(ur) = fu2) |3+ CID(I s (ur, u2))l[5lur — uz|Fe
+ Oy (ur, u2) 1o | D(ur — u2)|3
df 2

1., (1Dusl[§ + [[Duz|§) llur — uall3
1

d
< ’dl|§él lur — us|§ + O|

df 2

+ C| 0.6, lun — walf3

df2

< Ol (L 1Durllg + [ Dus|§) lur — w3

where |u; — uz|? < C|lu; — us||3 by Lemma This completes the proof of the
lemma. (]

Lemma 4.6. Let Z*(t) be a positive, integrable function for 0 < t < T and for
k=1,2,3,..., and let Z**1(t) < L(eZ"(t) + fot Zk(1)dr), where € and L are
positive constants which do not depend on k. Then

ZFHL(t) < (2¢L)ket/c sup Z1(t)

0<t<T
Proof. We repeatedly apply the inequality given for Z¥+1 as follows:
Zk+1 (t)

t
< eLZ(t) —|—/ LZ*(my)drm
0

< eL(eLZk_l(t) +/t sz—l(ﬁ)dﬁ) +/tL(eLZ’“_1(n)
0

0
T1
n / szfl(@)dm)dﬁ
0
t t T1
:62L22’“—1(t)+26/ L2Zk‘1(71)d7-1+/ / L2ZF 1 (1) dmodr
0 o Jo
t
§€2L2<€sz72(t)+/ LZkfz(Tl)d'rl)
0
t T1
+26/ LQ(GLZI"_2(7'1)+/ LZk_Q(TQ)dTQ)dTl
0 0
t T1 T
+/ / L? (eLZk72(72)+/ LZk72(7'3)d7'3)d7'2d7'1
0o Jo 0

t
— eSLSZk_Q(t) + 362/ L3Zk_2(7'1)d7'1
0

t T t T T2
—|—36// L3Zk72(7'2)d72d7'1—|—// / L3Z%2(13)drsdrodmy
0o Jo
< Lkekzl(t)-l-Lk < ) k= ]/ / / / Tj )dT; ... drsdredm

(4.17)
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Then we have the inequality

t T1 T2 Tj—1
/ / / / Zl(Tj)de...dngTQdTl
0 JO 0 0

t T1 T2 Tj—1
< sup Zl(t)/ / / / drj ... drsdradm (4.18)
0<t<T oJo Jo 0
tI

= 7Y (=
oiltlgT ()(J'>

Substituting estimate (4.18)) into inequality (4.17)), and using the inequality (];) <

Zf:o (’;) = 2% for each 0 < j < k (see Abramowitz and Stegun [I]), yields

k j
zZh 1 < Lkz <k> "= sup Zl(t)(t—)

=\ 0<t<T J!
k t\7
K\ ()
= (eL)* sup Z'(t ()(E)
( ) ogth U; J J!
k (L)
< (eL)® sup Z'() Y25 (*5)
0<t<T =0 J!
o ((£)
< (2¢L)* sup Zl(t)z< e )
0<t<T =0 J!
= (2eL)kel/e sup Z'(t)
0<t<T
This completes the proof. ([

The next lemma on the existence of a solution to an elliptic equation is standard.

Lemma 4.7. Let a € C?(Q) N H*(Q), f € CLQ)NH*"YQ), and g € C*(Q) N
H*(Q), where s > § +2, Q =TN, N =2,3. Let a(x) > 1 for x € Q. And let
Jo(f + V- g)dx = 0. Then there exists a solution h € C*(Q) N H**1(Q) of

V- (aVh)=f+V g (4.19)

which is unique up to a constant. And the zero-mean function h = h — Iﬁl\ fQ hdx
s also a solution. And the following inequality holds for r > 1

IVAIZ < CY IDallZ (I £17 -1 + llgll?) (4.20)
j=0

where r1 = max{r — 1,50} and so = [%] +1 =2, for N = 2,3, and where C

depends on r.

A proof of the above lemma appears in Denny [5]. The next lemma on the
existence of a solution to a linear system of equations is standard.

Lemma 4.8. Given wo € H*(Q), by € C([0,T], HO(Q)) N L®([0, T], H*()), by €
C([0,T], H*(Q)) N L>([0,T], H*(Q)), g € C([0,T], H(Q)) N L>([0,T], H* (%)),
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where s > % +2,Q=TN, N=23,0<t<T, there exists a unique classical
solution w € C([0,T],C?(2)) N L>=([0,T], H*(Q)) of

ow

w(x,0) = wp(x)

And for r > 1, w satisfies

t
||W||3Seﬁt(llWollerC/0 Ig|ldr) (4.21)

where = C(1+||b1|lry+1,7+|b2|lr +1,7) and C depends on r. Here, r1 = max{r—
1,s0}, where so = [§]+1=2 for N =2,3.

The proof of the above lemma is standard; see, for example, Embid [6].
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