Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 202, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

GAO-SHENG LIU, CHUN-YU LEI, LIU-TAO GUO, HONG RONG

ABSTRACT. In this article, we study the existence and multiplicity of positive solutions for a class of Kirchhoff type equations with sign-changing potential. Using the Nehari manifold, we obtain two positive solutions.

1. Introduction and statement of main result

Consider the Kirchhoff type problems with Dirichlet boundary value conditions

$$-(a+b\int_{\Omega}(|\nabla u|^2+v(x)u^2)\,dx)(\Delta u-v(x)u)=h(x)u^p+\lambda f(x,u)\quad\text{in }\Omega,$$

$$u=0\quad\text{on }\partial\Omega.$$
(1.1)

where Ω is a smooth bounded domain in \mathbb{R}^3 , a>0, b>0, $\lambda>0$, 3< p<5, $h\in C(\bar{\Omega})$, with $h^+=\max\{h,0\}\neq 0$, $v\in C(\bar{\Omega})$ is a bounded function with $\|v\|_{\infty}>0$, and f(x,u) satisfies the following two conditions:

- (F1) $f(x,u) \in C^1(\Omega \times \mathbb{R})$ with $f(x,0) \geq 0$, and $f(x,0) \neq 0$. There exists a constant $c_1 > 0$, such that $f(x,u) \leq c_1(1+u^q)$ for 0 < q < 1 and $(x,u) \in \Omega \times \mathbb{R}^+$.
- (F2) $f_u(x,u) \in L^{\infty}(\Omega \times \mathbb{R})$ and for all $u \in H_0^1(\Omega)$, $\int_{\partial\Omega} \frac{\partial}{\partial u} f(x,t|u|) u^2$ has the same sign for every $t \in (0,+\infty)$.

Remark 1.1. Note that under assumptions (F1) and (F2) hold, we have:

- (F3) there exists a constant $c_2 > 0$, such that $pf(x, u) uf_u(x, u) \le c_2(1 + u)$, for all $(x, u) \in \Omega \times \mathbb{R}^+$.
- (F4) $F(x,u) \frac{1}{p+1}f(x,u)u \le c_2(1+u^2)$, for all $(x,u) \in \Omega \times \mathbb{R}^+$, where F(x,u) is defined by $F(x,u) = \int_0^u f(x,s)ds$ for $x \in \Omega$, $u \in \mathbb{R}$.

In recent years, the existence and multiplicity of solutions to the nonlocal problem

$$-\left(a+b\int_{\Omega}|\nabla u|^2\,dx\right)\Delta u = g(x,u) \quad \text{in } \Omega,$$

$$u=0, \quad \text{on } \partial\Omega.$$
(1.2)

have been studied by various researchers and many interesting and important results can be found. For instance, positive solutions could be obtained in [3, 5, 13].

²⁰¹⁰ Mathematics Subject Classification. 35D05, 35J60, 58J32.

Key words and phrases. Kirchhoff type equation; sign-changing potential; Nehari manifold. ©2015 Texas State University - San Marcos.

Submitted June 22, 2015. Published August 4, 2015.

Especially, Chen et al [4] discussed a Kirchhoff type problem when $g(x,u)=f(x)u^{p-2}u+\lambda g(x)|u|^{q-2}u$, where $1< q< 2< p< 2^*(2^*=\frac{2N}{N-2})$ if $N\geq 3$, $2^*=\infty$ if N=1,2), f(x) and g(x) with some proper conditions are sign-changing weight functions. And they have obtained the existence of two positive solutions if p>4, $0<\lambda<\lambda_0(a)$. Researchers, such as Mao and Zhang [2], Mao and Luan [1], found sign-changing solutions. As for infinitely many solutions, we refer readers to [11, 12]. He and Zou [14] considered the class of Kirchhoff type problem when $g(x,u)=\lambda f(x,u)$ with some conditions and proved a sequence of a.e. positive weak solutions tending to zero in $L^\infty(\Omega)$. In addition, problems on unbounded domains have been studied by researchers, such as Figueiredo and Santos Junior [9], Li et al. [15], Li and Ye [8].

Our main result read as follows.

Theorem 1.2. Assume that conditions (F1) and (F2) hold. Then there exists $\lambda^* > 0$ such that for any $\lambda \in (0, \lambda^*)$, problem (1.1) has at least two positive solutions.

The article is organized as following: Section 2 contains notation and preliminaries. Section 3 contains the proof of Theorem 1.2.

2. Preliminaries

Throughout this article, we use the following notation: The space $H_0^1(\Omega)$ is equipped with the norm $||u||^2 = \int_{\Omega} (|\nabla u|^2 + v(x)|u|^2) dx$. Let S_r be the best Sobolev constant for the embedding of $H_0^1(\Omega)$ into $L^r(\Omega)$, where $1 \le r < 6$, then

$$\frac{1}{S_{p+1}^{2(p+1)}} \le \frac{\|u\|^{2(p+1)}}{(\int_{\Omega} |u|^{p+1})^2}.$$
(2.1)

We define a functional $I_{\lambda}(u)$: $H_0^1(\Omega) \to \mathbb{R}$ by

$$I_{\lambda}(u) = \frac{a}{2} \|u\|^2 + \frac{b}{4} \|u\|^4 - \frac{1}{p+1} H(u) - \lambda \int_{\Omega} F(x, |u|) \, dx \quad \text{for } u \in H_0^1(\Omega), \quad (2.2)$$

where

$$H(u) = \int_{\Omega} h(x)|u|^{p+1} dx.$$

The weak solutions of (1.1) is the critical points of the functional I_{λ} . Generally speaking, a function u is called a solution of (1.1) if $u \in H_0^1(\Omega)$ and for all $\varphi \in H_0^1(\Omega)$ it holds

$$(a+b\|u\|^2)\int_{\Omega} (\nabla u \cdot \nabla \varphi + v(x)u\varphi) \, dx = \int_{\Omega} h(x)|u|^{p-1}|u|\varphi \, dx + \lambda \int_{\Omega} f(x,|u|)\varphi \, dx.$$

As $I_{\lambda}(u)$ is unbounded below on $H_0^1(\Omega)$, it is useful to consider the functional on the Nehari manifold:

$$\mathcal{N}_{\lambda}(\Omega) = \{ u \in H_0^1(\Omega) \setminus \{0\} : \langle I_{\lambda}'(u), u \rangle = 0 \}.$$

It is obvious that the Nehari manifold contains all the nontrivial critical points of I_{λ} , thus, for $u \in \mathcal{N}_{\lambda}(\Omega)$, if and only if

$$(a+b||u||^2)||u||^2 - \int_{\Omega} h(x)|u|^{p+1} dx - \lambda \int_{\Omega} f(x,|u|)|u| dx = 0.$$
 (2.3)

Define

$$\psi_{\lambda}(u) = \langle I_{\lambda}'(u), u \rangle,$$

then it follows that

$$I_{\lambda}(tu) = \frac{a}{2}t^{2}||u||^{2} + \frac{b}{4}t^{4}||u||^{4} - \frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}dx - \lambda\int_{\Omega}F(x,|tu|)dx, \quad (2.4)$$

$$\psi_{\lambda}(tu) = at^{2}||u||^{2} + bt^{4}||u||^{4} - t^{p+1}\int_{\Omega}h(x)|u|^{p+1}dx - \lambda\int_{\Omega}f(x,|tu|)|tu|dx, \quad (2.5)$$

$$\langle\psi_{\lambda}'(tu),tu\rangle = 2at^{2}||u||^{2} + 4bt^{4}||u||^{4} - (p+1)t^{p+1}\int_{\Omega}h(x)|u|^{p+1}dx$$

$$-\lambda\int_{\Omega}f_{u}(x,|tu|)|tu|^{2}dx - \lambda\int_{\Omega}f(x,|tu|)|tu|dx. \quad (2.6)$$

Notice that $\psi_{\lambda}(tu) = 0$ if and only if $tu \in \mathcal{N}_{\lambda}(\Omega)$. And we divide $\mathcal{N}_{\lambda}(\Omega)$ into three parts:

$$\mathcal{N}_{\lambda}^{-}(\Omega) = \{ u \in \mathcal{N}_{\lambda}(\Omega) : \langle \psi_{\lambda}'(u), u \rangle < 0 \},$$

$$\mathcal{N}_{\lambda}^{+}(\Omega) = \{ u \in \mathcal{N}_{\lambda}(\Omega) : \langle \psi_{\lambda}'(u), u \rangle > 0 \},$$

$$\mathcal{N}_{\lambda}^{0}(\Omega) = \{ u \in \mathcal{N}_{\lambda}(\Omega) : \langle \psi_{\lambda}'(u), u \rangle = 0 \}.$$

Then we have the following results.

Lemma 2.1. There exists a constant $\lambda_1 > 0$, for $0 < \lambda < \lambda_1$, such that $\mathcal{N}^0_{\lambda}(\Omega) = \emptyset$.

Proof. By contradiction, suppose $u \in \mathcal{N}_{\lambda}^{0}(\Omega)$, we obtain

$$\langle \psi_{\lambda}'(u), u \rangle = 2a||u||^2 + 4b||u||^4 - (p+1) \int_{\Omega} h(x)|u|^{p+1} dx$$
$$-\lambda \int_{\Omega} f_u(x, |u|)|u|^2 dx - \lambda \int_{\Omega} f(x, |u|)|u| dx = 0.$$

On one hand, from (2.1), (2.3), (2.6) and (F2), one deduces that

$$a||u||^{2} + 3b||u||^{4} = p \int_{\Omega} h(x)|u|^{p+1} dx + \lambda \int_{\Omega} f_{u}(x,|u|)u^{2} dx$$

$$\leq L||u||^{p+1} + \lambda L'||u||^{2},$$

where $L = p||h||_{\infty} S_{p+1}^{p+1}$, $L' = ||f_u(x, |u|)||_{L^{\infty}} S_2^2$, then

$$L||u||^{p+1} \ge (a - \lambda L')||u||^2 + 3b||u||^4 \ge (a - \lambda L')||u||^2,$$

consequently,

$$||u||^2 \ge \left(\frac{a - \lambda L'}{L}\right)^{\frac{2}{p-1}}.\tag{2.7}$$

On the other hand, by (2.1), (2.3), (2.6) and (F3), we obtain

$$||a(p-1)||u||^{2} + (bp-3)||u||^{4} \leq \lambda \left(\int_{\Omega} (pf(x,|u|) - f_{u}(x,|u|)|u|)|u| \, dx \right)$$

$$\leq c_{2}\lambda \int_{\Omega} (|u| + |u|^{2}) \, dx$$

$$\leq \lambda c_{2}|\Omega|^{\frac{1}{2}} S_{1}||u|| + \lambda c_{2} S_{2}^{2}||u||^{2},$$

then

$$\lambda c_2 |\Omega|^{\frac{1}{2}} S_1 ||u|| + \lambda c_2 S_2^2 ||u||^2 \ge a(p-1) ||u||^2,$$

thus one has

$$||u||^2 \le \left(\frac{\lambda c_2 S_1 |\Omega|^{1/2}}{a(p-1) - c_2 \lambda S_2^2}\right)^2.$$
 (2.8)

It follows from (2.7) and (2.8) that

$$\left(\frac{a-\lambda L'}{L}\right)^{\frac{2}{p-1}} \le ||u||^2 \le \left(\frac{\lambda c_2 S_1 |\Omega|^{1/2}}{a(p-1) - c_2 \lambda S_2^2}\right)^2,$$

which is a contradiction when λ is small enough. So there exists a constant $\lambda_1 > 0$ such that $\mathcal{N}_{\lambda}^0(\Omega) = \emptyset$. The proof is complete.

Lemma 2.2. There exists a constant $\lambda_2 > 0$, for $0 < \lambda < \lambda_2$, such that $\mathcal{N}_{\lambda}^{\pm}(\Omega) \neq \emptyset$.

Proof. For $u \in H_0^1(\Omega)$, $u \neq 0$, let

$$A_u(t) = \frac{a}{2}t^2||u||^2 + \frac{b}{4}t^4||u||^4 - \frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}dx,$$
$$K_u(t) = \int_{\Omega}F(x,|tu|)dx,$$

then $I_{\lambda}(tu) = A_u(t) - \lambda K_u(t)$, hence if $\psi_{\lambda}(tu) = \langle I'_{\lambda}(tu), tu \rangle = 0$, then $A'_{u}(t) - \lambda K'_{u}(t) = 0$, where

$$A'_{u}(t) = at^{2} ||u||^{2} + bt^{3} ||u||^{4} - t^{p} \int_{\Omega} h(x) |u|^{p+1} dx,$$
$$K'_{u}(t) = \int_{\Omega} f(x, |tu|) |u| dx.$$

By (F1), one obtains

$$K'_{u}(t) = \int_{\Omega} f(x, |tu|) |u| \, dx \le \int_{\Omega} c_{2} (1 + |tu|^{q}) |u| \, dx. \tag{2.9}$$

We consider the following two cases:

Case 1. When $H(u) \leq 0$ and $\int_{\Omega} f(x,t|u|)u^2 dx > 0$, we have $A'_u(t) > 0$, $A_u(0) = 0$ and $A_u(t)$ increases sharply when $t \to \infty$. At the same time, $K'_u(t) > 0$, $K_u(0)$ is a positive constant and $K_u(t)$ increases relatively slowly when $t \to \infty$ since (2.9). When $H(u) \leq 0$ and $\int_{\Omega} f(x,t|u|)u^2 dx \leq 0$, we have $K'_u(t) \leq 0$, $K_u(0)$ is a positive constant and $K_u(t)$ decreases slowly when $t \to \infty$ since (2.9).

Through the above discussion, we obtain there exists t_1 such that $t_1u \in \mathcal{N}_{\lambda}(\Omega)$ to every situation. When $0 < t < t_1$, one gets $\psi_{\lambda}(tu) < 0$ and when $t > t_1$, we have $\psi_{\lambda}(tu) > 0$, then t_1u is the local minimizer of $I_{\lambda}(u)$, so $t_1u \in \mathcal{N}^+_{\lambda}(\Omega)$. In conclusion, when $H(u) \leq 0$, one has $\mathcal{N}^+_{\lambda}(\Omega) \neq \emptyset$.

Case 2. When H(u) > 0 and $\int_{\Omega} f(x,t|u|)u^2 dx > 0$, we have $A'_u(t) > 0$ as $t \to 0$ and $A'_u(t) < 0$ for $t \to \infty$, so $A_u(t)$ increases as $t \to 0$ and then decreases as $t \to \infty$. At the same time, $K'_u(t) > 0$, $K_u(0)$ is a positive constant and $K_u(t)$ increases relatively slowly when $t \to \infty$ since (2.9). When H(u) > 0 and $\int_{\Omega} f(x,t|u|)u^2 dx < 0$, we have $A'_u(t) > 0$ as $t \to 0$ and $A'_u(t) < 0$ for $t \to \infty$, so $A_u(t)$ increases as $t \to 0$ and then decreases as $t \to \infty$. At the same time, $K'_u(t) < 0$, $K_u(0)$ is a positive constant and $K_u(t)$ decreases slowly when $t \to \infty$ since (2.9).

Through the above discussion, if λ is small enough, there exists $t_1 < t_2$, such that $\psi_{\lambda}(tu) = 0$, for $0 < t < t_1$, $\psi_{\lambda}(tu) < 0$, for $t_1 < t < t_2$, $\psi_{\lambda}(tu) > 0$, and for $t > t_2$, $\psi_{\lambda}(tu) < 0$. Thus t_1u is the local minimizer of $I_{\lambda}(u)$ and t_2u is the local maximizer of $I_{\lambda}(u)$. So there exists $\lambda_2 > 0$, when $\lambda < \lambda_2$, one gets $t_1u \in \mathcal{N}_{\lambda}^+(\Omega)$ and $t_2u \in \mathcal{N}_{\lambda}^-(\Omega)$. Therefore one concludes that when H(u) > 0 and λ is small enough, $\mathcal{N}_{\lambda}^{\pm}(\Omega) \neq \emptyset$. This completes the proof.

Lemma 2.3. Operator I_{λ} is coercive and bounded below on $\mathcal{N}_{\lambda}(\Omega)$.

Proof. From (2.1), (2.2), (2.3) and (F4), one has

$$\begin{split} I_{\lambda}(u) &= a \Big(\frac{1}{2} - \frac{1}{p+1}\Big) \|u\|^2 + b \Big(\frac{1}{4} - \frac{1}{p+1}\Big) \|u\|^4 \\ &- \lambda \int_{\Omega} (F(x, |u| - \frac{1}{p+1} f(x, |u|) |u|) \, dx \\ &\geq a \Big(\frac{1}{2} - \frac{1}{p+1}\Big) \|u\|^2 + b \Big(\frac{1}{4} - \frac{1}{p+1}\Big) \|u\|^4 - \lambda c_3 \int_{\Omega} (1 + |u|^2) \, dx \\ &\geq a \Big(\frac{1}{2} - \frac{1}{p+1}\Big) \|u\|^2 + b \Big(\frac{1}{4} - \frac{1}{p+1}\Big) \|u\|^4 - \lambda c_3 \Big(|\Omega| + S_2^2 \|u\|^2\Big) \\ &\geq \Big(\frac{a(p-1)}{2(p+1)} - \lambda c_3 S_2^2\Big) \|u\|^2 + b \Big(\frac{1}{4} - \frac{1}{p+1}\Big) \|u\|^4 - \lambda c_3 |\Omega|. \end{split}$$

By $3 , it follows that <math>I_{\lambda}(u)$ is coercive and bounded below on $\mathcal{N}_{\lambda}(\Omega)$. The proof is complete.

Remark 2.4. From Lemmas 2.1 and 2.2, one has $\mathcal{N}_{\lambda}(\Omega) = \mathcal{N}_{\lambda}^{+}(\Omega) \cup \mathcal{N}_{\lambda}^{-}(\Omega)$ for all $0 < \lambda < \min\{\lambda_{1}, \lambda_{2}\}$. Furthermore, we obtain $\mathcal{N}_{\lambda}^{+}(\Omega)$ and $\mathcal{N}_{\lambda}^{-}(\Omega)$ are non-empty, thus, we may define

$$\alpha_{\lambda}^{+} = \inf_{u \in \mathcal{N}_{+}^{+}(\Omega)} I_{\lambda}(u), \quad \alpha_{\lambda}^{-} = \inf_{u \in \mathcal{N}_{-}^{-}(\Omega)} I_{\lambda}(u).$$

Lemma 2.5. If $u \in H_0^1(\Omega) \setminus \{0\}$, there exists a constant $\lambda_3 > 0$, such that $I_{\lambda}(tu) > 0$, for $\lambda < \lambda_3$.

Proof. For every $u \in H_0^1(\Omega)$, $u \neq 0$, if $H(u) \leq 0$, by (2.4), we obtain $I_{\lambda}(tu) > 0$ when t is large enough. Assume H(u) > 0, and let

$$\phi_1(t) = \frac{a}{2}t^2||u||^2 - \frac{t^{p+1}}{p+1}H(u).$$

Through calculations, one obtains that $\phi_1(t)$ takes on a maximum at

$$t_{\text{max}} = \left(\frac{a\|u\|^2}{H(u)}\right)^{\frac{1}{p-1}}.$$

It follows that

$$\phi_1(t_{\text{max}}) = \frac{p-1}{2(p+1)} \left(\frac{(a||u||^2)^{p+1}}{(\int_{\Omega} h(x)|u|^{p+1} dx)^2} \right)^{\frac{1}{p-1}}$$

$$\geq \frac{p-1}{2(p+1)} \left(\frac{a^{p+1}}{\|h^+\|_{\infty}^2 S_{p+1}^{2(p+1)}} \right)^{\frac{1}{p-1}} := \delta_1.$$

When $1 \le r < 6$, one has

$$(t_{\text{max}})^{r} \int_{\Omega} |u|^{r} dx \leq S_{r}^{r} \left(\frac{a||u||^{2}}{H(u)}\right)^{\frac{r}{p-1}} (||u||^{2})^{r/2}$$

$$= S_{r}^{r} a^{-\frac{r}{2}} \left(\frac{(a||u||^{2})^{p+1}}{(H(u))^{2}}\right)^{\frac{r}{2(p-1)}}$$

$$= S_{r}^{r} a^{-\frac{r}{2}} \left(\frac{2(p+1)}{p-1}\right)^{r/2} \left(\phi_{1}(t_{\text{max}})\right)^{r/2}$$

$$= c\left(\phi_{1}(t_{\text{max}})\right)^{r/2}.$$
(2.10)

Then by (F1) and (F4), we deduce that

$$\int_{\Omega} F(x, t_{\text{max}}|u|) dx$$

$$\leq \frac{1}{p+1} \int_{\Omega} c_4(2 + |t_{\text{max}}u|^2) dx + \int_{\Omega} c_1(|t_{\text{max}}u| + |t_{\text{max}}u|^{q+1})$$

$$\leq B_0 + B_1 \phi_1(t_{\text{max}}) + B_2(\phi_1(t_{\text{max}}))^{1/2} + B_3 \phi_1(t_{\text{max}})^{\frac{q+1}{2}}.$$
(2.11)

Since

$$I_{\lambda}(t_{\max}u) = A_u(t_{\max}) - \lambda K_u(t_{\max}) \ge \phi_1(t_{\max}) - \lambda \int_{\Omega} F(x, t_{\max}|u|) dx,$$

according to (2.4), (2.10) and (2.11), one obtains

$$I_{\lambda}(t_{\max}u) \ge \phi_{1}(t_{\max}) - \lambda \int_{\Omega} F(x, t_{\max}|u|) dx$$

$$\ge \phi_{1}(t_{\max}) - \lambda \left[B_{0} + B_{1}\phi_{1}(t_{\max}) + B_{2}(\phi_{1}(t_{\max}))^{1/2} + B_{3}\phi_{1}(t_{\max})^{\frac{q+1}{2}} \right]$$

$$\ge \delta_{1} \left[1 - \lambda \left(B_{0}\delta^{-1} + B_{1} + B_{2}\delta^{-\frac{1}{2}} + B_{3}\delta^{\frac{q-1}{2}} \right) \right].$$

So, if
$$\lambda < \lambda_3 = (2(B_0\delta^{-1} + B_1 + B_2\delta^{-\frac{1}{2}} + B_3\delta^{\frac{q-1}{2}}))^{-1}$$
, we obtain $I_{\lambda}(t_{\max}u) > 0$. \square

Remark 2.6. If $\lambda < \lambda_3$ and $u \in \mathcal{N}_{\lambda}^-(\Omega)$, by (F2), we conclude that there is a global maximum on u for $I_{\lambda}(u)$, then $I_{\lambda}(u) > I_{\lambda}(t_{\max}u) > 0$.

Lemma 2.7. If $u \in H_0^1(\Omega) \setminus \{0\}$, there exists a constant $\lambda_4 > 0$ such that $\psi_{\lambda}(tu) = \langle I'_{\lambda}(tu), tu \rangle > 0$ when $\lambda < \lambda_4$.

Proof. For every $u \in H_0^1(\Omega)$, $u \neq 0$, if $H(u) \leq 0$, by (2.5), we get $\psi_{\lambda}(tu) > 0$ when t is large enough. Assume H(u) > 0, and let

$$\psi_1(t) = at^2 ||u||^2 - t^{p+1}H(u).$$

Through calculations, we obtain that $\psi_1(t)$ takes on a maximum at

$$\tilde{t}_{\max} = \left(\frac{2a\|u\|^2}{(p+1)H(u)}\right)^{\frac{1}{p-1}}.$$

It follows that

$$\begin{split} \psi_1(\tilde{t}_{\max}) &= \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}} \Big(\frac{p-1}{p+1}\Big) \Big(\frac{(\|u\|^2)^{p+1}}{(\int_{\Omega} h(x)|u|^{p+1} dx)^2}\Big)^{\frac{1}{p-1}} \\ &\geq \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}} \Big(\frac{p-1}{p+1}\Big) \Big(\frac{1}{\|h^+\|_{\infty}^2 S_{n+1}^{2(p+1)}}\Big)^{\frac{1}{p-1}} := \delta_2. \end{split}$$

Similar to the proof of Lemma 2.5, when $1 \le r < 6$, one obtains

$$(\tilde{t}_{\max})^r \int_{\Omega} |u|^r dx \le \tilde{c} \left(\psi_1(\tilde{t}_{\max}) \right)^{r/2}. \tag{2.12}$$

According to (F1), we deduce that

$$\int_{\Omega} f(x, \tilde{t}_{\max}|u|) |\tilde{t}_{\max}u| \, dx \leq c_1 \int_{\Omega} \left(|\tilde{t}_{\max}u| + |\tilde{t}_{\max}u|^{q+1} \right) \, dx \\
\leq b_0 \left(\psi_1(\tilde{t}_{\max}) \right)^{1/2} + b_1 \left(\psi_1(\tilde{t}_{\max}) \right)^{\frac{q+1}{2}}, \tag{2.13}$$

then, by (2.5), (2.12) and (2.13), it follows that

$$\begin{split} \psi_{\lambda}(\tilde{t}_{\max}u) &\geq \psi_{1}(\tilde{t}_{\max}) - \lambda \int_{\Omega} f(x, \tilde{t}_{\max}|u|) |\tilde{t}_{\max}u| \, dx \\ &\geq (\psi_{1}(\tilde{t}_{\max}))^{\frac{1+q}{2}} \left(\psi_{1}(\tilde{t}_{\max}))^{\frac{1-q}{2}} - \lambda (b_{0}(\psi_{1}(\tilde{t}_{\max}))^{-\frac{q}{2}} + b_{1}) \right) \\ &\geq \delta_{2}^{\frac{1+q}{2}} \left(\delta_{2}^{\frac{1-q}{2}} - \lambda (b_{0}\delta_{2}^{-\frac{q}{2}} + b_{1}) \right), \end{split}$$

consequently, when $\lambda < \lambda_4 = \delta_2^{\frac{1-q}{2}}/2(b_0\delta_2^{-\frac{q}{2}} + b_1)$, we obtain $\psi_{\lambda}(\tilde{t}_{\max}u) > 0$.

Remark 2.8. We claim that: (1) If $H(u) \leq 0$ for every $u \in H_0^1(\Omega) \setminus \{0\}$, there exists t_1 such that $I_{\lambda}(t_1u) < 0$ for $t_1u \in \mathcal{N}_{\lambda}^+(\Omega)$. Indeed, obviously, in this condition, $\psi_{\lambda}(0) < 0$ and $\lim_{t \to \infty} \psi_{\lambda}(tu) = +\infty$, therefore, there exists $t_1 > 0$ such that $\psi_{\lambda}(tu) = 0$. Because of $\psi_{\lambda}(tu) < 0$ for $0 < t < t_1$ and $\psi_{\lambda}(tu) > 0$ for $t > t_1$, we obtain that $t_1u \in \mathcal{N}_{\lambda}^+(\Omega)$ and $I_{\lambda}(t_1u) < I_{\lambda}(0) = 0$.

(2) If H(u) > 0 for $0 < \lambda < \lambda_1$, there exists $t_1 < t_2$, such that $t_1 u \in \mathcal{N}_{\lambda}^+(\Omega)$, $t_2 u \in \mathcal{N}_{\lambda}^-(\Omega)$ and $I_{\lambda}(t_1 u) < 0$. Indeed, in this condition, one gets $\psi_{\lambda}(0) < 0$ and $\lim_{t \to \infty} \psi_{\lambda}(tu) = -\infty$. By Lemma 2.7, there exists T > 0 such that $\psi_{\lambda}(Tu) > 0$, therefore, we could obtain there exists $0 < t_1 < T < t_2$, such that $\psi_{\lambda}(t_1 u) = \psi_{\lambda}(t_2 u) = 0$, $t_1 u \in \mathcal{N}_{\lambda}^+(\Omega)$, $t_2 u \in \mathcal{N}_{\lambda}^-(\Omega)$ and $I_{\lambda}(t_1 u) < I_{\lambda}(0) = 0$.

Lemma 2.9. Suppose $\{u_n\} \subset H_0^1(\Omega)$ is a $(PS)_c$ sequence for $I_{\lambda}(u)$, then $\{u_n\}$ is bounded in $H_0^1(\Omega)$.

Proof. Let $\{u_n\} \subset H_0^1(\Omega)$ be such that

$$I_{\lambda}(u_n) \to c$$
, $I'_{\lambda}(u_n) \to 0$ as $n \to \infty$.

We claim that $\{u_n\}$ is bounded in $H_0^1(\Omega)$. Otherwise, we can suppose that $||u_n|| \to \infty$ as $n \to \infty$. It follows from (2.1), (2.4), (2.5) and (F4) that

$$\begin{split} &1+c+o(1)\|u_n\|\\ &\geq I_{\lambda}(u_n)-\frac{1}{p+1}\langle I_{\lambda}'(u_n),u_n\rangle\\ &\geq a\Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u_n\|^2+b\Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u_n\|^4\\ &-\lambda\int_{\Omega}[F(x,|u_n|)-\frac{1}{p+1}f(x,|u_n|)|u_n|]\,dx\\ &\geq a\Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u_n\|^2+b\Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u_n\|^4-\lambda c_3\int_{\Omega}(1+|u_n|^2)\,dx\\ &\geq a\Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u_n\|^2+b\Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u_n\|^4-\lambda c_3\left(|\Omega|+S_2^2\|u_n\|^2\right)\\ &\geq \Big(\frac{a(p-1)}{2(p+1)}-\lambda c_3S_2^2\Big)\|u_n\|^2+b\Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u_n\|^4-\lambda c_3|\Omega|. \end{split}$$

Since $3 , it follows that the last inequality is an absurd. Therefore, <math>\{u_n\}$ is bounded in $H_0^1(\Omega)$. So Lemma 2.9 holds.

3. Proof of Theorem 1.2

Let $\lambda^* = \min\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$, then Lemmas 2.1–2.9 hold for every $\lambda \in (0, \lambda^*)$. We prove Theorem 1.2 by three steps.

Step 1. We claim that $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{+}(\Omega)$. Indeed, from Remark 2.8, there exists $u \in \mathcal{N}_{\lambda}^{+}(\Omega)$ such that $I_{\lambda}(u) < 0$, so it follows that $\inf_{u \in \mathcal{N}_{\lambda}^{+}(\Omega)} I_{\lambda}(u) < 0$. By Lemma 2.3, let $\{u_n\}$ be a sequence minimizing for $I_{\lambda}(u)$ on $\mathcal{N}_{\lambda}^{+}(\Omega)$. Clearly, this minimizing sequence is of course bounded, up to a subsequence (still denoted $\{u_n\}$), there exists $u_1 \in H_0^1(\Omega)$ such that

$$u_n
ightharpoonup u_1$$
, weakly in $H_0^1(\Omega)$, $u_n
ightharpoonup u_1$, strongly in $L^p(\Omega)$ $(1 \le p < 6)$, $u_n(x)
ightharpoonup u_1$, a.e. in Ω .

Now we claim that $u_n \to u_1$ in $H_0^1(\Omega)$. In fact, set $\lim_{n\to\infty} ||u_n||^2 = l^2$. By the Ekeland's variational principle [7], it follows that

$$o(1) = \langle I_{\lambda}'(u_n), u_1 \rangle$$

$$= (a+bl^2) \int_{\Omega} (\nabla u_n \cdot \nabla u_1 + v(x)u_n u_1) dx$$

$$- \int_{\Omega} h(x) |u_n|^p u_1 dx - \lambda \int_{\Omega} f(x, |u_n|) |u_1| dx,$$

thus one obtains

$$0 = (a+bl^2)||u_1||^2 - \int_{\Omega} h(x)|u_1|^{p+1} dx - \lambda \int_{\Omega} f(x,|u_1|)|u_1| dx.$$
 (3.1)

Replacing u_1 with u_n , we obtain

$$o(1) = \langle I_{\lambda}'(u_n), u_n \rangle$$

= $(a+bl^2) l^2 - \int_{\Omega} h(x) |u_n|^{p+1} dx - \lambda \int_{\Omega} f(x, |u_n|) |u_n| dx,$

consequently, one obtains

$$0 = (a+bl^2)l^2 - \int_{\Omega} h(x)|u_1|^{p+1} dx - \lambda \int_{\Omega} f(x,|u_1|)|u_1| dx.$$
 (3.2)

According to (3.1) and (3.2), we obtain $||u_1||^2 = l^2 = \lim_{n \to \infty} ||u_n||^2$, which suggests that $u_n \to u_1$ in $H_0^1(\Omega)$. Therefore, by Remark 2.8, one obtains

$$I_{\lambda}(u_1) = \alpha_{\lambda}^+ = \lim_{n \to \infty} I_{\lambda}(u_n) = \inf_{u \in \mathcal{N}_{\tau}^+(\Omega)} I_{\lambda}(u) < 0.$$

So we proved the claim.

Step 2. $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{-}(\Omega)$. As a matter of fact, from Remark 2.6, we have $I_{\lambda}(u) > 0$ for $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$, so it follows that $\inf_{u \in \mathcal{N}_{\lambda}^{-}(\Omega)} I_{\lambda}(u) > 0$. Similarly to step 1, we define a sequence $\{u_n\}$ as a minimizing for $I_{\lambda}(u)$ on $\mathcal{N}_{\lambda}^{-}(\Omega)$, and there exists $u_2 \in H_0^1(\Omega)$ such that

$$u_n \rightharpoonup u_2$$
, weakly in $H_0^1(\Omega)$,
 $u_n \to u_2$, strongly in $L^p(\Omega)$ $(1 \le p < 6)$,
 $u_n(x) \to u_2$, a.e. in Ω .

We claim that $H(u_n) > 0$. By contradiction, assume $H(u_n) \le 0$, then $-pH(u_n) \ge 0$, from $u_n \in \mathcal{N}_{\lambda}^-(\Omega)$, by (2.1), (2.4), (2.5) and (F2), it follows that

$$a||u_n||^2 < a||u_n||^2 + 3b||u_n||^4 - pH(u_n)$$

$$<\lambda \int_{\Omega} f_u(x,|u_n|)|u_n|^2 dx$$

 $\leq \lambda \|f_u(x,|u_n|)\|_{L^{\infty}} S_2^2 \|u_n\|^2,$

which is a contradiction when λ is small enough. We get $H(u_n) > 0$. Therefore $H(u_2) > 0$ as $n \to \infty$. Similar to the proof of step 1, one can get $u_n \to u_2$ in $H_0^1(\Omega)$. Therefore,

$$I_{\lambda}(u_2) = \alpha_{\lambda}^- = \lim_{n \to \infty} I_{\lambda}(u_n) = \inf_{u \in \mathcal{N}_{\lambda}^-(\Omega)} I_{\lambda}(u) > 0.$$

From above discussion, we obtain that $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{-}(\Omega)$. By Step 1 and Step 2, there exist $u_{1} \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $u_{2} \in \mathcal{N}_{\lambda}^{-}(\Omega)$ such that $I_{\lambda}(u_1) = \alpha_{\lambda}^+ < 0$ and $I_{\lambda}(u_2) = \alpha_{\lambda}^- > 0$. It follows that u_1 and u_2 are nonzero solutions of (1.1). Because of $I_{\lambda}(u) = I_{\lambda}(|u|)$, one gets $u_1, u_2 \geq 0$. Therefore, by the Harnack inequality (see [6, Theorem 8.20]), we have $u_1, u_2 > 0$ a.e. in Ω . Consequently the proof of Theorem 1.2 is complete.

Acknowledgments. This research was supported by the Research Foundation of Guizhou Minzu University (No. 15XJS013; No. 15XJS012).

References

- [1] A. M. Mao, S. X. Luan; Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl. 383 (2011), 239-243.
- [2] A. M. Mao, Z. T. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275–1287.
- C. O. Alves, F. J. S. A. Corréa, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
- [4] C. Chen, Y. Kuo, T. Wu; The Nehari manifold for a Kirchhoff type problem involving signchanging weight functions, J. Differential Equations. 250 (2011), 1876–1908.
- C. T. Cheng, X. Wu; Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), 4883-4892.
- [6] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
- [7] I. Ekeland; On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
- [8] G. B. Li, H. Y. Ye; Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^3 , J. Differential Equations. 257 (2014), 566–600.
- [9] G. M. Figueiredo, J. R. Santos Junior; Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Diff. Integral Equations. 25 (2012), 853-868.
- [10] J. J. Nie, X. Wu; Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal. 75 (2012), 3470–3479.
- [11] J. H. Jin, X. Wu; Infinitely many radial solutions for Kirchhoff-type problems in \mathbb{R}^N , J. Math. Annal. Appl. 369 (2010), 564-574.
- [12] L. Wei, X. M. He; Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), 473-487.
- [13] T. F. Ma, J. E. M. Rivera; Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 (2003), 243–248.
- X. M. He, W. M. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Analysis. 70 (2009), 1407–1414.
- [15] Y. H. Li, F. Y. Li, J. P. Shi; Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations. 253 (2012), 2285–2294.

Gao-Sheng Liu

SCHOOL OF SCIENCE, GUIZHOU MINZU UNIVERSITY, GUIYANG 550025, CHINA E-mail address: 772936104@qq.com

Chun-Yu Lei (corresponding author)

School of Science, Guizhou Minzu University, Guiyang 550025, China $E\text{-}mail\ address$: leichygzu@sina.cn, Phone +86 15985163534

Liu-Tao Guo

School of Science, Guizhou Minzu University, Guiyang 550025, China $E\text{-}mail\ address\colon 350630542@qq.com$

Hong Rong

School of Science, Guizhou Minzu University, Guiyang 550025, China $E\text{-}mail\ address\colon$ 402453552@qq.com