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MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF
PROBLEMS WITH SIGN-CHANGING POTENTIAL

GAO-SHENG LIU, CHUN-YU LEI, LIU-TAO GUO, HONG RONG

ABSTRACT. In this article, we study the existence and multiplicity of positive
solutions for a class of Kirchhoff type equations with sign-changing potential.
Using the Nehari manifold, we obtain two positive solutions.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

Consider the Kirchhoff type problems with Dirichlet boundary value conditions
—(a+ b/ (|Vul? + v(x)u?) dz)(Au — v(z)u) = h(z)uP + \f(z,u) in Q,
Q
u=0 on 09,
where Q is a smooth bounded domain in R, @ > 0,5 >0, A > 0,3 <p <5,
h € C(Q), with ht = max{h,0} # 0, v € C(Q) is a bounded function with
lv]|oo > 0, and f(x,u) satisfies the following two conditions:
(F1) f(z,u) € CY(QxR) with f(z,0) > 0, and f(z,0) # 0. There exists
a constant ¢; > 0, such that f(z,u) < ¢;(1 + u9) for 0 < ¢ < 1 and
(z,u) € QA x RT.
(F2) fu(z,u) € L®(Q x R) and for all u € HJ(Q), [, 2 f(z,t|u])u? has the
same sign for every t € (0, +00).
Remark 1.1. Note that under assumptions (F1) and (F2) hold, we have:
(F3) there exists a constant ca > 0, such that pf(z,u) — ufy(x,u) < co(1 + u),
for all (z,u) € @ x RT.
(F4) F(x,u) — p%f(x,u)u < ca(1 4+ u?), for all (x,u) € Q x RY, where F(z,u)
is defined by F(z,u) = [ f(z,s)ds for z € Q, u € R.
In recent years, the existence and multiplicity of solutions to the nonlocal prob-
lem

(1.1)

—<a—|—b/ \Vu|2dm)Au:g(x,u) in Q,
Q

u=0, on 9Jf,
have been studied by various researchers and many interesting and important re-
sults can be found. For instance, positive solutions could be obtained in [3| [5] [13].

(1.2)
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Especially, Chen et al [4] discussed a Kirchhoff type problem when g(z,u) =
f(@)uP2u + Ag(z)|u|?%u, where 1 < ¢ < 2 < p < 27(2* = 2L if N > 3,
2* =00 if N =1,2), f(z) and g(x) with some proper conditions are sign-changing
weight functions. And they have obtained the existence of two positive solutions if
p>4,0< X< A(a). Researchers, such as Mao and Zhang [2], Mao and Luan [I],
found sign-changing solutions. As for infinitely many solutions, we refer readers
to [1I 12]. He and Zou [I4] considered the class of Kirchhoff type problem when
g(z,u) = Af(x,u) with some conditions and proved a sequence of a.e. positive weak
solutions tending to zero in L*°(2). In addition, problems on unbounded domains
have been studied by researchers, such as Figueiredo and Santos Junior [9], Li et
al. [I5], Li and Ye [8].
Our main result read as follows.

Theorem 1.2. Assume that conditions (F1) and (F2) hold. Then there exists \* >
0 such that for any X € (0,\*), problem (1.1|) has at least two positive solutions.

The article is organized as following: Section 2 contains notation and prelimi-
naries. Section 3 contains the proof of Theorem

2. PRELIMINARIES

Throughout this article, we use the following notation: The space Hj (L) is
equipped with the norm |Ju||? = [,,(|Vu|?+v(z)|u|?) dz. Let S, be the best Sobolev
constant for the embedding of H{(Q2) into L"(£2), where 1 < r < 6, then

R (NP
We define a functional I(u): H}(Q) — R by
_ @y by 1 _ 1
B = Sl + Sl - ) - [ P dr forue HY@), (22

where
H(u):/h(x)|u|erl dz.
Q

The weak solutions of (1.1 is the critical points of the functional I. Generally
speaking, a function u is called a solution of (1.1)) if u € HE () and for all o € HJ (£2)
it holds

(a+b\|u||2)/Q(Vu~V(p—l—v(m)ugo)dx:Ah(x)|u|p_l|u\¢dx+A/§zf(x, |u])p de.

As I, (u) is unbounded below on H{ (), it is useful to consider the functional on
the Nehari manifold:
NA(Q) = {u € Hy(D\{0} : (I} (u), u) = 0}.
It is obvious that the Nehari manifold contains all the nontrivial critical points of
I, thus, for u € N, (Q), if and only if
(a+ bllul)]ul® - / h(a)|uP*t da — A/ S, Ju))|ul dz = 0. (2.3)
Q Q

Define
Pau) = (I4(u), u),
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then it follows that
$p+1

/ h(z)|ulP™ dz — /\/ F(z, [tu]) dz, (2.4)
p+1Jg Q

a(tu) = at®[|ul]* + bt [Jul|* — 41 / h(@)|ulP* do — A/ [z, [tu]) tul dz, (2.5)
Q Q

a b
I(tu) = Sl + 76"l -

(04 ). ) = 2082 ] + 46t = (p+ DI [ Bl de
Q
(2.6)
[ e feableaf do = x| foeul) el
Q Q

Notice that ¢ (tu) = 0 if and only if tu € Ny (R2). And we divide N () into three
parts:

Ny (©) = {u € NA(Q) : (¥4(u),u) <0},
N (Q) = {u € Na(Q) : (WA (u), w) > 0},
NR(Q) = {u € NX(Q) : (¥ (u),u) = 0}.
Then we have the following results.
Lemma 2.1. There exists a constant Ay > 0, for 0 < X\ < Ay, such that NY () = 0.

Proof. By contradiction, suppose u € NY(Q), we obtain

(WA (), u) = 2alull® + 4blul|* — (p + 1)/ h(@)[ul* dz
Q

- A/ ful, [u])uf® do — /\/Qf(:c, [ul)|u| dz = 0.
On one hand, from , , and (F2), one deduces that
allul + 3blull* =p | W@t de 43 [ fuoul)a da
< Lllgllpﬂ + AL %, ’
where L = p||h||005§111, L' = ||fu(,|u|)| L= S3, then

Liul** > (a = AL)|[ul® + 3b]ul* = (a = AL [[ull?,

consequently,

2 > (=AY 2.7

On the other hand, by (2.1)), (2.3), and (F3), we obtain
alp — 1) [ull® + (bp = 3) ull* < A( /Q (o (a,[ul) = fule, |ul)|ul)u] dz)

< cQA/<\u|+|u\2>dw
Q

< Aca| QU2 1 [[ul] + Aea S5 ul?,
then
Aca| Q2 S Jull + AczSE[lul® > a(p — 1) |lull?,
thus one has

)\0251|Q|1/2 )2

a2 < (a(p_ 5 o2 (2.8)
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It follows from (2.7)) and (2.8]) that
a— AL\ 721 A2 S Q2 2
(=) =P = (G n =)
L a(p—1) — caA\S3
which is a contradiction when A is small enough. So there exists a constant A\; > 0
such that N?(Q) = (. The proof is complete. O

Lemma 2.2. There exists a constant Ay > 0, for 0 < X\ < Aa, such that NiE(Q) # 0.
Proof. For u € H}(Q), u # 0, let

tpt1
p+1

b
A = §R1P + Gl = = [ hiaap ™

Ku(t) = /QF(x, itu]) da,

then I (tu) = A,(t) — MK, (t), hence if 5 (tu) = (I} (tu),tu) = 0, then A/ (t) —
MK, (t) = 0, where

A0 = at ulP + 0 ul = o [ Bl da,
Q

KI\(t) = / £, tul)ul da.

By (F1), one obtains

K!(t) = /Qf(x, [tu])|u| dz < /902(1 + [tu]?)|u| dz. (2.9)

We consider the following two cases:

Case 1. When H(u) < 0 and [, f(z, t|u|)u? dz > 0, we have A}, (t) > 0, A,(0) =0
and A, (t) increases sharply when ¢t — co. At the same time, K/ (t) > 0, K,(0) is
a positive constant and K, (t) increases relatively slowly when ¢t — oo since (2.9).
When H(u) <0 and [, f(z,tlu])u? dz < 0, we have K/, (t) < 0, K,(0) is a positive
constant and K, (t) decreases slowly when ¢ — oo since (2.9).

Through the above discussion, we obtain there exists ¢; such that t;u € N (Q2)
to every situation. When 0 < ¢t < t1, one gets ¥ (tu) < 0 and when ¢t > t1, we
have ) (tu) > 0, then tju is the local minimizer of I, (u), so tiu € Ny (). In
conclusion, when H(u) < 0, one has N, (Q) # 0.

Case 2. When H(u) > 0 and [, f(x,t|u|)u® dz > 0, we have A} (t) >0 ast — 0
and A (t) < 0 for t — oo, so A,(t) increases as t — 0 and then decreases as t — co.
At the same time, K (t) > 0, K,(0) is a positive constant and K, (t) increases
relatively slowly when t — oo since (2.9). When H(u) > 0 and [, f (=, t|u|)u? dz <
0, we have A/ (t) > 0 ast — 0 and A} (t) < 0 for t — o0, so A,(t) increases ast — 0
and then decreases as t — co. At the same time, K/ (t) < 0, K,(0) is a positive
constant and K, (t) decreases slowly when ¢ — oo since (2.9).

Through the above discussion, if A is small enough, there exists ¢; < ts, such
that ¥y (tu) = 0, for 0 < t < t1, Ya(tu) < 0, for t1 < t < to, Ya(tu) > 0, and for
t > to, ¥a(tu) < 0. Thus tju is the local minimizer of I (u) and tou is the local
maximizer of Iy(u). So there exists Ay > 0, when A < Ag, one gets tju € Nj(ﬂ)
and tou € N, (Q). Therefore one concludes that when H(u) > 0 and A is small
enough, N (Q) # 0. This completes the proof. O
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Lemma 2.3. Operator I is coercive and bounded below on Ny (£2).
Proof. From (12.1), (2.2)), (2.3) and (F4), one has

1 1 1 1
s = a5 = =g Il + b5 = )l

1
A [ (P ful = e ) do

11 , /11
>afz - —— b(——i) LD /1 2)d
> of Yl (G — gl = aes [ (0t ul?)

2 p+1
1 1 1 1
> a5 = —= ) lul® +b(5 — — )l = Aes (102 + 3 u?)
> a5~ oo Il +b( = g )l = s (192 + 311l
a(p—1) 2 2 1 1 4
> — Ac3S. bl- — —— — Ac3|€2].
> (51~ M8l + 0 = oo el = desl
By 3 < p < 5, it follows that I(u) is coercive and bounded below on N, (f2). The
proof is complete. O

Remark 2.4. From Lemmas|2.1/and one has N3(Q2) = N7 (Q)UN; () for all
0 < A < min{\1, \2}. Furthermore, we obtain N, (Q2) and N () are non-empty,
thus, we may define

ay = in;f I(u), oy = inf Iy(u).
ueNT(Q) ue€N ()

Lemma 2.5. Ifu € H}(2)\{0}, there exists a constant A3 > 0, such that Iy (tu) >
0, for A < As.

Proof. For every u € HJ (), u # 0, if H(u) < 0, by (2.4), we obtain I)(tu) > 0
when ¢t is large enough. Assume H(u) > 0, and let
p+1

a o 9 t
t) = —t —
61(0) = 5l ~

Through calculations, one obtains that ¢1(t) takes on a maximum at

2y e
o ()

It follows that

_op—1 o (el
1 (tmax) = 2(p + 1) ((fﬂ h(x)|ulp+t dx)2>

p—1 ( aPt1 )ﬁ Ny
= 2(p+1) = o
2(p+ 1) M|nt||2, 858

When 1 < r < 6, one has
al|ull?

(tmax)r/ﬂ |ul" dz < 5’:( ) )ﬁ(HUHQ)Tm

-/ (a|lul]?)PHN o=
:s;a—2(<(llH(lu§)2 )
= 5705 (A (01 ta))
= (1 (tmax)) .

(2.10)
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Then by (F1) and (F4), we deduce that
/ F(&, b u]) da
Q

1
< 7/ c1(2 + |tmaxul?) da —|—/ 1 (|Emaxte] + [Emaxte| 1) (2.11)
p+1Jo )

q+1

S BO + Bl¢1 (tmax) + B2(¢1 (tmax))1/2 + B3¢1(tmax) 2.

Since
I)\(tmaxu) = Au(tmax) - /\Ku(tmax) Z ¢1(tmax) - )‘/ F(xatmax|u‘) d$,
Q
according to (2.4)), (2.10) and (2.11]), one obtains

I\ (tmactt) 2 61 (fma) — A / F (2, ) dac
Q

q+1

2 ¢1 (tmax) - A |:BO + Bl(rbl (tmax) + B2(¢1 (tmax))1/2 + B3¢1 (tmax)T]
> 6 {1 — /\<Bo5_1 + B+ By 7 4 335%1)]
So, if A < A3 = (2(Bo6~ !+ By +Byd~% + B35 “= )1, we obtain I (tmaxt) > 0. O

Remark 2.6. If A < A3 and v € N, (), by (F2), we conclude that there is a
global maximum on u for I (u), then Iy(u) > Ix(tmaxu) > 0.

Lemma 2.7. Ifu € H}(Q)\{0}, there exists a constant Ay > 0 such that 1y (tu) =
(I} (tu), tu) > 0 when A < Ag.

Proof. For every u € H}(Q), u# 0, if H(u) <0, by (2.5), we get ¥, (tu) > 0 when
t is large enough. Assume H(u) > 0, and let

1 (t) = at?|Ju|®* — P H (u).

Through calculations, we obtain that v (t) takes on a maximum at

- ( 2al|u|? )Fl
N p+1)H (u) '
It follows that
1

- a \71/p— ul )P pr
V1(tmax) = (p2+ 1) (i + 1) ((fQ h((|!p)|||u)p+1 d:c)z)

>(2a )%(p—lﬂ 1 )Fll-—a
= 2(p+1) 02
p+1 P+ 2,8,

Similar to the proof of Lemma when 1 < r < 6, one obtains

g r r ~ g r/2
(tmax) / )" dz < & (1 (Fmax)) (2.12)
Q
According to (F1), we deduce that
/ F (2, Emax [u]) [Emaxu| dz < cl/ (|Emaxctt| + [Fmaxu|T?) dz

gq+1

S bO (1/)1 (fmax)>1/2 + bl ('(/]1 (tNmax)) 2 )
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then, by (2.5), (2.12)) and (2.13]), it follows that
O (Frnatt) = 1 (Frnas) — A / F (@ Fanat]) [Fratt]
Q

1+q

> (91(Fma) F (01Fma) T = Ao (1 ()% + b1))
> 6,7 (5,7 — Mbody f +01)).

1—gq _ g ~
consequently, when A < Ay =052 /2(body * + b1), we obtain ¥y (fmaxu) > 0. O

Remark 2.8. We claim that: (1) If H(u) < 0 for every u € H}(Q)\{0}, there exists
t1 such that I)(tju) < 0 for tyu € N} (Q). Indeed, obviously, in this condition,
¥A(0) < 0 and lim;,o ¥y (tu) = o0, therefore, there exists t; > 0 such that
¥a(tu) = 0. Because of ¥y (tu) < 0 for 0 < ¢t < ¢; and ¥x(tu) > 0 for ¢ > t1, we
obtain that t1u € Ny (Q) and I)(t1u) < I,(0) = 0.

(2) If H(u) > 0 for 0 < A < Ay, there exists t; < t2, such that t;u € N;(Q),
tou € Ny () and I(t;u) < 0. Indeed, in this condition, one gets ¢,(0) < 0 and
lim;—, o0 5 (tu) = —oo0. By Lemma there exists T' > 0 such that ¢y (Tu) > 0,
therefore, we could obtain there exists 0 < t; < T < ta, such that ¥y (tiu) =
¢>\(t2u) =0, tiu € N;(Q), tou € N;(Q) and I,\(tlu) < I,\(O) =0.

Lemma 2.9. Suppose {u,} C H}(Q) is a (PS). sequence for Ix(u), then {u,} is
bounded in Hg(£2).

Proof. Let {u,} C H(2) be such that
I\(un) — ¢, Ii(up) — 0 asn— oco.

We claim that {u,,} is bounded in H}(Q). Otherwise, we can suppose that ||u,| —
oo as n — oo. It follows from (2.1)), (2.4), (2.5) and (F4) that

1+ c+o(1)]|uall

> Ii(un) — D+ 1<I§\(un),un>
1 1 1 1
205 et o
R L A G L1
- A F(x,|un|) — —— f(x, |un|) |unl|] dz
1P ) = = £ oDl
1 1 1 1
>al= = ——)|u,|? b(——7> EY /1 L2 d
> a5 = ool 6( g = g Yl = des [ (U fun?) do
> a5~ P + 05 — Yl — Aes (192 + 31 )
el 2 p+ 1 n 4 p+ 1 n 3 2 n
a(p—1) 2 2 1 1 4
> (B2 2o 83 uall? 05— ) luall* = Acs .
> (57~ oS3 luall +b(5 = o7 lunl = Aesf
Since 3 < p < 5, it follows that the last inequality is an absurd. Therefore, {u,} is
bounded in Hg(£2). So Lemma [2.9 holds. O

3. PROOF OF THEOREM [I.2]

Let A* = min{A1, A2, A3, A1}, then Lemmas hold for every A € (0,\*).
We prove Theorem by three steps.
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Step 1. We claim that I (u) has a minimizer on Ny (€2). Indeed, from Remark
there exists u € Ny (Q) such that I, (u) < 0, so it follows that infueN;(Q) I (u) <O.

By Lemma let {u,} be a sequence minimizing for Iy (u) on Ny (Q). Clearly,
this minimizing sequence is of course bounded, up to a subsequence (still denoted
{un}), there exists u; € H}(Q) such that

U, — up, weakly in HJ(Q),
un — ug, strongly in LP(Q) (1 < p < 6),
up(x) — uy, a.e. in Q.

Now we claim that w, — u; in Hg(2). In fact, set lim, o ||un||? = 2. By the

Ekeland’s variational principle [7], it follows that
o(1) = (I} (un), u1)

= (a+bl?) / (Vuy, - Vuy + v(z)uyu ) do
Q

= [ h@lualrurde = A [ o |
Q Q
thus one obtains
0= (a+b02)|u | —/ h(@)lua [P de — )\/ Fo D hnlde.  (3.1)
Q Q
Replacing u; with u,, we obtain
o(1) = (I\(un), un)
= (a+b?) 12—/ h(@)|un P+ dx—)\/ F(@s [un])|un] de,
Q Q

consequently, one obtains
0= (a+bl%)% - / h(x)|up [PT dx — A/ Iz, |u])|ug | de. (3.2)
Q Q
According to (3.1)) and (3.2)), we obtain |Juy[|* = I = lim;, o ||u||?, which suggests
that u, — u; in H}(2). Therefore, by Remark one obtains

A

So we proved the claim.

Step 2. I)(u) has a minimizer on N, (). As a matter of fact, from Remark
we have Iy(u) > 0 for u € Ny (Q2), so it follows that infueN;(Q) Iy(u) > 0.

Similarly to step 1, we define a sequence {u,,} as a minimizing for I (u) on N, (),
and there exists uy € H}(Q) such that

U, — uy, weakly in HJ(Q),
up — ug, strongly in L(Q) (1 < p < 6),
un(x) — ug, a.e. in Q.

We claim that H(u,) > 0. By contradiction, assume H (u,) < 0, then —pH (u,,) >
0, from u,, € N, (), by (2.1)), (2.4), (2.5) and (F2), it follows that

allun]* < aljunll® + 3bllun||* — pH (un)
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<>\/ Ful@, [ n? da
Q
<Al fu(, [un]) || 2o S5 [|unl?,

which is a contradiction when A is small enough. We get H(u,) > 0. Therefore
H(uy) > 0 as n — oo. Similar to the proof of step 1, one can get u, — us in
H}(Q). Therefore,

I\(ug) = o) = nlLIr;OIA(un) = e/i\?*f(ﬂ) Iy(u) > 0.
UENX

From above discussion, we obtain that Iy (u) has a minimizer on N (£2).

By Step 1 and Step 2, there exist ug € N, (Q) and uy € Ny () such that
In(uy) = cq < 0 and Iy(u2) = a, > 0. It follows that u; and uo are nonzero
solutions of (1.1). Because of Ix(u) = I)(Ju|), one gets uj,us > 0. Therefore,
by the Harnack inequality (see [6l Theorem 8.20]), we have uj,us > 0 a.e. in €.
Consequently the proof of Theorem [I.2]is complete.
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