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SPECTRAL ANALYSIS FOR THE EXCEPTIONAL Xm-JACOBI
EQUATION

CONSTANZE LIAW, LANCE LITTLEJOHN, JESSICA STEWART KELLY

Abstract. We provide the mathematical foundation for the Xm-Jacobi spec-

tral theory. Namely, we present a self-adjoint operator associated to the differ-

ential expression with the exceptional Xm-Jacobi orthogonal polynomials as
eigenfunctions. This proves that those polynomials are indeed eigenfunctions

of the self-adjoint operator (rather than just formal eigenfunctions). Further,

we prove the completeness of the exceptional Xm-Jacobi orthogonal polyno-
mials (of degrees m, m + 1, m + 2, . . . ) in the Lebesgue-Hilbert space with

the appropriate weight. In particular, the self-adjoint operator has no other

spectrum.

1. Introduction

The classical orthogonal polynomials of Laguerre, Jacobi, and Hermite are the
foundational examples of orthogonal polynomial theory. As shown by Routh in
1884 [21], but most often attributed to Bochner in 1929 [3], these three families of
polynomials are, up to affine transformation of x, the only polynomial sequences
satisfying the following two conditions: First, they contain an infinite sequence of
polynomials {pn}∞n=0, where pn has degree n, such that for each n ∈ N0, y = pn
satisfies a second order eigenvalue equation of the form

p(x)y′′ + q(x)y′ + r(x)y = λy ,

where the polynomials p(x), q(x), and r(x) are determined by the corresponding
differential expression (Laguerre, Jacobi or Hermite). Second, each of the eigen-
polynomials is orthogonal in a weighted L2 space where the associated weight has
finite moments.

In recent years, there has been interest in the area of exceptional orthogonal
polynomials, which presents a way to generalize Bochner’s classification theorem.
The most striking difference between classical orthogonal polynomials and their
exceptional counterparts is that the exceptional sequences allow for gaps in the de-
grees of the polynomials. We denote an exceptional orthogonal polynomial sequence
{pm,n}n∈N0�A by using “Xm”, where the subscript m = |A| denotes the number of
gaps (or the codimension of the sequence). We require that the associated second
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order differential expression preserve the space spanned by the exceptional poly-
nomials, but no space with smaller codimension. Consequently, the coefficients of
the second order differential equation are not necessarily polynomial. Remarkably,
despite removing any finite number of polynomials, the sequences remain complete
in their associated space.

Research in the area of exceptional orthogonal polynomials did not develop from
a desire to generalize Bochner’s theorem; rather, the exceptional polynomials were
discovered in the context of quantum mechanics where researchers were looking for
a new approach, outside of the classical Lie algebraic [12, 14, 19] setting, to solving
spectral problems for second order linear differential operators with polynomial
eigenfunctions. In particular, they were discovered in [6, 8] while developing a
direct approach [5] to exact or quasi-exact solvability for spectral problems. The
first examples of these exceptional polynomials were introduced in 2009 by Gómez-
Ullate, Kamran and Milson [6, 8], who completely characterized all X1-polynomial
sequences. Their result showed that the only polynomial families of codimension one
(in particular, having no solution of degree zero) satisfying a second order eigenvalue
problem are the X1-Jacobi and X1-Laguerre polynomials. Explicit examples of the
X2 families were given by Quesne [19, 20], who used the Darboux transformation
and shape invariant potentials to find these new families.

Higher-codimensional families, including the Xm-Laguerre and Xm-Jacobi ex-
ceptional polynomial sequences, were first observed by Odake and Sasaki [18]. Fur-
ther generalizations were observed regarding two distinct types of Xm-Laguerre
polynomials by Gómez-Ullate, Kamran and Milson [10, 11]. These Xm-Laguerre
polynomial families do not contain polynomials of degree n ∈ N for 0 ≤ n ≤ m− 1.
Furthermore, Liaw, Littlejohn, Milson, and Stewart [15] show the existence of a
third type of Xm-Laguerre polynomials. The Type III Xm-Laguerre polynomial
sequence omits polynomials of degree n ∈ N0 for 1 ≤ n ≤ m. This new class of
polynomials can be derived from the quasi-rational eigenfunctions of the classical
Laguerre differential expression by Darboux transform as well as a gauge transfor-
mation of the Type I exceptional Xm-Laguerre expression.

Following the discovery of exceptional polynomials, there has been a desire to
study the properties of these polynomials more rigorously. The explanation for
existence via the Darboux transformation of the higher-codimension Xm-Jacobi and
Xm-Laguerre polynomials and a remarkable observation regarding the completeness
of the Xm-polynomial families was given by Gómez-Ullate, Kamran and Milson
[7]. Gómez-Ullate, Marcellán, and Milson studied the interlacing properties of the
zeros for both the exceptional Jacobi and exceptional Type I and Type II Laguerre
polynomials along with their asymptotic behavior [11]. The properties of the Type
III Xm-Laguerre polynomials is studied [15].

The spectral analysis for the X1-Jacobi polynomials (for m = 1, A = {0}) may
be found in [16] along with an analysis of properties resulting from an extreme
parameter choice, and for the X1-Laguerre polynomials, the spectral analysis was
completed in [2]. For all three types of the Xm-Laguerre polynomials, a complete
spectral study is completed in [15].

We remark that the exceptional Xm-Jacobi equation is the result of a one-step
Darboux transformation. In any one-step process, there is a large gap at the be-
ginning of the degree sequence but all of the rest of the degrees are present in
the sequence. It is important to note that there are several multi-step exceptional
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families in which there are other patterns of gaps in the degree sequence. Along
this line, we note that the authors in [4] have classified all multi-step families in
the Hermite case. Not much is known, however, at the present time on multi-step
families of Jacobi type.

In Section 2 we introduce the Xm-Jacobi differential expression along with some
properties. In Section 3 we then apply the Glazman-Krein-Naimark theory to
obtain a self-adjoint operator associated to the differential expression, for which the
corresponding domain contains the exceptional Xm-Jacobi orthogonal polynomials
(see Theorem 3.3). Further, we show the completeness of the exceptionalXm-Jacobi
orthogonal polynomials (of degrees m,m + 1,m + 2, . . . ) in the Lebesgue–Hilbert
space with the appropriate weight (see Theorem 3.4). Summing up, we present the
spectral analysis of the Xm-Jacobi differential expression.

2. Some properties of the exceptional Xm-Jacobi expression

We begin by summarizing some properties of the exceptional Xm-Jacobi expres-
sion as described in [6, 11]. The parameters α and β are assumed to satisfy

α, β > −1 , α+1−m−β /∈ {0, 1, . . . ,m−1} and sgn(α+1−m) = sgnβ (2.1)

in accordance with [11, Section 5.2], unless otherwise noted.
The exceptional Xm-Jacobi polynomial of degree n ≥ m, P (α,β)

m,n is given in terms
of the classical Jacobi polynomials {P (α,β)

k }∞k=0 by

P (α,β)
m,n (x)

=
(−1)m

α+ 1 + n−m

[1
2

(α+ β + n−m+ 1)(x− 1)P (−α−1,β−1)
m (x)P (α+2,β)

n−m−1 (x)

+ (α−m+ 1)P (−α−2,β)
m (x)P (α+1,β−1)

n−m (x)
]
.

The exceptional Xm-Jacobi polynomials satisfy the second-order differential equa-
tion

Tα,β,m[y](x) = λny(x)

for x ∈ (−1, 1), where the exceptional Xm-Jacobi differential expression is given by

Tα,β,m[y](x)

:= (1− x2)y′′(x) +
(
β − α− (β + α+ 2)x− 2(1− x2)

×
(

log(P (−α−1,β−1)
m (x))

)′)
y′(x)

+
(

(α− β −m+ 1)m− 2β(1− x)
(

log(P (−α−1,β−1)
m (x))

)′)
y(x)

(2.2)

and λn = −(n−m)(1 + α+ β + n−m).
In Lagrangian symmetric form, the exceptional Xm-Jacobi differential expression

(2.2) writes

Tα,β,m[y](x)

=
1

Wα,β,m(x)

[(
Wα,β,m(x)(1− x2)y′(x)

)′
+Wα,β,m(x)

(
m(α− β −m+ 1)− 2β(1− x)

(
log(P (−α−1,β−1)

m (x))
)′)

y(x)
]
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for x ∈ (−1, 1), where Wα,β,m is the exceptional Xm-Jacobi weight function given
by

Wα,β,m(x) =
(1− x)α(1 + x)β(
P

(−α−1,β−1)
m (x)

)2 for x ∈ (−1, 1) .

The restrictions on α and β ensure that Wα,β,m(x) has no singularities for x ∈
[−1, 1] and consequently, all moments are finite.

The exceptional Xm-Jacobi polynomials {P (α,β)
m,n }∞n=m are orthogonal with re-

spect to the weight function Wα,β,m(x).
The eigenvalue equation Tα,β,m[y] = λy does not have any polynomial solutions

of degree n for 0 ≤ n ≤ m − 1. Despite this fact, it is interesting that the ex-
ceptional Xm-Jacobi polynomials {P (α,β)

m,n }∞n=m form a complete sequence in the
Hilbert-Lebesgue space L2((−1, 1);Wα,β,m), defined by

L2((−1, 1);Wα,β,m)

:=
{
f : (−1, 1)→ C : f is measurable and

∫ 1

−1

|f |2Wα,β,m <∞
}
.

3. Exceptional Xm-Jacobi spectral analysis

We follow the methods outlined in the classical texts of Akhiezer and Glazman
[1], Hellwig [13], and Naimark [17].

The maximal domain associated with Tα,β,m[·] in L2((−1, 1),Wα,β,m) is:

∆ = {f : (−1, 1)→ C
∣∣f, f ′ ∈ ACloc(−1, 1); f, Tα,β,m[f ] ∈ L2((−1, 1),Wα,β,m)} .

(3.1)
The maximal domain ∆ is the largest subspace of functions of L2((−1, 1);Wα,β,m)
for which Tα,β,m maps into L2((−1, 1);Wα,β,m). The associated maximal operator
is

S1
α,β,m : D(S1

α,β,m) ⊂ L2((−1, 1),Wα,β,m)→ L2((−1, 1),Wα,β,m)

where S1
α,β,m is defined by

S1
α,β,m[f ] := Tα,β,m[f ]

f ∈ D(S1
α,β,m) := ∆ .

(3.2)

For f, g ∈ ∆, Green’s Formula may be written as∫ 1

−1

Tα,β,m[f ](x)g(x)Wα,β,m(x) dx

= [f, g](x)
∣∣1
−1

+
∫ 1

−1

f(x)Tα,β,m[g](x)Wα,β,m(x) dx
(3.3)

where [·, ·](·) is the sesquilinear form defined by

(x) = Wα,β,m(x)(1− x2)(f ′(x)g(x)− f(x)g′(x))

=
(1− x)α+1(1 + x)β+1(
P

(−α−1,β−1)
m (x)

)2 (f ′(x)g(x)− f(x)g′(x)) (x ∈ (−1, 1))
(3.4)

and where
[f, g](x) |x=1

x=−1:= [f, g](1)− [f, g](−1) .
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By the definition of ∆ and the classical Hölder’s inequality, notice that the limits

[f, g](−1) := lim
x→−1+

[f, g](x) and [f, g](1) := lim
x→1−

[f, g](x)

exist and are finite for each f, g ∈ ∆.
The adjoint of the maximal operator in L2((−1, 1);Wα,β,m) is the minimal op-

erator,

S0
α,β,m : D(S0

α,β,m) ⊂ L2((−1, 1),Wα,β,m)→ L2((−1, 1),Wα,β,m)

where S0
α,β,m is defined by

S0
α,β,m[f ] := Tα,β,m[f ]

f ∈ D(S0
α,β,m) :=

{
f ∈ ∆

∣∣[f, g]
∣∣1
−1

= 0 for all g ∈ ∆
}
.

We seek to find a self-adjoint extension Sα,β,m in L2((−1, 1);Wα,β,m) generated
by Tα,β,m[·], which has the exceptional Xm-Jacobi polynomials {P (α,β)

m,n }∞n=m as
eigenfunctions. To achieve this goal, we need to study the behavior of solutions at
the singular endpoints x = −1 and x = 1 so as to determine the deficiency indices
and find the appropriate boundary conditions (if any).

First, we obtain the deficiency indices via Frobenius Analysis. They depend on
the values of the parameters α and β.

The endpoints x = −1 and x = 1 are, in the sense of Frobenius, regular singular
endpoints of the differential expression Tα,β,m[·] = 0. We first apply Frobenius anal-
ysis to the endpoint x = 1. By multiplying the exceptional Xm-Jacobi expression
Tα,β,m[y] by x−1

x+1 , we obtain(x− 1
x+ 1

)(
Tα,β,m[y](x)− λny(x)

)
= (x− 1)2y′′(x)− (x− 1)p(x)y′(x) + q(x)y(x)

with

p(x) =
β − α− (α+ β + 2)x

x+ 1
− 2
(

log(P (−α−1,β−1)
m )

)′(x− 1)

and

q(x) =
(x− 1
x+ 1

)(
− (α− β −m+ 1)m− 2β

(
log(P (−α−1,β−1)

m )
)′(x− 1)

)
.

Evaluating the above equation at x = 1 yields the indicial equation

0 = r(r − 1)− rp(1) + q(1) = r(r + α) .

Therefore, two linearly independent solutions to Tα,β,m[y]−λny = 0 behave asymp-
totically (near x = 1, e.g. on the interval (0, 1)) like

z1(x) = 1 and z2(x) = (x− 1)−α

near x = 1.
For all allowable values of α and β,∫ 1

0

|z1(x)|2Wα,β,m(x) dx <∞ ;

while ∫ 1

0

|z2(x)|2Wα,β,m(x) dx <∞

only for −1 < α < 1.
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In a similar way, multiplying the exceptional Xm-Jacobi expression Tα,β,m[y]−
λα,β,my by (x+ 1)/(x− 1), results in an indicial equation

r(r + β) = 0;

and two linearly independent solutions will behave (asymptotically) like

y1(x) = 1 and y2(x) = (x+ 1)−β

near x = −1.
For all allowable values of α and β,∫ 0

−1

|y1(x)|2Wα,β,m(x) dx <∞ ;

while ∫ 0

−1

|y2(x)|2Wα,β,m(x) dx <∞

only for −1 < β < 1.
As a consequence, we have the following results.

Theorem 3.1. Let Tα,β,m[y] − λα,β,m be the exceptional Xm-Jacobi differential
expression (2.2) on the interval (−1, 1).

(1) Tα,β,m[·] is in the limit-point case at x = −1 for β ≥ 1 and limit-circle for
−1 < β < 1.

(2) Tα,β,m[·] is in the limit-point case at x = 1 for α ≥ 1 and limit-circle for
−1 < α < 1.

Corollary 3.2. The minimal operator S0
α,β,m in L2((−1, 1),Wα,β,m) has the fol-

lowing deficiency indices:
(1) For α, β ≥ 1, S0

α,β,m has deficiency index (0, 0).
(2) For α ≥ 1 and 0 < β < 1, S0

α,β,m has deficiency index (1, 1).
(3) Similarly, for β ≥ 1 and 0 < α < 1, S0

α,β,m has deficiency index (1, 1).
(4) For −1 < α, β < 0, S0

α,β,m has deficiency index (2, 2).

Next we formulate the self-adjoint operators.

Theorem 3.3. The self-adjoint operator Sα,β,m in L2((−1, 1);Wα,β,m), generated
by the exceptional Xm-Jacobi differential expression Tα,β,m is given by

Sα,β,m[f ] = Tα,β,m[f ], f ∈ D(Sα,β,m),

where
D(Sα,β,m)

=



∆ if α ≥ 1 and β ≥ 1

{f ∈ ∆ : limx→−1+(1 + x)β+1f ′(x) = 0}
if α ≥ 1 and 0 < β < 1

{f ∈ ∆ : limx→1−(1− x)α+1f ′(x) = 0}
if 0 < α < 1 and β ≥ 1{
f ∈ ∆ : limx→1−(1− x)α+1f ′(x) = limx→−1+(1 + x)β+1f ′(x) = 0

}
for all other choices of parameters that are allowed by (2.1).

(3.5)
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Proof. If the parameters satisfy α, β ≥ 1, then there is only one self adjoint exten-
sion (restriction) of the minimal operator S0

α,β,m (maximal operator S1
α,β,m); that

is, the maximal and minimal operator coincide and Sα,β,m = S0
α,β,m = S1

α,β,m.
Suppose that 0 < α < 1 and β ≥ 1, then there are infinitely many self-adjoint

extensions of the minimal operator S0
α,β,m. From Corollary 3.2, the deficiency index

equals (1, 1), which means that D(S0
α,β,m) is a subspace of codimension 2 in ∆. We

will restrict the maximal domain ∆ by imposing a suitable boundary condition
which is invoked by the sesquilinear form [·, ·](·) defined by (3.4). First note that
h(x) = (1− x)−α ∈ ∆ since

Tα,β,m[(1− x)−α] = O((1− x)−α) (near x = 1),

which implies Tα,β,m[g] ∈ L2((−1, 1);Wα,β,m) because α < 1. Further, the constant
function satisfies 1 ∈ ∆ and

[h, 1]
∣∣x=1

x=−1
= [h, 1](1) = − α 2β+1(

P
(−α−1,β−1)
m (1)

)2 = α 2β+1 6= 0 , (3.6)

where we used standard identities for the Jacobi polynomials and the Gamma
function to find

P (−α−1,β−1)
m (1) =

Γ(−α+m)
m! Γ(β +m− α− 1)

Γ(β +m− α− 1)
Γ(−α)

=
Γ(−α+m)
m! Γ(−α)

=
m! Γ(−α)
m! Γ(−α)

= 1.

In particular, we obtain from equation (3.6) that the constant function 1 does not
belong to D(S0

α,β,m).
For 0 < β < 1 and α ≥ 1, we can prove the corresponding statement in a similar

manner. Lastly, for α, β ≤ 1, we combine the above cases. �

Note that every polynomial, in particular the Xm-Jacobi polynomials, will satisfy
all of the boundary conditions given by (3.5).

Next, we adapt ideas introduced in [9] and further developed in [15] (for the case
of exceptional Laguerre orthogonal polynomial systems) to prove that the spectrum
of the self-adjoint operators from Theorem 3.3 consists exactly of the eigenvalues
corresponding to the exceptional Xm-Jacobi polynomials (and nothing more).

Theorem 3.4. The exceptional Xm-Jacobi polynomials {P (α,β)
m,n }∞n=m form a com-

plete set of eigenfunctions of the self-adjoint operator Sα,β,m in L2((−1, 1),Wα,β,m).
Additionally, the spectrum σ(Sα,β,m) of Sα,β,m is pure discrete spectrum consisting
of the simple eigenvalues

σ(Sα,β,m) = σp(Sα,β,m) = {−(n−m)(1 + α+ β + n−m) | n ≥ m} .

Proof. The eigenvalue equations follow by the Darboux relations. It remains to
prove the completeness of {P (α,β)

m,n }∞n=m in L2((−1, 1),Wα,β,m). Fix α, β in the
allowed range, pick f ∈ H = L2((−1, 1),Wα,β,m) and choose ε > 0.

Define the function

f̃(x) :=
f(x)

P
(−α−1,β−1)
m (x)

.
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From the relationship

Wα,β,m(x) =
Wα,β(x)(

P
(−α−1,β−1)
m (x)

)2
between the exceptional and the classical weight (Wα,β,m and Wα,β , respectively),
it easily follows

‖f‖H = ‖f̃‖L2((−1,1);Wα,β).

In particular, we have f̃ ∈ L2((−1, 1);Wα,β).
Next we apply Lemma 3.5 with the function

η(x) = P (−α−1,β−1)
m (x)

and obtain the existence of p ∈ P such that

‖f̃ − P (−α−1,β−1)
m (x)p(x)‖L2((−1,1);Wα,β) < ε2.

Let N be the degree of p. With this polynomial p we can compute

ε2 > ‖f̃ − P (−α−1,β−1)
m (x)p(x)‖L2((−1,1);Wα,β) = ‖f −

(
P (−α−1,β−1)
m (x)

)2
p(x)‖H.

Our goal is to show that the approximant
(
P

(−α−1,β−1)
m (x)

)2
p(x) is contained

in the (closure of the) vector space spanned by the exceptional Jacobi polynomials.
To this end, we consider two (n+m+ 1)-dimensional vector spaces

En+2m := {P (α,β)
m,j : j = m,m+ 1, . . . , n+ 2m},

Fn+2m := {q ∈ Pn+2m : (1 + xi)q′(xi) + βq(xi) = 0},

where we let xi denote the m−1 roots of the polynomial P (−α−1,β−1)
m (x). The space

Fn+2m is motivated by the exceptional term in the exceptional Jacobi differential
expression. Clearly, we have

(
P

(−α−1,β−1)
m (x)

)2
p(x) ∈ Fn+2m. Since dimFn+2m =

dim En+2m we achieve our goal, if we can show that

En+2m ⊂ Fn+2m.

Take Q ∈ En+2m. Since En+2m is spanned by a basis of eigenvectors of the excep-
tional Xm-Jacobi differential expression Tα,β,m we have Tα,β,m[En+2m] ⊂ En+2m.
It follows that

Tα,β,m[Q]

:= (1− x2)Q′′ + (β − α− (β + α+ 2)x− 2(1− x2)
(

log(P (−α−1,β−1)
m )

)′
Q′

+ (α− β −m+ 1)m− 2β(1− x)
(

log(P (−α−1,β−1)
m )

)′
Q

is polynomial, and hence the exceptional term (that is, the only term with a de-
nominator):

−2(1− x)

(
P

(−α−1,β−1)
m (x)

)′
P

(−α−1,β−1)
m (x)

[(1 + x)Q′(x) + βQ(x)]

is a polynomial. Since the roots of the classical orthogonal are simple and 1 is not
a root, we have

(1 + xi)Q′(xi) + βQ(xi) = 0.
We obtain Q ∈ Fn+2m as desired. �

Let P denote the set of all polynomials.



EJDE-2015/194 EXCEPTIONAL Xm-JACOBI EQUATION 9

Lemma 3.5. Given a function η on [−1, 1] that satisfies 0 < c < |η(x)| < C <∞
for all x ∈ [−1, 1]. Then the set {η(x)p(x) : p ∈ P} is dense in L2((−1, 1);Wα,β)
for the classical range of parameters α, β, and the classical Jacobi weight Wα,β.

Proof. Fix α, β in the classical parameter range; that is, α, β > −1. Then, by
the theory of classical orthogonal polynomials, the polynomials P are dense in
H = L2((−1, 1);Wα,β). Therefore, it suffices to show that

P ⊂ closH(ηP).

To show this, take p ∈ P and fix ε > 0. First observe that

‖p/η‖H ≤ (1/c)‖p‖H,

so that p/η ∈ H. By taking q ∈ P such that

ε2 > C2‖p/η − q‖2H ≥ ‖(p/η − q)η‖2H = ‖p− ηq‖2H,

the lemma is proved. �
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[11] D. Gómez-Ullate, F. Marcellán, R. Milson. Asymptotic and interlacing properties of zeros of

exceptional Jacobi and Laguerre polynomials. J. Math. Anal. Appl., 399(2):480–495, 2013.
[12] A. González-López, N. Kamran, P. J. Olver. Normalizability of one-dimensional quasi-exactly

solvable Schrödinger operators. Comm. Math. Phys., 153(1):117–146, 1993.
[13] G. Hellwig. Differential operators of mathematical physics. An introduction. Translated from

the German by Birgitta Hellwig. Addison-Wesley Publishing Co., Reading, Mass.-London-
Don Mills, Ont., 1967.

[14] N. Kamran P. J. Olver. Lie algebras of differential operators and Lie-algebraic potentials. J.
Math. Anal. Appl., 145(2):342–356, 1990.

[15] C. Liaw, L. L. Littlejohn, R. Milson, J. Stewart. A new class of exceptional orthogonal
polynomials: The type III Xm−Laguerre polynomials and the spectral analysis of three
types of exceptional Laguerre polynomials. Submitted, see http://arxiv.org/abs/1407.4145.

[16] C. Liaw, L. L. Littlejohn, J. Stewart, and Q. Wicks. The spectral analysis of the Jacobi

expression for extreme parameter choices. J. Math. Anal. Appl. 422 (2014) 212–239, DOI:
10.1016/j.jmaa.2014.08.016.

[17] M. A. Naimark. Linear differential operators. Part II: Linear differential operators in Hilbert

space. With additional material by the author, and a supplement by V. È. Ljance. Translated
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