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BOUNDARY BEHAVIOR OF SOLUTIONS TO A SINGULAR
DIRICHLET PROBLEM WITH A NONLINEAR CONVECTION

BO LI, ZHIJUN ZHANG

Abstract. In this article we analyze the exact boundary behavior of solutions

to the singular nonlinear Dirichlet problem

−∆u = b(x)g(u) + λ|∇u|q + σ, u > 0, x ∈ Ω,

u
˛̨
∂Ω

= 0,

where Ω is a bounded domain with smooth boundary in RN , q ∈ (0, 2], σ > 0,
λ > 0, g ∈ C1((0,∞), (0,∞)), lims→0+ g(s) = ∞, g is decreasing on (0, s0)

for some s0 > 0, b ∈ Cαloc(Ω) for some α ∈ (0, 1), is positive in Ω, but may be

vanishing or singular on the boundary. We show that λ|∇u|q does not affect
the first expansion of classical solutions near the boundary.

1. Introduction

In this article, we consider the boundary behavior of solutions to the singular
nonlinear Dirichlet problem

−∆u = b(x)g(u) + λ|∇u|q + σ, u > 0, x ∈ Ω, u
∣∣
∂Ω

= 0, (1.1)

where Ω is a bounded domain with smooth boundary in RN , q ∈ (0, 2], λ > 0,
σ > 0, b satisfies

(B1) b ∈ Cαloc(Ω) for some α ∈ (0, 1), is positive in Ω,
and g satisfies

(G1) g ∈ C1((0,∞), (0,∞)) and lims→0 g(s) =∞;
(G2) there exists s0 > 0 such that g′(s) < 0, for all s ∈ (0, s0);
(G3) there exists Cg ≥ 0 such that

lim
s→0+

g′(s)
∫ s

0

dτ

g(τ)
= −Cg.

A typical example of functions which satisfy (G1)-(G3) is

g(s) = s−γ + µsp, s > 0,

where γ, p, µ > 0. In this case, Cg = γ/(1 + γ). A complete characterization of g
in (G1)-(G3) is provided in Lemma 2.14.
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For convenience, we denote by ψ the solution to the problem∫ ψ(t)

0

ds

g(s)
= t, ∀t > 0. (1.2)

When λ = 0, (1.1) arises in the study of non-Newtonian fluids, boundary layer
phenomena for viscous fluids, chemical heterogeneous catalysts, as well as in the
theory of heat conduction in electrical materials (see, for instance, [9, 17, 21, 36, 38,
41]) and has been discussed by many authors and in many contexts. With regard
to the existence, nonexistence, uniqueness, multiplicity, regularity, local (near the
boundary) and global estimates of (classical or weak) solutions, see, for instance, [1]-
[4], [6, 8, 9, 12, 16, 17, 21], [23]-[27], [29]-[31], [35], [39]-[46], [51] and the references
therein.

When λ > 0, b ≡ 1 in Ω and g(u) = u−γ with γ > 0, the authors [47] considered
the existence and regularities of the unique solution to (1.1). Cui [11] established
a sub-supersolution method to more general problem than (1.1).

When λ = 1, σ = 0, 0 < q < 2, b ≡ 1 in Ω and the function g : (0,∞)→ (0,∞) is
locally Lipschitz continuous and decreasing, Giarrusso and Porru [19] showed that
if g satisfies the following conditions

(G01)
∫ 1

0
g(s)ds =∞,

∫∞
1
g(s)ds <∞;

(G02) there exist positive constants δ and M with M > 1 such that G(s) <
MG(2s), for all s ∈ (0, δ), G(s) :=

∫∞
s
g(τ)dτ , s > 0,

then the unique solution u to (1.1) has the following properties:
(I1) |u(x)− φ(d(x))| < c0d(x), for all x ∈ Ω for 0 < q ≤ 1;
(I2) |u(x)− φ(d(x))| < c0d(x)[G(φ(d(x)))](q−1)/2, for all x ∈ Ω for 1 < q < 2;

where d(x) = dist(x, ∂Ω), c0 is a suitable positive constant and φ ∈ C[0,∞) ∩
C2(0,∞) is the unique solution of the problem∫ φ(t)

0

ds√
2G(s)

= t, t > 0. (1.3)

For further works, see [10], [13]-[15], [18, 20, 28, 37], [48]-[50] and the references
therein.

We introduce two types of functions. First, we denote by K the set of all Kara-
mata functions L̂ which are normalized slowly varying at zero (see, Bingham-
Goldie-Teugels’s book [5] and Maric’s book [32]) defined on (0, η] for some η > 0
by

L̂(s) = c0exp
(∫ η

s

y(τ)
τ

dτ
)
, s ∈ (0, η], (1.4)

where c0 > 0 and the function y ∈ C([0, η]) with y(0) = 0.
Next let Λ denote the set of all positive monotonic functions θ in C1(0, δ0) ∩

L1(0, δ0) (δ0 > 0) which satisfy

lim
t→0

d

dt

(Θ(t)
θ(t)

)
:= Cθ ∈ [0,∞), Θ(t) :=

∫ t

0

θ(s)ds. (1.5)

The set Λ was first introduced by Ĉırstea and Rǎdulescu [7] for non-decreasing func-
tions and by Mohammed [34] for non-increasing functions to study the boundary
behavior of solutions to boundary blow-up elliptic problems.

We assume that b satisfies
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(B2) there exists θ ∈ Λ such that

0 < b1 := lim
d(x)→0

inf
b(x)

θ2(d(x))
≤ b2 := lim

d(x)→0
sup

b(x)
θ2(d(x))

<∞.

Recently, for g satisfying (G1) and decreasing on (0,∞), the authors [50] considered
the two cases

(i) q ∈ (0, 2), b ≡ 1 in Ω, g satisfies (G3) with Cg > 1/2;
(ii) q = 2, b satisfies (B1) and (B2), g satisfies (G3) with

Cθ + 2Cg > 2, (1.6)

and one of the following two conditions holds
(S01) Cg > 0;
(S02) Cg = 0 and λ lim sups→0+

g(s)
|g′(s)| < 1

and obtained the boundary behavior of the unique solutions to (1.1).
In this article, we extend [50] for more general g and b. We first establish a local

comparison principle for q ∈ (0, 1) under (G2). More precisely, we show the first
exact asymptotic behaviour of any classical solution near the boundary to (1.1)
and reveal that the nonlinear gradient term λ|∇u|q does not affect the behaviour.
For q ∈ [1, 2], by using a nonlinear change, the local comparison principle and the
results in [51] and [30], we show the same results as q ∈ (0, 1). Our main results
are summarized as follows.

Theorem 1.1. For fixed λ > 0, let g satisfy (G1)–(G3), b satisfy (B1)–(B2). If
both (1.6) and one of the following conditions hold

(S1) q ∈ (0, 1);
(S2) q ∈ [1, 2] and Cg > 0;
(S3) q ∈ [1, 2], Cg = 0 and

λ lim sup
s→0+

g(s)
|g′(s)|

< 1,

then for any classical solution uλ to (1.1), it holds

ξ
1−Cg
1 ≤ lim

d(x)→0
inf

uλ(x)
ψ(Θ2(d(x)))

≤ lim
d(x)→0

sup
uλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 , (1.7)

where

ξ1 =
b1

2(Cθ + 2Cg − 2)
, ξ2 =

b2
2(Cθ + 2Cg − 2)

. (1.8)

In particular,
(i) when Cg = 1, uλ satisfies

lim
d(x)→0

uλ(x)
ψ(Θ2(d(x)))

= 1;

(ii) when Cg < 1 and b1 = b2 = b0 in (B2), uλ satisfies

lim
d(x)→0

uλ(x)
ψ(d2(x)θ2(d(x)))

= (ξ01C
2
θ )1−Cg ,

where

ξ01 =
b0

2(Cθ + 2Cg − 2)
.
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Theorem 1.2. For fixed λ > 0, let q ∈ (0, 2], g satisfy (G1)–(G3), and let b satisfy
(B1) and

(B3) there exists L̂ ∈ K with
∫ η

0
L̂(s)
s ds <∞ such that

0 < b1 := lim
d(x)→0

inf
b(x)

a2(d(x))
≤ b2 := lim

d(x)→0
sup

b(x)
a2(d(x))

<∞,

where
a2(t) = t−2L̂(t), t ∈ (0, η]. (1.9)

If one of (S1), (S2), (S3) holds, then for any classical solution uλ to (1.1), it holds

b
1−Cg
1 ≤ lim

d(x)→0
inf

uλ(x)
ψ(h1(d(x)))

≤ lim
d(x)→0

sup
uλ(x)

ψ(h1(d(x)))
≤ b1−Cg2 , (1.10)

where

h1(t) =
∫ t

0

L̂(s)
s

ds, t ∈ (0, η). (1.11)

In particular,
(i) when Cg = 1, uλ satisfies

lim
d(x)→0

uλ(x)
ψ(h1(d(x)))

= 1;

(ii) when Cg < 1 and b1 = b2 = b0 in (B3), uλ satisfies

lim
d(x)→0

uλ(x)
ψ(h1(d(x)))

= b
1−Cg
0 .

Theorem 1.3. For fixed λ > 0, let q ∈ (0, 2], b satisfy (B1), g satisfy (G1) and
g(s) = s−γ + µsp, s ∈ (0, s0), for some s0 > 0, where γ, p, µ > 0. If b satisfies

(B4) there exists L̂ ∈ K with
∫ η

0
L̂(s)
s ds =∞ such that

0 < b1 := lim
d(x)→0

inf
b(x)

(d(x))γ−1L̂(d(x))
≤ b2 := lim

d(x)→0
sup

b(x)
(d(x))γ−1L̂(d(x))

<∞,

then for any classical solution uλ to (1.1), it holds

(b1(1 + γ))1/(1+γ) ≤ lim
d(x)→0

inf
uλ(x)

d(x)(h2(d(x)))1/(1+γ)

≤ lim
d(x)→0

sup
uλ(x)

d(x)(h2(d(x)))1/(1+γ)

≤ (b2(1 + γ))1/(1+γ),

(1.12)

where

h2(t) =
∫ η

t

L(τ)
τ

dτ, t ∈ (0, η). (1.13)

Remark 1.4. Some basic examples of functions which satisfy (G1)–(G3) with
Cg = 0 and lims→0+

g(s)
|g′(s)| = 0 are

(i) g(s) = (− ln s)γ , γ > 0, s ∈ (0, s0);
(ii) g(s) = (ln(− ln s))γ , γ > 0, s ∈ (0, s0);
(iii) g(s) = e(− ln s)γ , 0 < γ < 1, s ∈ (0, s0), where s0 > 0 sufficiently small.

Remark 1.5. When γ > 0, we note that Cg = γ
1+γ and Cθ = 2

γ+1 in Theorem 1.3,
i.e., Cθ + 2Cg = 2.
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The outline of this paper is as follows. In section 2, we present some basic facts
from Karamata regular variation theory and some preliminaries. Some comparison
principles are given in section 3. In section 4, we prove Theorems 1.1–1.3.

2. Preliminaries

Our approach relies on Karamata regular variation theory established by Kara-
mata in 1930 which is a basic tool in stochastic processes (see Bingham, Goldie and
Teugels’ book [5], Maric’s book [32] and the references therein). In this section, we
present some basic facts from Karamata regular variation theory.

Definition 2.1. A positive continuous function g defined on (0, η], for some η > 0,
is called regularly varying at zero with index ρ, denoted by g ∈ RV Zρ, if for
each ξ > 0 and some ρ ∈ R,

lim
s→0+

g(ξs)
g(s)

= ξρ. (2.1)

In particular, when ρ = 0, g is called slowly varying at zero.

Clearly, if g ∈ RV Zρ, then L(s) := g(s)/sρ is slowly varying at zero.

Definition 2.2. A positive continuous function g defined on (0, η], for some η > 0,
is called rapidly varying to infinity at zero if for each ξ ∈ (0, 1)

lim
s→0+

g(ξs)
g(s)

=∞. (2.2)

Definition 2.3. A positive function g ∈ C(0, η] with lims→0+ g(s) = 0, for some
η > 0, is called rapidly varying to zero at zero if for each ξ ∈ (0, 1)

lim
s→0+

g(ξs)
g(s)

= 0. (2.3)

Proposition 2.4 (Uniform convergence theorem). If g ∈ RV Zρ, then (2.1) holds
uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.5 (Representation theorem). A function L is slowly varying at zero
if and only if it may be written in the form

L(s) = l(s) exp
(∫ η

s

y(τ)
τ

dτ
)
, s ∈ (0, η], (2.4)

where the functions l and y are continuous and for s→ 0+, y(s)→ 0 and l(s)→ c0,
with c0 > 0.

Note that

L̂(s) = c0exp
(∫ η

s

y(τ)
τ

dτ
)
, s ∈ (0, η], (2.5)

is normalized slowly varying at zero, and

g(s) = sρL̂(s), s ∈ (0, η], (2.6)

is normalized regularly varying at zero with index ρ (and denoted by g ∈ NRV Zρ).
A function g ∈ NRV Zρ if and only if

g ∈ C1(0, η], for some η > 0 and lim
s→0+

sg′(s)
g(s)

= ρ. (2.7)

Proposition 2.6. If functions L,L1 are slowly varying at zero, then
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(i) Lρ for every ρ ∈ R, c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L · L1,
L ◦ L1 (if L1(s)→ 0 as s→ 0+) , are also slowly varying at zero;

(ii) For every ρ > 0 and s→ 0+, sρL(s)→ 0, s−ρL(s)→∞;
(iii) For ρ ∈ R and s→ 0+, ln(L(s))/ln s→ 0 and ln(sρL(s))/ln s→ ρ.

Proposition 2.7. If g1 ∈ RV Zρ1 , g2 ∈ RV Zρ2 with lims→0 g2(s) = 0, then g1◦g2 ∈
RV Zρ1ρ2 .

Proposition 2.8 (Asymptotic behavior). If a function L is slowly varying at zero,
then for η > 0 and t→ 0+,

(i)
∫ t

0
sρL(s)ds ∼= (1 + ρ)−1t1+ρL(t), for ρ > −1;

(ii)
∫ η
t
sρL(s)ds ∼= (−ρ− 1)−1t1+ρL(t), for ρ < −1.

Proposition 2.9. Let g ∈ C1(0, η] be positive and

lim
s→0+

sg′(s)
g(s)

= +∞.

Then g is rapidly varying to zero at zero.

Proposition 2.10. Let g ∈ C1(0, η) be positive and

lim
s→0+

sg′(s)
g(s)

= −∞.

Then g is rapidly varying to infinity at zero.

Proposition 2.11 ([46, Lemma 2.3]). Let L̂ be defined on (0, η] and be normalized
slowly varying at zero. Then

lim
t→0+

L(t)∫ η
t
L(τ)
τ dτ

= 0.

If further
∫ η

0
L(τ)
τ dτ converges, then

lim
t→0+

L(t)∫ t
0
L(τ)
τ dτ

= 0.

Our results in the section are summarized in the following lemmas.

Lemma 2.12. Let θ ∈ Λ.
(i) limt→0+

Θ(t)
θ(t) = 0;

(ii) limt→0+
Θ(t)θ′(t)
θ2(t) = 1− limt→0+

d
dt

(
Θ(t)
θ(t)

)
= 1− Cθ, and Cθ ∈ [0, 1] when θ

is non-decreasing, Cθ ≥ 1 provided θ is non-increasing;
(iii) when Cθ > 0, θ ∈ NRV Z(1−Cθ)/Cθ and Θ ∈ NRV Z1/Cθ .

Proof. For an arbitrary θ ∈ Λ, we have:
(i) When θ is non-decreasing, we have that 0 < Θ(t) ≤ tθ(t), for all t ∈ (0, δ0)

and (i) holds; when θ is non-increasing, it follows by θ ∈ L1(0, δ0) that

lim
t→0+

Θ(t)
θ(t)

= lim
t→0+

1
θ(t)

lim
t→0+

Θ(t) = 0.

(ii) Since

lim
t→0+

Θ(t)θ′(t)
θ2(t)

= 1− lim
t→0+

d

dt

(Θ(t)
θ(t)

)
= 1− Cθ, (2.8)
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it follows that Cθ ∈ [0, 1] when θ is non-decreasing, and Cθ ≥ 1 provided θ is
non-increasing;

(iii) (1.5) and the l’Hospital’s rule imply

lim
t→0+

Θ(t)
tθ(t)

= lim
t→0+

Θ(t)
θ(t)

t
= lim
t→0+

d

dt

(Θ(t)
θ(t)

)
= Cθ. (2.9)

So, when Cθ > 0, Θ ∈ NRV ZC−1
θ

and it follows by (2.8) and (2.9) that

lim
t→0

tθ′(t)
θ(t)

= lim
t→0

Θ(t)θ′(t)
θ2(t)

lim
t→0

tθ(t)
Θ(t)

=
1− Cθ
Cθ

, (2.10)

i.e., θ ∈ NRV Z(1−Cθ)/Cθ . �

Lemma 2.13 ([51, Lemma 2.2]). Let g satisfy (G1), (G2).
(i) If g satisfies (G3), then Cg ≤ 1;
(ii) (G3) holds with Cg ∈ (0, 1) if and only if g ∈ NRV Z−Cg/(1−Cg);

(iii) (G3) holds with Cg = 0 if and only if g is normalized slowly varying at zero;
(iv) if (G3) holds with Cg = 1, then g is rapidly varying to infinity at zero.

Lemma 2.14 ([51, Lemma 2.3]). Let g satisfy (G1), (G2) and let ψ be uniquely
determined by ∫ ψ(t)

0

dτ

g(τ)
= t, t ∈ [0,∞).

Then
(i) ψ′(t) = g(ψ(t)), ψ(t) > 0, t > 0, ψ(0) = 0 and ψ′′(t) = g(ψ(t))g′(ψ(t)),

t > 0;
(ii) limt→0+ tg(ψ(t)) = 0 and limt→0+ tg′(ψ(t)) = −Cg;

(iii) ψ ∈ NRV Z1−Cg and ψ′ ∈ NRV Z−Cg ;
(iv) when Cθ + 2Cg > 2 and θ ∈ Λ, limt→0+

t
ψ(ξΘ2(t)) = 0 uniformly for ξ ∈

[c1, c2] with 0 < c1 < c2, where Θ is given as in (1.5);
(v) limt→0+

t
ψ(ξh1(t)) = 0 uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2, where h1

is given in (1.11).

Lemma 2.15. Let q ∈ (0, 1). If Cθ + 2Cg > 2, then

lim
s→0+

(g(ψ(Θ2(t))))q−1 (Θ(t))q

(θ(t))2−q = 0, lim
s→0+

g(ψ(Θ2(t)))θ2(t) =∞.

Proof. Using Proposition 2.7, Lemma 2.13 (iii) and Lemma 2.15 (iii), we see that
g(ψ(Θ2(t)))θ2(t) belongs to NRV Zρ1 with

ρ1 =
−2Cg
Cθ

+
2(1− Cθ)

Cθ
= −Cθ + 2Cg − 2 + Cθ

Cθ
< 0,

and (g(ψ(Θ2(t))))q−1 (Θ(t))q

(θ(t))2−q belongs to NRV Zρ2 with

ρ2 =
q

Cθ
− 2Cg(q − 1)

Cθ
− (2− q)(1− Cθ)

Cθ

=
Cθ + 2Cg − 2 + Cθ(1− q) + 2q(1− Cg)

Cθ
> 0.

Thus the results follow by Proposition 2.6 (ii). �
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3. Local comparison principles

In this section we give some comparison principles near the boundary. For any
δ > 0, we define

Ωδ := {x ∈ Ω : d(x) < δ}, Γδ := {x ∈ Ω : d(x) = δ}.
Since ∂Ω ∈ C2, there exists a constant δ ∈ (0,min{s0, δ0}) which only depends on
Ω such that (see, [22, Lemmas 14.16 and 14.17])

d ∈ C2(Ωδ), |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), ∀x ∈ Ωδ, (3.1)

where x̄ is the nearest point to x on ∂Ω, and H(x̄) denotes the mean curvature of
∂Ω at x̄.

Next let v0 ∈ C2+α(Ω) ∩ C1(Ω̄) be the unique solution of the problem

−∆v = 1, v > 0, x ∈ Ω, v|∂Ω = 0. (3.2)

By the Höpf maximum principle in [22], we see that

∇v0(x) 6= 0, ∀x ∈ ∂Ω and c1d(x) ≤ v0(x) ≤ c2d(x), ∀x ∈ Ω, (3.3)

where c1, c2 are positive constants. We have the lower bound estimations near the
boundary of solutions to (1.1).

Lemma 3.1 (A local comparison principle). For fixed λ > 0, let q ∈ (0, 2], g satisfy
(G1), (G2), b satisfy (B1), and let uλ ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to
(1.1) and u0 ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to the problem

−∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0. (3.4)

Then there exists a positive constant M0 such that

u0(x) ≤ uλ(x) +M0v0(x), x ∈ Ωδ, (3.5)

where δ > 0 sufficiently small such that

u0(x), uλ(x) ∈ (0, s0), x ∈ Ωδ,

where s0 is given as in (G2).

Proof. First, by uλ(x) = v0(x) = u0(x) = 0, for all x ∈ ∂Ω, and

u0, v0, uλ ∈ C2(Ω) ∩ C(Ω̄), (3.6)

we can choose a large M0 such that

u0(x) ≤ uλ(x) +M0v0(x), x ∈ Γδ. (3.7)

Now we prove (3.5). Assume the contrary, there exists x0 ∈ Ωδ such that

u0(x0)− (uλ(x0) +M0v0(x0)) > 0.

It follows that there exists x1 ∈ Ωδ such that

0 < u0(x1)− (uλ(x1) +M0v0(x1)) = max
x∈Ω̄δ

(u0(x)− (uλ(x) +M0v0(x))).

Then ([22, Theorem 2.2])

∆(u0 − (uλ +M0v0))(x1) ≤ 0.

On the other hand, we see by (B1), (G1) and (G2) that

∆(u0 − (uλ +M0v0))(x1)

= −∆uλ(x1) +M0 + ∆u0(x1)



EJDE-2015/19 BOUNDARY BEHAVIOR OF SOLUTIONS 9

= b(x1)(g(uλ(x1))− g(u0(x1))) +M0 + λ|∇uλ(x1)|q + σ > 0,

which is a contradiction. Hence (3.5) holds. �

Next we consider the upper bound estimations near the boundary to uλ. For
q ∈ (0, 1), we have the following lemma.

Lemma 3.2 (A local comparison principle). For fixed λ > 0, let g satisfy (G1),
(G2), b satisfy (B1), and let uλ ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to (1.1),
ūλ ∈ C2(Ωδ) ∩ C(Ω̄δ) satisfy

−∆ūλ ≥ b(x)g(ūλ) + λ|∇ūλ|q + σ, ūλ > 0, x ∈ Ωδ, ūλ|∂Ω = 0, (3.8)

where δ > 0 sufficiently small such that

ūλ(x), uλ(x) ∈ (0, s0), x ∈ Ωδ,

where s0 is given as in (G2). Then there exists a positive constant M0 such that

uλ(x) ≤ ūλ(x) + λM0v0(x), x ∈ Ωδ. (3.9)

Proof. From uλ(x) = ūλ(x) = v0(x) = 0, for all x ∈ ∂Ω, and

uλ ∈ C2(Ω) ∩ C(Ω̄), v0 ∈ C2(Ω) ∩ C1(Ω̄), ūλ ∈ C2(Ωδ) ∩ C(Ω̄δ), (3.10)

we can choose a large M0 such that

uλ(x) ≤ ūλ(x) + λM0v0(x), x ∈ Γδ, (3.11)

M1−q
0 ≥ λq max

x∈Ω̄
|∇v0(x)|q. (3.12)

Now we prove (3.9). Assume the contrary, there exists x0 ∈ Ωδ such that

uλ(x0)− (ūλ(x0) + λM0v0(x0)) > 0.

It follows that there exists x1 ∈ Ωδ such that

0 < uλ(x1)− (ūλ(x1) + λM0v0(x1)) = max
x∈Ω̄δ

(uλ(x)− (ūλ(x) + λM0v0(x))).

Then ([22, Theorem 2.2])

∇(uλ − (ūλ + λM0v0))(x1) = 0 and ∆(uλ − (ūλ + λM0v0))(x1) ≤ 0.

On the other hand, using the basic inequality for q ∈ (0, 1)

|sq2 − s
q
1| ≤ |s2 − s1|q, ∀s2, s1 ≥ 0,

it follows by (B1), (G1) and (G2) that

∆
(
uλ − (ūλ + λM0v0)

)
(x1)

= −∆ūλ(x1) + λM0 + ∆uλ(x1)

≥ b(x1)(g(ūλ(x1))− g(uλ(x1))) + λ(M0 + |∇ūλ(x1)|q − |∇uλ(x1)|q)
> λ(M0 − λqMq

0 |∇v0(x1)|q) > 0,

which is a contradiction. Hence (3.9) holds. �

For q ∈ [1, 2] and an arbitrary positive constant C, by using the following in-
equality [47, (3.10)]

sq ≤ s2

C1−q/2 + Cq/2, ∀s ≥ 0,

we see that

−∆uλ ≤ b(x)g(uλ)+λCq/2−1|∇uλ|2+λCq/2+σ, uλ > 0, x ∈ Ω, uλ|∂Ω = 0. (3.13)
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We can choose C such that the problem

−∆ūλ = b(x)g(ūλ) + λCq/2−1|∇ūλ|2 + λCq/2 + σ, ūλ > 0, x ∈ Ω,

ūλ|∂Ω = 0,
(3.14)

has one classical solution ūλ ([48, Theorem 4.1]).
For a fixed λ, let uλ and ūλ be arbitrary solutions to (3.13) and (3.14), we see

that the nonlinear changes of variable

wλ = exp(ηuλ)− 1 and w̄λ = exp(ηūλ)− 1

transform problems (3.13) and (3.14) into the equivalent problems

−∆wλ ≤ b(x)g̃(wλ) + ηf(wλ), wλ > 0, x ∈ Ω, wλ|∂Ω = 0, (3.15)

and

−∆w̄λ = b(x)g̃(w̄λ) + ηf(w̄λ), w̄λ > 0, x ∈ Ω, w̄λ|∂Ω = 0, (3.16)

respectively. Where

g̃(s) = η(1 + s)g(η−1 ln(1 + s)), η = λCq/2−1, (3.17)

f(s) = (ηC + σ)(1 + s). (3.18)

Lemma 3.3. For fixed λ > 0. Let g satisfy (G1)–(G3). Then
(i) g̃ ∈ C1((0,∞), (0,∞)) and lims→0 g̃(s) =∞;

(ii) when one of the following conditions holds
(S01) Cg > 0;
(S02) Cg = 0 and λ lim sups→0+

g(s)
|g′(s)| < 1,

there exists s1 > 0 such that g̃′(s) < 0, ∀s ∈ (0, s1);
(iii)

lim
s→0+

g̃′(s)
∫ s

0

dτ

g̃(τ)
= −Cg.

Proof. By (G1), (i) is obvious. (ii) follows by [50, Lemma 3.1]. (iii) Since g satisfies
(G1) and is decreasing on (0, s0), we see that

0 <
∫ s

0

dτ

g(τ)
<

s

g(s)
, ∀s ∈ (0, s0),

i.e.,

0 < g(s)
∫ s

0

dτ

g(τ)
< s, ∀s ∈ (0, s0), (3.19)

lim
s→0+

g(s)
∫ s

0

dτ

g(τ)
= 0. (3.20)

Let υ = η−1 ln(1 + τ) and ς = η−1 ln(1 + s). It follows by (3.20) and (G3) that

lim
s→0+

g̃′(s)
∫ s

0

dτ

g̃(τ)

= lim
s→0+

(
g′(η−1 ln(1 + s)) + ηg(η−1 ln(1 + s))

) ∫ s

0

dτ

η(1 + τ)g(η−1 ln(1 + τ))

= lim
ς→0+

(
g′(ς)

∫ ς

0

dυ

g(υ)
+ ηg(ς)

∫ ς

0

dυ

g(υ)
)

= −Cg.

�
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Thus we have the following comparison principle.

Lemma 3.4 ([50, Lemma 3.1]). For fixed λ > 0, let f ∈ C([0,∞), [0,∞)), g satisfy
(G1), (G2), b satisfy (B1). Then there exists a positive constant M0 such that

wλ(x) ≤ w̄λ(x) +M0(ηC + σ)v0(x), x ∈ Ωδ, (3.21)

where δ > 0 sufficiently small such that

wλ(x), w̄λ(x) ∈ (0, s1), x ∈ Ωδ,

where s1 is as in Lemma 3.3.

4. Boundary behavior

In this section we prove Theorems 1.1–1.3. First we have the statement in [30,
Theorem 1.1] with a ≡ 1 in Ω.

Lemma 4.1. For a fixed λ > 0, let f ∈ C([0,∞), [0,∞)), g satisfy (G1)–(G3), and
let b satisfy (B1), (B2). If

Cθ + 2Cg > 2, (4.1)

then for any classical solution Vλ to the problem

−∆V = b(x)g(V ) + λa(x)f(V ), V > 0, x ∈ Ω, V |∂Ω = 0, (4.2)

it holds that

ξ
1−Cg
1 ≤ lim

d(x)→0
inf

Vλ(x)
ψ(Θ2(d(x)))

≤ lim
d(x)→0

sup
Vλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 , (4.3)

where ψ is the solution to (1.2), ξ1 and ξ2 are given as in (1.8). In particular, (i)
and (ii) in Theorem 1.1 hold.

Next we have the statement in [51, Theorems 1.2] with a ≡ 1 in Ω.

Lemma 4.2. For a fixed λ > 0, let f ∈ C([0,∞), [0,∞)), g satisfy (G1)–(G3), and
let b satisfy (B1). If b satisfies (B3), then any classical solution Vλ to (4.2) satisfies
(1.10).

Next we have the statement in [51, Theorems 1.3] with a ≡ b in Ω.

Lemma 4.3. For a fixed λ > 0, let f ∈ C([0,∞), [0,∞)), g satisfy (G1) and
g(s) = s−γ +µsp, s ∈ (0, s0) for some s0 > 0 and γ, p, µ > 0, and let b satisfy (B1).
If b satisfies (B4), then any classical solution Vλ to (4.2) satisfies (1.12).

Remark 4.4. Obviously, when f ≡ 0 on [0,∞), a solution Vλ to (4.2) is a solution
to (3.4).

Proof of Theorem 1.1. Let uλ ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to (1.1).
Using (3.3), Lemmas 3.1, 3.3, 3.4, 4.1 and 2.14 (iv), we obtain that for q ∈ (0, 2],

ξ
1−Cg
1 ≤ lim

d(x)→0
inf

u0(x)
ψ(Θ2(d(x)))

≤ lim
d(x)→0

inf
uλ(x)

ψ(Θ2(d(x)))
, (4.4)

and for q ∈ [1, 2],

lim
d(x)→0

sup
wλ(x)

ψ1(Θ2(d(x)))
≤ lim
d(x)→0

sup
w̄λ(x)

ψ1(Θ2(d(x)))
≤ ξ1−Cg

2 . (4.5)
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where wλ(x) = exp(ηuλ(x))− 1, w̄λ(x) = exp(ηūλ(x))− 1, η = λCq/2−1, ψ1 is the
solution to the problem ∫ ψ1(t)

0

ds

g̃(s)
= t, ∀t > 0, (4.6)

and g̃ is given in (3.17).
From

ψ(t) = η−1 ln(1 + ψ1(t)), ∀t > 0,

exp(ηs)− 1 ∼= ηs as s→ 0,

it follows that q ∈ [1, 2],

lim
d(x)→0

sup
uλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 . (4.7)

Thus (1.7) holds for q ∈ [1, 2].
Next we structure an appropriate supersolution near the boundary to (1.1) in

the case q ∈ (0, 1). Let ε ∈ (0, b1/4) and let

τ1 = ξ2 + 2εξ2/b2,

where ξ2 is given in (1.8). It follows that ξ2 < τ1 < 2ξ2, limε→0 τ1 = ξ2, and

− 4τ1Cg + 2τ1(2− Cθ) + b2 = −2ε. (4.8)

By (B2), (3.1), Lemmas 2.12, 2.14 and 2.15, we see that

lim
d(x)→0

τ1Θ2(d(x))g′(ψ(τ1Θ2(d(x)))) = −Cg,

lim
d(x)→0

(θ′(d(x))Θ(d(x))
θ2(d(x))

+ 1 +
Θ(d(x))
θ(d(x))

∆d(x)
)

= 2− Cθ,

lim
d(x)→0

(
λτ q1 2q

(Θ(d(x)))q

(θ(d(x)))2−q(g(ψ(τ1Θ2(d(x)))))1−q

+
σ

θ2(d(x))g(ψ(τ1Θ2(d(x))))

)
= 0,

lim sup
d(x)→0

b(x)
θ2(d(x))

≤ b2.

Thus, corresponding to ε, s0 and δ, where s0 is given in (G2) and δ in Lemma 3.1,
respectively, there is δε ∈ (0, δ) sufficiently small such that for x ∈ Ωδε ,

ūε = ψ(τ1Θ2(d(x)))

satisfies
ūε(x) ∈ (0, s0), x ∈ Ωδε , (4.9)

and

∆ūε(x) + b(x)g(ūε(x)) + λ|ūε(x)|q + σ

= ψ′′(τ1Θ2(d(x)))(2τ1Θ(d(x))θ(d(x)))2 + 2τ1ψ′(τ1Θ2(d(x)))

×
(
θ2(d(x)) + Θ(d(x))θ′(d(x)) + Θ(d(x))θ(d(x))∆d(x)

)
+ b(x)g(ψ(τ1Θ2(d(x)))) + λ(2τ1)q(θ(d(x))Θ(d(x)))q(g(ψ(τ1Θ2(d(x)))))q + σ

= g(ψ(τ1Θ2(d(x))))θ2(d(x))
(

4τ1τ1Θ2(d(x))g′(ψ(τ1Θ2(d(x))))
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+ 2τ1
(θ′(d(x))Θ(d(x))

θ2(d(x))
+ 1 +

Θ(d(x))
θ(d(x))

∆d(x)
)

+
b(x)

θ2(d(x))

+ λτ q1 2q
(Θ(d(x)))q

(θ(d(x)))2−q(g(ψ(τ1Θ2(d(x)))))1−q +
σ

θ2(d(x))g(ψ(τ1Θ2(d(x))))

)
≤ 0;

i.e., ūε is a supersolution of equation (1.1) in Ωδε .
Let uλ ∈ C(Ω̄)∩C2+α(Ω) be an arbitrary classical solution to (1.1). By Lemma

3.2, we see that there exists M0 > 0 such that for x ∈ Ωδε ,

uλ(x) ≤ ūε(x) + λM0v0(x),

i.e.,
uλ(x)

ψ(τ1Θ2(d(x)))
≤ 1 + λM0

v0(x)
ψ(τ1Θ2(d(x)))

, x ∈ Ωδε .

It follows by (3.3) and Lemma 2.14 (iv) that

lim
d(x)→0

sup
uλ(x)

ψ(τ2Θ2(d(x)))
≤ 1.

Using Lemma 2.14 again, we have

lim
d(x)→0

ψ(τ1Θ2(d(x)))
ψ(Θ2(d(x)))

= τ1
1−Cg .

Moreover, since Cθ > 0, by (2.9) and Lemma 2.14, we obtain that

lim
d(x)→0

ψ(Θ2(d(x)))
ψ(d2(x)θ2(d(x)))

= C
2(1−Cg)
θ .

Thus letting ε→ 0, we have

lim
d(x)→0

sup
uλ(x)

ψ(Θ2(d(x)))
≤ ξ1−Cg

2 . (4.10)

Combining (4.10) with (4.4), we obtain (1.7). In particular, when Cg = 1, uλ
satisfies

lim
d(x)→0

uλ(x)
ψ(Θ2(d(x)))

= 1;

and, when Cg < 1 and b1 = b2 = b0 in (b1), uλ satisfies

lim
d(x)→0

uλ(x)
ψ(d2(x)θ2(d(x)))

= (ξ01C
2
θ )1−Cg .

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let uλ ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to (1.1).
For q ∈ [1, 2], in a similar way as that of Theorem 1.1, by using (3.1), (3.3), Lemmas
3.1, 3.3, 3.4, 4.2 and 2.14 (v), we can show that Theorem 1.2 holds.

Next we construct an appropriate supersolution near the boundary to (1.1) in
the case of q ∈ (0, 1). Let ε ∈ (0, b1/4) and let τ2 = b2 + 2ε. It follows that

b1/2 < τ2 < 2b2.

By (B3), (G1), (3.1), (3.3), Propositions 2.6 (iii) and 2.11, and Lemma 2.14, we
derive that

σ lim
d(x)→0

d2(x)
L̂(d(x))g(ψ(τ2h1(d(x))))

= 0,
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λτ q2 lim
d(x)→0

(
(d(x))2−q(L̂(d(x)))q−1(g(ψ(τ2h1(d(x)))))1−q) = 0,

lim
d(x)→0

τ2h1(d(x))g′(ψ(τ2h1(d(x)))) = −Cg,

lim
d(x)→0

L̂(d(x))
h1(d(x))

= 0, lim sup
d(x)→0

b(x)
d−2(x)L̂(d(x))

≤ b2,

lim
d(x)→0

τ2
(
1− d(x)L̂′(d(x))

L̂(d(x))

)
= τ2, lim

d(x)→0
τ2d(x)∆d(x) = 0.

Thus, corresponding to ε, s0 and δ, where s0 is given as in (G2) and δ in Lemma
3.1, respectively, there is δε ∈ (0, δ) sufficiently small such that for x ∈ Ωδε

ūε = ψ(τ2h1(d(x)))

satisfies (4.9) and

∆ūε(x) + b(x)g(ūε(x)) + λ|ūε(x)|q + σ

= ψ′′(τ2h1(d(x)))τ2
2h

2
1(d(x)) + ψ′(τ2h1(d(x)))

(
τ2h
′′
1(d(x)) + τ2

2h
′
1(d(x))∆d(x)

)
+ b(x)g(ψ(τ2h(d(x)))) + λτ q

( L̂(d(x))
d(x)

)q(g(ψ(τ2h1(d(x)))))q + σ

= (d(x))−2L̂(d(x))g(ψ(τ2h1(d(x))))

×
(
τ2
(
τ2h1(d(x))g′(ψ(τ2h1(d(x))))

) L̂(d(x))
h1(d(x))

− τ2
(

1− d(x)L̂′(d(x))
L̂(d(x))

)
+ τ2d(x)∆d(x) +

b(x)
d−2(x)L̂(d(x))

+ σ
d2(x)
L̂(d(x))

1
g(ψ(τ2h1(d(x))))

+ λτ q2 (d(x))2−q(L̂(d(x)))q−1 1
(g(ψ(τ2h1(d(x)))))1−q

)
≤ 0,

i.e., ūε is a supersolution to equation (1.1) in Ωδε .
The rest of the proof is the same as that Theorem 1.1 and is omitted. �

Proof of Theorem 1.3. Let uλ ∈ C2(Ω) ∩ C(Ω̄) be an arbitrary solution to (1.1).
For q ∈ [1, 2], in a similar way as that of Theorem 1.1, by using (3.1), (3.3),

Lemmas 3.1, 3.3, 3.4 and 4.3, we can show that Theorem 1.3 holds.
Next we construct an appropriate supersolution near the boundary to (1.1) in

the case of q ∈ (0, 1). Let ε ∈ (0, 1). Let τ3 be the unique positive solution to the
problem

b2t
−γ − t

1 + γ
= −2ε,

it follows by the properties of the function bit
−γ − t

1+γ (i = 1, 2) that

(b1(1 + γ))1/(1+γ) < τ3 < ζ0, lim
ε→0

τ3 = (b2(1 + γ))1/(1+γ),

where ζ0 is the unique positive solution to the problem

b2t
−γ − t

1 + γ
= −2.
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Since L̂ and
∫ η
t
L̂(τ)
τ dτ are slowly varying at zero, we see that by (3.3), (B4),

Propositions 2.6 and 2.11 that

lim
d(x)→0

d(x)
L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ − 1
1 + γ

L̂(d(x))
)

∆d(x) = 0,

lim
d(x)→0

γ

(1 + γ)2

L̂(d(x))∫ η
d(x)

L̂(τ)
τ dτ

= 0, lim
d(x)→0

1
1 + γ

d(x)L̂′(d(x))
L̂(d(x))

= 0,

lim
d(x)→0

sup
b(x)

(d(x))γ−1L̂(d(x))
≤ b2,

and, using (G1) and (B4), there holds

στ−1
3 lim

d(x)→0

d(x)
L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ
)1/(1+γ)

= 0;

µτp−1
3 lim

d(x)→0
(d(x))γ+p

(∫ η

d(x)

L̂(τ)
τ

dτ
)(γ+p)/(1+γ)

= 0;

λτ q−1
3 lim

d(x)→0

(
d(x)

(∫ η

d(x)

L̂(τ)
τ

dτ
)(q+γ)/(1+γ)

×
∣∣∣1− 1

1 + γ
L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ
)−1∣∣∣q) = 0.

Thus, corresponding to ε, s0 and δ, where s0 is given as in (G2) and δ in Lemma
3.1, respectively, there is δε ∈ (0, δ) sufficiently small such that for x ∈ Ωδε

ūε = τ3d(x)
(∫ η

d(x)

L̂(τ)
τ

dτ
)1/(1+γ)

satisfies (4.2) and

∆ūε(x) + b(x)((ūε(x))−γ + µ(ūε(x))p) + λ|ūε(x)|q + σ

= τ3
L̂(d(x))
d(x)

(∫ η

d(x)

L̂(τ)
τ

dτ
)−γ/(1+γ)

(
− 1

1 + γ
− γ

(1 + γ)2

L̂(d(x))∫ η
d(x)

L̂(τ)
τ dτ

− 1
1 + γ

d(x)L̂′(d(x))
L̂(d(x))

+
d(x)

L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ − 1
1 + γ

L̂(d(x))
)

∆d(x)

+
b(x)

(d(x))γ−1L̂(d(x))

(
τ−γ−1
3 + µτp−1

3 (d(x))γ+p
(∫ η

d(x)

L̂(τ)
τ

dτ
)(γ+p)/(1+γ))

+ στ−1
3

d(x)
L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ
)γ/(1+γ)

+ λτ q−1
3 d(x)

(∫ η

d(x)

L̂(τ)
τ

dτ
)(q+γ)/(1+γ)∣∣∣1− 1

1 + γ
L̂(d(x))

(∫ η

d(x)

L̂(τ)
τ

dτ
)−1∣∣∣q)

≤ 0,

i.e., ūε is a supersolution of (1.1) in Ωδε . The conclusion follows as in the proof of
Theorem 1.1. �
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[25] S. Gontara, H. Mâagli, S. Masmoudi, S. Turki; Asymptotic behavior of positive solutions of

a singular nonlinear Dirichlet problem, J. Math. Anal. Appl. 369 (2010) 719-729.

[26] C. Gui, F. H. Lin; Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy.
Soc. Edinburgh 123 A (1993) 1021-1029.

[27] J. Hernandez, F. J. Mancebo; Singular elliptic and parabolic equations, in Handbook of Dif-

ferential Equations, Stationary PDE, vol. 3, Chipot- Quittner Eds, Elsevier, 2006, 317-400.
[28] N. Hoang Loc, K. Schmitt; Applications of sub-supersolution theorems to singular nonlinear

elliptic problems, Adv. Nonlinear Studies 11 (2011) 493-524.

[29] A. V. Lair, A. W. Shaker, Classical and weak solutions of a singular elliptic problem, J. Math.
Anal Appl. 211 (1997) 371-385.

[30] B. Li, Z. Zhang; The exact boundary behavior of solutions to a singular nonlinear Dirichlet

problem, Electronic J. Differential Equations 2014 (2014), No. 183, 1-12.
[31] A. C. Lazer, P. J. McKenna; On a singular elliptic boundary value problem, Proc. Amer.

Math. Soc. 111 (1991) 721-730.
[32] V. Maric; Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726,

Springer-Verlag, Berlin, 2000.

[33] P. J. McKenna, W. Reichel; Sign changing solutions to singular second order boundary value
problem, Adv. Differential Equations 6 (2001) 441-460.

[34] A. Mohammed; Boundary asymptotic and uniqueness of solutions to the p-Laplacian with

infinite boundary value, J. Math. Anal. Appl. 325 (2007) 480-489.
[35] A. Mohammed; Positive solutions of the p-Laplace equation with singular nonlinearity, J.

Math. Anal. Appl. 352 (2009) 234-245.

[36] A. Nachman, A. Callegari; A nonlinear singular boundary value problem in the theory of
pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980) 275-281.

[37] G. Porru, A. Vitolo; Problems for elliptic singular equations with a quadratic gradient term,

J. Math. Anal. Appl. 334 (2007) 467-486.
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