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AN ABEL TYPE CUBIC SYSTEM

GARY R. NICKLASON

Abstract. We consider center conditions for plane polynomial systems of

Abel type consisting of a linear center perturbed by the sum of 2 homogeneous

polynomials of degrees n and 2n − 1 where n ≥ 2. Using properties of Abel
equations we obtain two general systems valid for arbitrary values on n. For

the cubic n = 2 systems we find several sets of new center conditions, some

of which show that the results in a paper by Hill, Lloyd and Pearson which
were conjectured to be complete are in fact not complete. We also present a

particular system which appears to be a counterexample to a conjecture by

Zo la̧dek et al. regarding rational reversibility in cubic polynomial systems.

1. Introduction

In this work we consider center conditions for the origin for differential polyno-
mial systems in the plane having the form of a linear center perturbed by homo-
geneous polynomials of degrees n and 2n − 1 where n ≥ 2. We refer to these as
generalized cubic systems since they contain the cubic system (n = 2) as a particu-
lar case. Specifically, we assume nonlinearities such that the resulting phase plane
equation is one of Abel type. The most general form of this type of system is

dx

dt
= −y − p1(x, y)− p2(x, y),

dy

dt
= x+ q1(x, y) + q2(x, y) (1.1)

where
p1(x, y) = a0x

n + a1x
n−1y,

p2(x, y) = c0x
2n−1 + c1x

2n−2y,

q1(x, y) = b0x
n + b1x

n−1y + b2x
n−2y2 + b3x

n−3y3,

q2(x, y) = d0x
2n−1 + d1x

2n−2y + d2x
2n−3y2 + d3x

2n−4y3.

(1.2)

where b3 = 0 for the cubic system. To avoid the large number of possible subcases
which can arise in (1.2), we assume throughout that a0 = c0 = 0 (except for section
6) and that all other parameters are nonzero. Systems of a more general type
consisting of a linear center perturbed by polynomials of degrees n and 2n−1 have
been studied previously. For specific examples of this see the papers by Giné and
Llibre [7, 8, 9].
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The ordinary differential equation

dy

dx
= −x+ q1(x, y) + q2(x, y)

y + p1(x, y) + p2(x, y)
(1.3)

corresponding to this system is an Abel equation of the second kind and the prop-
erties of these equations can be used to investigate both the integrability of the
equation and the center properties of the associated system. Most of the results
which we give in this paper are for the cubic system, but we will also give a general
set of center conditions valid for arbitrary values of n. For the purposes of this
work an integrating factor µ(x, y) of (1.3) is a function such that

∂

∂y

(
µ(x, y)(x+ q1(x, y) + q2(x, y))

)
− ∂

∂x

(
µ(x, y)(y + p1(x, y) + p2(x, y))

)
= 0.

We shall frequently make use of the fact given by Reeb [20] that if µ(x, y) is nonzero
on a neighborhood of the critical point (0, 0) then the corresponding system is a
center of (1.1), (1.2). Every integrating factor that we determine in this paper will
be of this type, although we might not specifically mention it.

Particular cases of the cubic systems of the type defined by (1.1), (1.2) have been
studied extensively in the past. One of the earliest of these was by Kukles [15] who
considered the case a0 = a1 = c0 = c1 = 0. He proposed a set of conditions which
he thought to be both necessary and sufficient for centers of these systems. These
conditions were shown to be not complete by Jin and Wang [13] who obtained a
system not contained in the Kukles’ condition. The complete set of conditions was
given in papers by Lloyd et al. [16, 19].

The case a0 = c0 = c1 = 0 was considered by Hill, Lloyd and Pearson in [12].
They obtained three separate conditions for nonzero parameters and conjectured
that this gave a complete classification of the centers for such systems. One of the
main purposes of this paper is to show that these conditions are not complete. Us-
ing properties of Abel equations, we are able to demonstrate another large class of
centers not contained in those given in [12]. This approach also allows us to make
further statements regarding the invariant curves and integrating factors for the
systems considered therein. The results for the cases considered previously were
obtained by calculating the Lyapunov coefficients of the system and then using re-
sultants to obtain common factors. This type of development often leads to massive
expressions which frequently become intractable. Fortunately, for these Abel type
systems there is another approach which will reproduce the same results much more
quickly and also allows for extension to the case c1 6= 0. Analyzing the problem
in terms of Lyapunov coefficients allows for a discussion of both the necessity and
sufficiency of the conditions so obtained, as well as a possible determination of the
number of limit cycles which can bifurcate from the critical point. However since
the results in this paper determine only the integrability of the systems, we consider
just the sufficiency of the conditions.

In the next two sections we develop some of the fundamental ideas concern-
ing Abel differential equations and use them to generate the systems of equations
that define the solutions that we seek. In section 4 we employ the methodology
previously introduced to consider certain aspects of the results given in [12]. The
case c1 6= 0 is considered in the next section and we present several new sets of
center conditions for these cubic systems. In the final section we look at certain
results by Cherkas and Romanovski [3] which cover some of the cases defined by
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a0c0 6= 0 which are not dealt with in this paper. We present a particular system
which seems to be a counterexample to a conjecture made by Żo la̧dek and others
regarding rational (algebraic) reversibility in cubic polynomial systems.

2. Elements of the Abel differential equation

The emphasis of this paper is to use properties of the Abel differential equation
to characterize center conditions for the system (1.1), (1.2). The primary reason for
doing this is because all of the results having nonzero parameters in [16, 19] can be
expressed in terms of easily identifiable forms of Abel equations. These are either of
Bernoulli or constant invariant type, terms which we will define more fully below.
In order to do so, we briefly review certain standard aspects of Abel equations as
well as some less known ones.

An Abel equation of the first kind is given by
dy

dx
= f3(x)y3 + f2(x)y2 + f1(x)y + f0(x) (2.1)

and an Abel equation of the second kind by

dy

dx
=
f3(x)y3 + f2(x)y2 + f1(x)y + f0(x)

g1(x)y + g0(x)
(2.2)

where the coefficient functions are assumed to be suitably differentiable functions
of x. The form (2.2) can always be transformed to an Abel equation of the first
kind by the variable change

y(x) =
1

g1(x)u(x)
− g0(x)
g1(x)

.

If we transform (2.1) by y(x) = u(x)− f2(x)/(3f3(x)) we obtain the equation

du

dx
= f3(x)u3 +

3f1(x)f3(x)− f2
2 (x)

3f3(x)
u+

s3(x)
f2
3 (x)

(2.3)

where

s3(x) = f0(x)f2
3 (x) +

2
27
f3
2 (x) +

1
3

(f3(x)f ′2(x)− f2(x)f ′3(x)− f1(x)f2(x)f3(x)) .

(2.4)
Transformations of this type have been given in Kamke [14]. From s3(x) it is
possible to define recursively an infinite sequence of relative invariants [2] of weight
2k + 1 by

s2k+1(x) = f3(x)s′2k−1(x) + (2k− 1)
(1

3
f2
2 (x)− f ′3(x)− f1(x)f3(x)

)
s2k−1(x) (2.5)

for k ≥ 2 and from these, a sequence of absolute invariants can be formed. If the first
invariant I1(x) = s35(x)/s53(x) is constant, the Abel equation can be transformed to
a separable equation. We shall refer to centers defined by this condition as constant
invariant centers. In [7] the authors use the result

f2(x)
(f3(x)
f2(x)

)′
+ f1(x)f3(x) = Cf2(x)2

to investigate integrability conditions for centers and foci in certain generalized
cubic systems with n = 2, 3. In this C is a constant and if this relation is satisfied
it is sufficient to guarantee that the form of (2.1) with f0(x) = 0 has constant
invariant. This is an easily derivable extension of the more usual form of the
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condition (see Murphy [17])
(
f3(x)/f2(x)

)′ = Cf2(x) for which f1(x) = 0 as well.
These conditions can be difficult to use with the full form (2.1) (if we wish to find
conditions for which the equation has constant invariant) because it is necessary to
know a particular solution in order to eliminate the f0(x) term. We can see from
equation (2.6) below that we can make f0(x) = 0 for cubic systems (n = 2, b3 = 0)
simply by taking d3 = 0. However, we do not do this and all of our constant
invariant results in this paper are based on the condition d3 6= 0.

If s3(x) = 0 then (2.3) is a Bernoulli equation and the corresponding systems will
also be centers. This is the case for the two systems given in [16]. The invariants
of an Abel equation of the second kind are defined to be those of the corresponding
Abel equation of the first kind.

When the Abel equation defined by (1.2), (1.3) is transformed to an Abel equa-
tion of the first kind, the resulting equation has coefficient functions defined by

f0(x) =
b3x

n−3 + d3x
2n−4

1 + a1xn−1 + c1x2n−2
, f1(x) =

b2x
n−2 + d2x

2n−3

1 + a1xn−1 + c1x2n−2
,

f2(x) =
b1x

n−1 + d1x
2n−2

1 + a1xn−1 + c1x2n−2
, f3(x) =

x+ b0x
n + d0x

2n−1

1 + a1xn−1 + c1x2n−2
.

(2.6)

From these we can see that the relative and absolute invariants are rational func-
tions. Then from the definition of I1(x) we have s3(x) = I1(x)(s23(x)/s5(x))3 so
that if I1 6= 0 is constant, s3(x) must be the cube of a rational function up to some
multiplicative constant. If I1 = 0 this is not necessarily the case and we will see
that these two separate conditions generally define two distinct classes of centers.

We conclude the section with the following very useful result. We are certain
that this must be known, but this writer has never seen it in print elsewhere.

Lemma 2.1. A necessary and sufficient condition that the Abel differential equation
(2.1) is of type constant invariant is that it has a particular solution of the form

y(x) = η(x) =
1

f3(x)

(
K(s3(x))(1/3) − 1

3
f2(x)

)
(2.7)

for some constant K.

We briefly sketch a proof of this. Using a variable transformation of the form

y(x) =
1

f2
3 (x)

(
s3(x)u(x)− 1

3
f2(x)f3(x)

)
, (2.8)

we can transform (2.1) into

du

dx
= f̃3(x)u3 + f̃1(x)u+ 1 (2.9)

where

f̃3(x) =
s23(x)
f3
3 (x)

,

f̃1(x) =
(6f ′3(x)− f2

2 (x) + 3f1(x)f3(x))s3(x)− 3f3(x)s′3(x)
3f3(x)s3(x)

.

(2.10)

The transformation (2.8) is of type which will retain the same equivalence class (see
[2]) as that of (2.1) so the value of the invariant I1(x) is unchanged. For (2.9) we
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obtain a much simpler functional form for I1(x). We find that

I1(x) = −
(
f̃ ′3(x) + 3f̃1(x)f̃3(x)

)3
f̃3(x)4

. (2.11)

and assuming I1 is constant, we can solve for f̃1(x) and write (2.9) in terms of f̃3(x)
as

du

dx
= f̃3(x)u3 +

1
3

(
(−I1)1/3f̃3(x)1/3 − f̃ ′3(x)

f̃3(x)

)
u+ 1.

We can now show that a particular solution of this equation is q(x) = K/(f̃3(x))(1/3)

provided K is a solution of the equation

3K3 + (−I1)(1/3)K + 3 = 0. (2.12)

Converting back to the original form (2.1) gives (2.7).
The proof of sufficiency is quite straightforward. Assuming a solution of the

form (2.9) and substituting into (2.1), we can show that the Abel equation can be
reduced to

3K3 − s5(x)
(s3(x))5/3

K + 3 = 0.

Since K is a constant, so is I1.
Since the constant invariant form of the Abel equation is always solvable, it is

not a complete surprise that a solution like (2.7) should exist. Depending upon the
roots of (2.12) it can define up to three invariant curves of the system and these
can be used to construct Darboux type integrating factors. For our purposes we
assume that a Darbouxian function is a function of the form

D(x, y) =
N∑
k=1

fk(x, y)αk

for constants αk and where each fk(x, y) is a polynomial which is a particular
solution of (1.3). Each solution satisfies

(x+ q1(x, y) + q2(x, y))
∂fk
∂y
− (y + p1(x, y) + p2(x, y))

∂fk
∂x

= λk(x, y)fk(x, y).

where λk(x, y) is called the cofactor of fk(x, y) and is a polynomial of degree at
most 2n − 2 for generalized cubic systems. If an equation has a first integral of
Darboux type or a Liouvillian first integral then it has an integrating factor of
Darboux type (see [4]) with the possible inclusion of an exponential factor. For the
case where I1 is constant we can use (2.7) to generate the forms for the invariant
curves.

3. Development of governing equations

Here we develop the ideas of the previous section into a set of conditions which
will lead to the integrable Bernoulli and constant invariant forms of the Abel equa-
tion. This will generally produce a system of equations which is simpler, although
not necessarily fewer in number, than the usual approach of determining center
conditions in terms of Lyapunov coefficients. We do not give the specific forms for
these systems because they are very straightforward to obtain. They are deter-
mined by calculating the numerators of the appropriate expressions and forming
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the systems by setting the coefficients of each power of x equal to zero simultane-
ously. In no case that we give did the solutions of the system result in the vanishing
of the denominator. There are usually a number of ways to proceed in order to
accomplish this, but the systems so obtained are often not equivalent with regards
to solvability. As an example of the general procedure, the Bernoulli conditions for
the generalized cubic system defined by (1.2), (1.3) (with a0 = c0 = 0) are obtained
by calculating s3(x) from (2.4) using the coefficient functions (2.6). This results
in a system of 6 equations which is simple enough that it may be solvable without
the use of a computer algebra system. We give these solutions at the end of the
section. All symbolic computations in this paper were carried out using Maple 13
or later versions of the software.

It was noted in [12] (c1 = 0) that 1+a1x = 0 is an invariant line for the solutions
obtained therein. In the following we will find that a similar consideration holds
for the more general cases c1 6= 0 that we wish to consider. For this reason it is
helpful to define a new parameter by

c1 =
1
4
(
a2
1 − C2

1

)
, (3.1)

which allows for factorization of the denominator 1 + a1x + c1x
2 in simple linear

terms. We express the following systems in terms of C1, which has the slight
disadvantage that solving these systems often produces two solutions having similar
form, only one of which is needed to define the coefficient conditions. However, it
is useful because we can directly recover the solutions in [12] by setting C1 = ±a1

in our results.
For the constant invariant form we consider only the cubic n = 2 case and for

this we must distinguish between the two cases I1 6= 0 and I1 = 0. We begin
by assuming that I1 6= 0. We need to obtain the functional forms for s3(x) and
s5(x) and a little consideration will show us that they must have similar functional
components in order to obtain the cancellation necessary to produce a constant
value for I1. Using (2.4), (2.8) with n = 2 and b3 = 0 gives

s3(x) =
k(x)(

(a1 + C1)x+ 2
)3((a1 − C1)x+ 2

)3 (3.2)

where k is a polynomial in x having maximum degree 6 and minimum degree 2. (So
s3(x) = 0 would produce 5 equations in this case.) We were able to use this form to
produce a one parameter family of solutions for the case c1 6= 0 by taking specific
values for several parameters in conjunction with some of the following ideas. What
we found for these solutions was that s3(x) actually has a much simpler form in
the case when I1 is constant. With this in mind we define

ψ(x) =
x

(a1 + C1)x+ 2
(3.3)

and then take
s3(x) = K1ψ

3(x), s5(x) = K2ψ
5(x) (3.4)

where K1,K2 are nonzero constants. These forms now give the desired constant
invariant value I1 = K3

2/K
5
1 . If C1 = a1 (c1 = 0), (3.3) reduces to the form of s3(x)

for the constant invariant solutions in [12]. We can also express ψ(x) in terms of
the other linear factor of (3.2) (i.e. C1 → −C1) but this just leads to the duality of
the solutions mentioned earlier and produces nothing new. So one set of conditions
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is defined by the equivalence of (3.2) with (3.3) and (3.4). This can be expressed
as

k(x)−K1x
3 ((a1 − C1)x+ 2)3 = 0 (3.5)

where the coefficients of k(x) are given in terms of the parameters of the system
(1.2). This yields a system with 5 equations and in this we can see that K1 occurs
with degree at most one in any equation. So it is easily solved for and this under-
scores one of the advantages of this method. Using the previous results, we will
introduce a second independent parameter which also occurs at low degree. Not
only does this allow us to solve for these extra parameters in terms of the system
parameters, but it also seems to produce the system which is the simplest to solve.

In addition to (3.5) which guarantees that s3(x) has the correct form, we need
another condition to ensure that I1 is constant. We have tried to use the form of
s5(x) given in (3.4) in conjunction with the general form from (2.5), but the imple-
mentation of this is sufficiently complex that we were unable to obtain any general
results using it. We can obtain a solvable system by substituting for s3(x), s5(x)
from (3.4) into the definition of s5(x) from (2.5). This method gives the values of
K1,K2 from which we could calculate I1, but since this is not really of interest we
prefer to proceed in a somewhat different direction. We will make use of some of
the results arising in the proof of the Lemma in the previous section, and in this
regard the simplified functional form of I1(x) given by (2.11) is quite useful. Also,
the final form can be easily be modified to cover the remaining case I1 = 0.

From the definition of I1(x) we see that s23(x) = (s5(x)/s3(x))3 /I1(x). Then
from (2.10) we have

f̃3(x) =
1

I1(x)

( s5(x)
f3(x)s3(x)

)3

.

Assuming I1 is constant, (2.11) gives

(f̃3(x)I1)1/3 = − f̃
′
3(x)
f̃3(x)

− 3f̃1(x) =
s5(x)

f3(x)s3(x)
=
K2

K1

ψ2(x)
f3(x)

when (3.4) is used. With (2.10), (3.4) this can be written as

3
f ′3(x)
f3(x)

− 3
ψ′(x)
ψ(x)

− f2
2 (x)
f3(x)

+ 3f1(x) +K ′
ψ2(x)
f3(x)

= 0 , (3.6)

where K ′ = K2/K1. This gives a system having 5 equations, so when combined
with (3.5) it produces a system having 10 equations in total.

The final integrable form that we consider occurs when I1 = 0 (i.e. s3(x) 6= 0,
s5(x) = 0), but in this case there is no reason to expect that s3(x) will appear as
an exact cube. Fortunately, due to some previous work which we will describe a bit
more fully in the next section, we knew that an appropriate form is s3(x) = K1ω(x)
where K1 is a nonzero constant and

ω(x) =
x3(

(a1 + C1)x+ 2
)(

(a1 − C1)x+ 2
)2 . (3.7)

As in the previous case I1 6= 0 there is an alternative form of this in which the
powers on the terms in the denominator are reversed, but this again produces
nothing new. The condition corresponding to (3.5) becomes

k(x)−K1x
3 ((a1 − C1)x+ 2) ((a1 + C1)x+ 2)2 = 0 (3.8)
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and (3.6) is replaced by

3
f ′3(x)
f3(x)

− ω′(x)
ω(x)

− f2
2 (x)
f3(x)

+ 3f1(x) = 0 . (3.9)

To conclude the section we give the parameter dependencies for the Bernoulli forms
of the generalized cubic system.

Proposition 3.1. Let n ≥ 2 be an integer, a0 = c0 = 0 and (1.1), (1.3) be given
by (1.2). Then if either

b0 =
b21d0 + d2

1

b1d1
, b3 = −1

3
(n− 2)b1, c1 =

b1d0(a1d1 + b1d0)
d2
1

+
2
9
d2
1 − b21d0

(n− 1)d0
,

d2 = (n− 1)
b1d0(2b1d0 − a1d1)

d2
1

+
1
9

9b1b2d2
0 + 2d3

1

d0d1
+

2
9
b21d0 − d2

1

(n− 1)d0
,

d3 =
1
3

(n− 1)
b1(2b1d0 − a1d1)

d1
+

1
3
b1(a1d1 + b2d1 − b1d0)

d1
(3.10)

or

a1 = b0 +
2
9
b0d

2
1 − 4b1d0d1 + b0b

2
1d0

(n− 1)d0(b20 − 4d0)
, b3 = −1

3
(n− 2)b1,

b2 = −a1 − (n− 2)b0 +
2
9

2b0d2
1 + b0b

2
1d0 − 6b1d0d1

d0(b20 − 4d0)
,

c1 = d0 +
2
9

2b21d
2
0 + b20d

2
1 − 2b0b1d0d1 − 2d0d

2
1

(n− 1)d0(b20 − 4d0)
,

d2 = −c1 − (2n− 3)d0 +
2
9
b20d

2
1 + b0b1d0d1 − 4d0d

2
1 − 2b21d

2
0

d0(b20 − 4d0)
,

d3 = −1
3

(2n− 3)d1 +
1
27

(2b0b1d1 − 4b21d0)d1

d0(b20 − 4d0)

(3.11)

the corresponding systems satisfy s3(x) = 0 and are centers of (1.1).

Since these conditions are derived from the consideration of Bernoulli forms for
(1.3) it is obvious that integrating factors can be readily obtained. We can show
that an integrating factor for (3.10) is given by

µ(x, y) =
e

R
F(x) dx

(3b1d0xn−1 + b1d1xn−2y + 3d1)3D(x)
(3.12)

where F(x) = N (x)/D(x) with

N (x) = xn−2
[
(9(n− 1)2b1d2

0(a1d1 + b1d0) + 2(n− 1)d1(2d3
1 + 9b1b2d2

0 − 3b21d0d1)

+ 4d2
1(b21d0 − d2

1))xn−1 + 27(n− 1)2b1d2
0d1 + 18(n− 1)b2d0d

2
1

]
and

D(x) = [9(n− 1)b1d2
0(a1d1 − b1d0) + 2d2

1(d2
1 − b21d0)]x2n−2

+ 9(n− 1)a1d0d
2
1x
n−1 + 9(n− 1)d0d

2
1.

We observe that (3.12) is analytic and nonzero on a neighborhood of the critical
point (0, 0) with the same being true for the integrating factor for (3.11).
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4. The article by Hill, Lloyd and Pearson

In [5] Christopher and Lloyd consider a particular case of centers for the case
a1 = c1 = 0 and Lloyd and Pearson look at the general case in [16]. They find
two general sets of centers which correspond to the Bernoulli centers for cubic
systems from Proposition 3.1. Unfortunately, the parameter assignments for the
second case in [16] are not correctly given, but correct relations for this are found
in [19]. Hill, Lloyd and Pearson [12] consider the case c1 = 0 and obtain three
independent sets of coefficients for centers. Upon analysis, we once again find that
two of these are Bernoulli centers and the third is constant invariant. Since the
immediate integrability of the systems so obtained is not recognized, they undertake
an exhaustive analysis to determine invariant curves and integrating factors. They
also conjecture that the set of conditions which they obtain are complete. All of
the results in these papers were obtained by calculating and reducing the Lyapunov
coefficients of the system. In the following we will discuss various aspects of the
invariant curves and integrating factors with regard to the methodology introduced
in this paper and further, use it to show that the conditions in [12] are not complete.
There it was conjectured [12, Conjecture 4.2] that the results given in that paper
for systems satisfying a1b1d3 6= 0 are complete.

We begin by considering the question of completeness just mentioned. Some time
ago this writer undertook an analysis of the cubic system (a1c1 6= 0) considered
in this paper. This was done by the attempted reduction of Lyapunov coefficients
along the lines used by other authors. However, the general problem of insufficient
memory quickly appeared and we were forced to make some assumptions in order
to continue. It was decided to impose the condition b0 + b2 = 0 and this drastically
reduced the size of the expressions obtained. Even so, it was necessary at one
point to obtain the factorization of a resultant containing more than 144,000 terms.
Fortunately, this was (indirectly) possible and through it we were able to identify
a class of centers which had not been previously reported. It turned out that they
were of the type I1 = 0 arising from (3.8), (3.9) and for future reference we denote
this system by S. These solutions were also very helpful in enabling us to set the
form of s3(x) given by (3.7). So, when we became aware of the paper [12] we used
these ideas to check for the possible existence of such solutions in that system. We
quickly found another set of conditions which is given in the following.

Proposition 4.1. Let n = 2, a0 = c0 = c1 = b3 = 0 and (1.1), (1.3) be given by
(1.2). Set α2 = b0/(b0 + 2b2). Then the system defined by

a1 = 3(b0 + b2), b1 = 2α(2b0 + 3b2), d0 =
1
3
b20(2b0 + 3b2)
b0 + 2b2

,

d1 = b0α(2b0 + 3b2), d2 = b0(2b0 + 3b2), d3 =
α

3
(b0 + 2b2)(2b0 + 3b2)

satisfies the condition I1 = 0 and is a center of (1.1).

Since s3(x) for this system is nonzero, the system is not Bernoulli. It could
be a member of the constant invariant family given in the paper with an added
condition to make I1 = 0, but it is easily shown by a number of different methods
(such as the form of s3(x)) that this is not the case. This would have required six
parameter assignments such as the results in Proposition 4.1, but the authors only
consider the possibility of up to five such assignments. They also state that there
were several cases that could not be fully reduced.
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An integrating factor µ(x, y) for the system satisfying µ(0, 0) 6= 0 can be con-
structed with the help of (2.7). The phase plane equation (1.3) is an Abel equa-
tion of the second kind which can be recovered from its first kind form by letting
y → 1/y. Then since K = −1 is the only real root of (2.12) in the case I1 = 0, an
appropriate form for the particular solution is

(f3(x)
y

+
1
3
f2(x)

)3

+ s3(x) = 0 (4.1)

where s3(x) has the form (3.7) in which one of the conditions C1 = ±a1 has
been imposed. The integrating factor is of Darboux type and so its construction
will involve determining the invariant curves of the system. From (4.1) we can
identify two such curves. One is a polynomial P(x, y) of degree 4 and the other
is an invariant line. The integrating factor is then given as µ(x, y) = (1 + 3(b0 +
b2)x)−1/3/P(x, y).

We now briefly consider some other aspects of the results in [12, Theorem 3.1],
particularly with regards to integrating factors and invariant curves. Specifically,
parts (i) and (iii) are Bernoulli and part (ii) is constant invariant. In their discussion
the authors state that the integrating factor for case (iii) is the most complicated
that they had encountered and also that each system required an exponential term.
As the Bernoulli forms of these systems are directly obtainable by setting n = 2
and letting c1 = 0 in our results (3.10),(3.11), we can see that an integrating factor
for these will include an exponential function. The one for case (i) can be found
as a particular case of (3.12) and the other can be obtained as a particular case of
(5.1) in the next section. With these forms known, we now consider the remaining
case.

Case (ii) produces a constant invariant equation having rational coefficients and
in our study of such equations (I1 6= 0) for polynomial systems we have always found
that an integrating factor could be obtained in the form of a rational function. This
is again of Darboux type so we must determine invariant curves for the system. In
this regard it is straightforward to verify that the expression given in [12] for this
case is not such a curve. It is possible to find the general forms for these and from
them to construct an integrating factor. This requires an explicit description of the
system and in terms of the notation in this paper this can be given by

a1 = b0 + b2,

d0 =
(b0 + b2)(b1(b0 + b2)α+ (b0 − b2)b21 + 4b0b2(b0 + 3b2))

2(b21 + 4b22)
,

d1 =
(b0 + b2)(3b2(b0 + b2)α+ b1(b21 + b22 − 3b20 − 6b0b2))

b21 + 4b22
,

d2 = − (b0 + b2)(3b1(b0 + b2)α+ 12b20b2 − b0b21 + 20b0b22 − 3b21b2)
2(b21 + 4b22)

,

d3 =
(b0 + b2)2(b1(b0 + b2)− b2α)

b21 + 4b22

(4.2)

where α2 = b21 − 4b20 − 8b0b2. We can now use this representation along with (2.7)
to determine information regarding invariant curves of the system. Similar to (4.1)
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the appropriate form for the particular solution is

f3(x)
y

+
1
3
f2(x)−Ks3(x)1/3 =

f3(x)
y

+
1
3
f2(x)− K ′x

a1x+ 1
= 0

for a constant K ′. Of course K ′ is known but its form is not easy to deal with.
As a component of this solution we can readily identify the hyperbola 1 + b0x +
A(K ′)y +Bx2 +C(K ′)xy = 0 where B is known and A,C depend upon K ′. With
this it is not difficult to determine the invariant curve as

C(x, y) = 1 + b0x+
1
2

(b1 + α)y

+
(b0 + b2)(b0b21 + 4b20b2 + 12b0b22 − b21b2 + b1(b0 + b2)α)

2(b21 + 4b22)
x2

+
(b0 + b2)(b31 + 2b1b22 − 2b20b1 − 4b0b1b2 + (2b0b2 + b21 + 6b22)α)

2(b21 + 4b22)
xy

In addition to this the system also has three invariant lines, one of which is a1x+1 =
0. The other two have the form Ax+By+C = 0 and can be obtained by assuming
that they are solutions of (1.3). Letting `k(x, y) = Akx+Bky+Ck for k = 1, 2, we
find

A1 = (b0 + b2)((b1 + α)β + b0(4b20 + 8b0b2 − b21 − b1α)),

B1 = 2b0(b0 + b2)2(b1 + α),

C1 = (b1 + α)β + (b0 + 2b2)(b21 − 4b0b2 + b1α),

A2 = A1 − 2(b0 + b2)(b1 + α)β,

B2 = B1, C2 = C1 − 2(b1 + α)β

where

β =
√
b0(12b0b22 + 8b20b2 − b0b21 − 2b21b2 − 2b0b1(b0 + b2)α).

The lines `1(x, y) and `2(x, y) will be real if I1 > 729/4 and complex conjugates if
I1 < 729/4. In the latter case their product will have the form of an empty conic. It
can then be confirmed with the help of a computer algebra system that the rational
function

µ(x, y) =
1 + (b0 + b2)x

`1(x, y)`2(x, y)C(x, y)
(4.3)

is an integrating factor of the system defined by (4.2).

5. The case c1 6= 0

Here we extend the ideas presented in sections 2 and 3 to the system in which
c1 6= 0. We know that there are two sets of Bernoulli centers given as follows.

Corollary 5.1. Let n = 2, a0 = c0 = 0 and (1.1), (1.3) be given by (1.2). Then if
either

b0 =
b21d0 + d2

1

b1d1
, b3 = 0, c1 =

9a1b1d
2
0d1 − 2b21d0d

2
1 − 9b21d

3
0 + 2d4

1

9d0d2
1

,

d2 =
b1(9b2d0d1 − 9a1d0d1 + 2b1d2

1 + 18b1d2
0)

9d2
1

, d3 =
b1(b1d0 + b2d1)

3d1
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or

a1 = b0 +
2
9
b0d

2
1 − 4b1d0d1 + b0b

2
1d0

d0(b20 − 4d0)
, b3 = 0,

b2 = −a1 +
2
9

2b0d2
1 + b0b

2
1d0 − 6b1d0d1

d0(b20 − 4d0)
,

c1 = d0 +
2
9

2b21d
2
0 + b20d

2
1 − 2b0b1d0d1 − 2d0d

2
1

d0(b20 − 4d0)
,

d2 = −c1 − d0 +
2
9
b20d

2
1 + b0b1d0d1 − 4d0d

2
1 − 2b21d

2
0

d0(b20 − 4d0)
,

d3 = −1
3
d1 +

1
27

(2b0b1d1 − 4b21d0)d1

d0(b20 − 4d0)

the corresponding systems satisfy s3(x) = 0 and are centers of (1.1).

An integrating factor for the first case can be obtained from (3.12) and one for
the second case is given by

µ(x, y) =
e

R
F(x) dx

(3d0x2 + d1xy + b1y + 3)3D(x)
(5.1)

where F(x) = N (x)/D(x) with

N (x) = 2(3b20d
2
1 + 9b20d

2
0 + 4b21d

2
0 − 4d0d

2
1 − 6b0b1d0d1 − 36d3

0)x

+ 9b30d0 − 36b0d2
0 − 8b1d0d1 + 4b0d2

1

and

D(x) = (9b20d
2
0 + 2b20d

2
1 − 4b0b1d0d1 + 4b21d

2
0 − 4d0d

2
1 − 36d3

0)x2

+ (9b30d0 + 2b0b21d0 + 2b0d2
1 − 36b0d2

0 − 8b1d0d1)x+ 9d0(b20 − 4d0).

The system also has general constant invariant solutions and using the results from
section 3, we obtain the following result.

Proposition 5.2. Let n = 2, a0 = c0 = b3 = 0 and (1.1), (1.3) be given by (1.2).
Then the system defined by

b0 =
1
4
α

C
, b2 = −b0 −

C

2
,

b1 = −1
8
C4 + 2a1C

3 − 4d0C
2 − 8a1d0C + 32d2

0 + 32d2
3

d3C
+

1
16
C2 − 8d0

d3C
α,

d1 = −1
2
b1C − 3d3, d2 =

1
2
C2 + a1C − 3d0 −

α

4

where α = 2a1C − 8d0 ± 2
√
C2C2

1 − 16d2
3, C = C1 − a1 and C1 is given by (3.1)

satisfies the condition I1 constant and is a center of (1.1).

The system has a rational integrating factor having the same basic form as (4.3)
except for the addition of a second invariant line which appears as a factor in
the denominator. This arises from the factorization of the denominators of the
coefficient functions f0, . . . , f3. For later reference we also specifically note that no
member of this family satisfies the condition b0 + b2 = 0 since C cannot be zero.

In addition to the general constant invariant solutions, the system also has
analogs of the I1 = 0 solution given in Proposition 4.1.
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Proposition 5.3. Let n = 2, a0 = c0 = b3 = 0 and (1.1), (1.3) be given by (1.2).
If any one of the following conditions holds, then the corresponding system satisfies
I1 = 0 and is a center of (1.1).
(i)

C1 = α, b1 = β, b2 =
1
6
α+

1
2
a1 − b0,

d0 =
1
12
α2 +

1
6

(a1 − b0)α− 1
4
a1(a1 − 2b0),

d1 =
1
4

4a1 − 5b0
β

α2 +
1
2

(2a1 − b0)(2a1 − 5b0)
β

α

− 3
4

4a3
1 − 15a2

1b0 + 26a1b
2
0 − 16b30

β
,

d2 =
3(2a1 − 3b0)

b0
d0 − a1α+ a2

1 − 8a1b0 + 8b20,

d3 = − 1
12
a1 − 2b0

β
α2 − 1

6
(a1 + b0)(a1 − 2b0)

β
α

+
1
12

3a3
1 − 12a2

1b0 + 24a1b
2
0 − 16b30

β

where α is a root of the cubic in X,

X3 + (5a1 − 8b0)X2 + 3a1(a1 − 4b0)X − 9a3
1 + 36a2

1b0 − 72a1b
2
0 + 48b30 = 0,

and

β2 =
1

2b0
((3a1 − 2b0)α2 + (6a2

1 − 19a1b0 + 7b20)α− 9a3
1 + 33a2

1b0 − 63a1b
2
0 + 42b30).

(ii)

b1 = α, b2 =
C

2
− b0, d0 = −1

4
C(C − 2b0),

d1 = −3
4

(a1 − b0)C(C − 2b0)
α

, d2 = −d0, d3 =
1
6
C1(a1 − b0)(C − 2b0)

α

where α2 = (3b0C1 − 3a1C + 3b0(3a1 − 2b0))/2 and C = C1 + a1.
(iii)

a1 = α, b1 = β, b2 =
1
2
α+

1
6
C1 − b0,

d1 =
3(α− b0)d0

β
+

3C1d
2
0

(b20 − 3d0)β
, d2 = −d0 +

2C1d
2
0

b0(b20 − 3d0)
,

d3 = −1
6
b0C1(b20 − 6d0)α

(b20 − 3d0)β
+

1
6
b0C

2
1 (b20 − 2d0)

(b20 − 3d0)β
+

1
3
b20C1(b20 − 5d0)

(b20 − 3d0)β

where α is a root of the quadratic in X,

b0(b20 − 3d0)X2 − 2b20(b20 − 3d0)X − b0(b20 − 3d0)C2
1 − 2(b20 − 4d0)(b20 − d0)C1

+ 4b0d0(b20 − 3d0) = 0,

and

β2 =
3
2
b0α−

3
2
b0C1(b20 − 5d0)

b20 − 3d0
− 3b20 + 6d0.
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(iv)

a1 = α, b1 = β, b2 =
1
2
α+

1
6
C1 − b0,

d0 =
1
12

(α+ C1)(3α− C1),

d1 = −1
2
C1 + 3b0

β
α2 − 1

6
2C3

1 + 9b0C2
1 − 9b20C1 − 45b30

(C1 + 3b0)β
α

+
1
6
C4

1 + 9b0C3
1 + 24b20C

2
1 + 15b30C1 − 18b40

(C1 + 3b0)β
,

d2 =
1
12

(α+ C1)(2C2
1 + 9b0C1 − 6C1α− 15b0α+ 12b20)

b0
,

d3 = −1
6

(C1 + 3b0)(C1 − 2b0)
b0β

α2 − 1
18

2C3
1 − b0C2

1 − 3b20C1 + 36b30
b0β

α

+
1
18
C4

1 + 4b0C3
1 + 3b20C

2
1 + 18b40

b0β

where α is a root of the cubic in X,

9(C1 + 3b0)X3 + 3(C2
1 − 9b20)X2 − (5C3

1 + 21 b0C2
1 + 36b20C1 + 36b30)X

+ C4
1 + 6b0C3

1 + 15b20C
2
1 + 24b30C1 + 36b40 = 0,

and

β2 = − 1
2b0

(3(C1 + 2b0)α2 + (2C2
1 + b0C1 − 12b20)α− C3

1 − 5b0C2
1 − 6b20C1 + 6b30).

These are the systems which remain after removing other simpler forms which
appear as special cases of these. At this time we believe the systems to be indepen-
dent, although it is certainly possible that it may be shown that one or more of them
belong to a larger, more general system. The fact that there are multiple solutions
is somewhat surprising, although it is similar to what happens for the I1 = 0 case
[18] for the homogeneous n = 4 system. It can be shown by considering resultants
or numerically that each of the 4 systems does produce real–valued parameters.
Also, each of them has a form for which b0 + b2 = 0, although the one for (iv) is
not real-valued. This is in contrast to the result from Proposition 5.2 for which the
general system did not have this property and shows that the two classes of centers
are distinct. We do not give integrating factors for these systems because they are
similar to those already described and can be obtained in the same manner.

Any of the systems for which I1 = 0, s3(x) 6= 0 should be obtainable simply by
solving the system of equations defined by s5(x) = 0 (denote this system by T )
with the condition that s3(x) is nonzero. In fact, if this had been possible these
results would have been obtained much sooner than they actually were since these
were some of the first solutions that we checked for following the Bernoulli cases.
However, T turned out to be totally intractable for the software (Maple) and it was
not until we began adding more specific forms for the various expressions that any
results were forthcoming. Obviously, the system S described in the previous section
is a solution of T . It was obtained through the reduction of Lyapunov constants,
but even then in the factored forms of the resultants Maple was unable to solve the
much simplified system. Fortunately, we were able to find a parametric form for
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the solution and use it to confirm the I1 = 0 nature of the system. The system S
is equivalent to (iii) with the added condition b0 + b2 = 0.

We have indicated that we had previously attempted an analysis of this system
(c1 6= 0) in terms of Lyapunov coefficients. At that time we were unable to calculate
a sufficient number of these coefficients to carry out an analysis without imposing
additional conditions on the system parameters. This author is of the opinion
that the results presented in this section are not obtainable at present using the
conventional development just described because of the inability of computers and
computer algebra systems to deal with the massive expressions required for this
type of analysis.

6. The case a0c0 6= 0

This case is not the general focus of this paper, but we recently learned of the
paper [3] by Cherkas and Romanovski which addressed certain aspects of these types
of systems. They considered certain cubic systems which could be transformed to a
system of Liénard type and used the known center conditions for these systems (see
[6]) to obtain center conditions for the original systems. Specifically, their results
apply to systems of the form
dx

dt
= −y − a0x

2 − a1xy − c0x3,
dy

dt
= x+ b0x

2 + b1xy + b2y
2 + d0x

3 + d1x
2y.

We have only analyzed a few of their results in detail, restricting for now our
attention to case (β) of [3, Theorem 5] where 41 separate systems are listed. Each of
these depends upon at least one arbitrary parameter which is fortunate because it is
necessary to use it in order to transform the results (β) to cubic systems. Otherwise,
the system of equations which defines this transformation is overdetermined and
has no solution. Even so, some cases do not have solutions and others degenerate
to quadratic systems. Of those which define cubic systems some are Bernoulli and
others are constant invariant. However, there is one system defined by result 9
which is particularly interesting. This is given by

dx

dt
= −y −Ax2 − xy −Ax3,

dy

dt
= x+ x2 + (2A− 1)xy − 2

3
y2 + 2A(1− 5A)x3 +

1
3

(2A− 1)x2y.

(6.1)

where A is an arbitrary parameter. We have found 6 integrable cases for this
system. Converting it to a first kind form, we see that only f3(x) is dependent
upon A with

f3(x) =
A(1− 4A)x4 + 9A(1− 4A)x3 + 3x2 + 3x

3(x+ 1)

and since the terms in A are symmetric about A = 1/8, the integrable forms occur
in pairs. Calculation of s5(x) easily shows that if A = 1/12, 1/6 the equation is
solvable with I1 = 0. For A = 1/20, 1/5 the systems have a Darboux first integral
which arises from a non–constant invariant Abel equation. For A = 1/5 this is
given by U(x, y) = P2(x, y)/Q3(x, y) where

P(x, y) = 648x3 − 900x2y + 450xy2 − 125y3

+ 4500x2 − 3060xy + 675y2 + 7650x− 2295y + 3825,

Q(x, y) = 84x2 − 60xy + 25y2 + 300x− 90y + 225.

(6.2)
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The other forms are obtained by noting that f3(x) will reduce to just x if A = 0, 1/4.
The resulting Abel equation

dy

dx
= xy3 − 1

3
x(x+ 3)
x+ 1

y2 − 1
3

2
x+ 1

y

(where we have retained y as the dependent variable) is transformable to a Riccati
equation which is solvable in terms of special functions. The exact form of the
transformation which achieves this is difficult to give because of its implicit nature.
However, if we set

dt

dx
=

1
3
√

81
x

(x+ 1)4/3
, t =

∫
t′(x) dx =

3
√

9
6

x+ 3
(x+ 1)1/3

,

u(t) =
1
3
√

9
1

(x+ 1)2/3
y(x)

the Abel equation transforms directly to

du

dt
= u3 − 2tu2

which is the representative equation for Class 2 given in [2, Appendix A] and which
is shown there to be solvable in terms of Airy functions. These are the only cubic
systems that we know of with this property, although Żo la̧dek [22, Remark 2.4]
has discussed this phenomenon as a common occurrence with regards to complex
cubic systems. No real, homogeneous (p2 = q2 = 0) system of degree 3 is solvable
in such a manner although there are homogeneous systems which are so integrable
for each n ≥ 4. The separate cases also show that we needn’t bother trying to
find an integrating factor of Darboux type for the general system even though such
expressions exist for the I1 = 0 and Darboux integrable forms.

It has been conjectured by Żo la̧dek [21] that all real centers for polynomial
systems are either rationally reversible or have a Liouvillian first integral. Other
similar conjectures have been made. See for example Christopher and Llibre [4].
It has been shown by Berthier, Cerveau and Lins-Neto [1] that this is not true
in general, however the conjecture still remains for cubic systems. In the major
work [21] and the follow-up paper [23] the author gives a complete list of rationally
reversible cubic systems. Minor corrections to this list are given by von Bothmer [10]
and von Bothmer and Kröker [11]. There are 17 such systems given denoted by CRj
for j = 1, . . . , 17. It has been shown by von Bothmer that CR5, CR7, CR12 and
CR16 are fully integrable and of these CR5 and CR7 are constant invariant. Our
brief recent study of these systems has added CR2 and CR3 as being of Bernoulli
type and CR17 is of type I1 = 0 when expressed as dx/dy = ẋ/ẏ. In addition to
these several other systems are almost integrable in the sense that one additional
parameter assignment will lead to an integrable Liouvillian form. In [23] he also
gives a list of 35 Darboux integrable cubic systems which does not appear to include
the system (6.2) given above.

The system (6.1) has a non–Liouvillian first integral if A = 0, 1/4, so unless these
two cases are rationally reversible the conjectures just mentioned are not true. Our
study of the rationally reversible cubic systems CRj has shown that (6.1) is not a
member of these systems. In particular, it cannot be a member of any of the fully
integrable systems described above.
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[23] H. Żo la̧dek; Remarks on “The classification of reversible cubic systems with center”, Topol.
Methods Nonlinear Anal., 8(2) (1996), 335–342.

Gary R. Nicklason

Mathematics, Physics and Geology, Cape Breton University, Sydney, Nova Scotia, B1P
6L2, Canada

E-mail address: gary nicklason@cbu.ca


	1. Introduction
	2. Elements of the Abel differential equation
	3. Development of governing equations
	4. The article by Hill, Lloyd and Pearson
	5. The case c1 =0
	6. The case  a0c0 =0
	References

