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COMPACTNESS OF THE DIFFERENCE BETWEEN THE
POROUS THERMOELASTIC SEMIGROUP AND ITS
DECOUPLED SEMIGROUP

EL MUSTAPHA AIT BENHASSI, JAMAL EDDINE BENYAICH,
HAMMADI BOUSLOUS, LAHCEN MANIAR

ABSTRACT. Under suitable assumptions, we prove the compactness of the dif-
ference between the porous thermoelastic semigroup and its decoupled one.
This will be achieved by proving the norm continuity of this difference and
the compactness of the difference between the resolvents of their generators.
Applications to porous thermoelastic systems are given.

1. INTRODUCTION

An increasing interest to determine the decay behavior of solutions of several
porous elastic and thermoelastic problems has been discovered recently. The theory
of porous elastic material was established first by Cowin and Nunziato [5] [6] [7].
In a recent paper the authors of [25] proved a slow decay of solution of porous
elastic system with boundary Dirichlet conditions in one dimensional case. After,
Casas and Quintanilla [8], proved the exponential decay of a porous thermoelastic
system. This problem has recently been the focus of interest of Glowinsky and Lada
[13, 14, 15]. In this work, we consider the abstract porous thermoelastic model

Wy (8) + Aywi (£) + Crws(t) + Co0(t) =0, ¢ >0, (1.1)
Ui () + Agwa(t) — Ciwy (t) — C30(t) + DD*inp(t) =0, t>0,  (1.2)
0(t) + As0(t) — Ciy () + Cig(t) =0, >0, (1.3)
wi(0) =wl, W (0) =wi, wo(0)=wd, we(0)=mws, 6H0)=06° (1.4)
with its decoupled system
1 (1) + Aywy (t) + Crws(t) + Co Az Chin (t) — Co Az Ciaina (1) (15)
=0, t>0,
wﬁﬂ+AwMﬂ—CMMO—Gﬁ?C%MO+K@£%X+DDﬂwu)(Lm
=0, t>0,
0(t) = —Asb(t) + Ciain (t) — Ciaa(t), >0, (1.7)
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wi(0) =w?, i (0) =wl, wy(0)=wy, wy(0)=mws, 60)=06"  (1.8)

The corresponding porous elastic system is given by the first and second equations

in the decoupled system ([1.5))-(1.8)),
W1 (t) + Ajwy (t) + C1’LU2(t) + OQAZ)TlO;’LUl (t) — 02A3_10;:IU2(75)

1.9

=0, t>0, (1.9)

Wa(t) + Agwa(t) — Ciwy (t) — C3Az Caiiy (1) + (C3A3 1 C5 + DD* )iing (1) (1.10)
=0, t>0, '

w1 (0) =wl, W (0) =wi, we(0)=wy, in(0)=1ws. (1.11)

In this article, we first show the existence of solution of problems determined by
systems —, — and - using the Lumer-Phillips theorem
from the theory of semigroups [9, Corollary 3.20]]. Second we address the prob-
lem of compactness of difference between the porous-thermoelasticity Cy-semigroup
(7 (t))e>0 generated by the system (1.1])-(1.4) and the Cop-semigroup (7Z4(t))i>0 gen-
erated by its decoupled system ([1.5))-(1.8]). As in [I], we prove the norm continuity
of t — T (t) — 74(¢t) for t > 0, and we show the compactness of the difference
R(AA) — R(\, Ay) for every X in p(A) N p(Ag), where A and A, are the genera-
tors of (7(t))i>0 and (Z4(t))¢>0, respectively. These two results together with [20,
Theorem 2.3] lead to the compactness of the difference 7 (t) — 74(t). This yields
that the essential spectrums o.(7 (¢)), and o.(75(t)) coincide. In the case where

the operators Agl and A;l/ 201145 1 are compact, following a similar argument as
in [II], we prove that c.(S(t)) = oe(7Z4(t)), where (S(t))i>0 is the Cp-semigroup
generated by the system (1.9)-(1.11).

Consequently one can derive stability results on the first semigroup from the
ones of the third semigroup. Finally two applications to a porous thermoelastic
system are given. In the first application where A;l, ¢t = 1,2 are compact but
A" is not compact, we show that only the two essential spectrums o (7 (t)), and
0.(74(t)) coincide. The second application is similar to the one given by Glowinsky
and Lada in [I5], where the exponential stability of porous thermoelastic system
is derived from the corresponding decoupled system. In this application, following
a different approach and using the compactness of Ai_l, 1 = 1,2,3, we obtain the
same stability result first for the simpler porous elastic system, then the property
is derived for the original porous thermoelastic system.

2. MAIN RESULTS

In what follows, A; : D(A4;) C H; — H;, i = 1,2,3, be self-adjoint positive
operators with bounded inverses, and H; be Hilbert spaces equipped with the norm
Il - lla;, ¢ = 1,2,3. The operator A; can be extended (or restricted) to each H; q,
such that it becomes a bounded operator

A; Hi,a — Hi’afl, Va € R, (21)

where for a > 0, H; o, = D(AY), with the norm ||z||; o = ||A8z||m, and for o <0,
H; = H;j_w the dual of H; _, with respect to the pivot space H;. The operator
D € L(Hs) and D* its adjoint. The coupled operators C;, i=1,2,3, satisfy
(C1) D(Cy) C Hy — Hy, with adjoint C} such that D(A;m) — D(Cy) and
D(4}%) = D(CY).
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(C2) D(Cy) C Hs — Hy with adjoint Cj such that D(AY?) — D(Cs) and
D(A;"?) = D(C3).
(C3) D(C3) C H3 — Hy with adjoint C% such that

D(AY?) < D(C3) and D(AY?) < D(C3). (2.2)
Set
H = H171/2 X H271/2 X Hy x Hy % Hg,

in this Hilbert space we introduce the new inner product

w, w1
w2 w2 ~ — ~ ~
< (vl ) ) o1 > = <w17w1>H1,1/2 + <w27w2>H2,1/2 + <11171)1>H1 + <1)2,’U2>H2

v2 Vo

+(0,0) 1y + R(CTw1, W2) 1, — (w2, CTw1) 1)

The associated norm of this inner product coincides with the canonical norm of H.

We can rewrite (L.1])-(1.4) and (1.5))-(1.8]) as the first order evolution equations
in 'H,

dn
E*Ariﬁ 77€Ha

77(0) - ( (1)7w(2)7w%>w%700)7

and
dn
£ = Adﬁa ﬁ S H,
ﬁ(O) = (w?vwng%vw%’eo)’

respectively, where A is the unbounded linear operator defined by

0 0o I 0 0
0o 0 I

A:DA) CH—-H, A= ;?4 S *2032 : (2:3)
0 0 CF —C; —As
with
D(A) = D(As) x D(Az) x D(A}/?) x D(A}/?) x D(43), (2.4)
and the operator Ay associated to the decoupled system

Ai:D(Ag) =DA) CH—H, Ay

6 0 0 7 0
_ | -4 -G —C2AJ'Cy CaAZCy 0 (2:5)

Cf —Ax C3A;'C; —C3A;'C;—DD* 0
0 0 C3 -C3 —As

We rewrite the coupled second order system (1.9))-(1.11)) on the Hilbert space
He:= Hyy0 X Hy /9 X H1 X Ha,
as the first order evolution equation

dn - -
E*Mna UGHc,

~0 _ /0.0 ,1 1
n = (wi,wy, wy,ws),
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and M : D(M) C H. — H,, is the unbounded linear operator defined by
0 0 I 0
M= (211 o 702,2;10; CQAQIjlc;; ) ; (2.6)
Cy —As C3A;'C; —C3A;'C;—DD*
with
D(M) = D(A;) x D(As) x D(A?) x D(AY?). (2.7)
Now we formulate the main results of this paper.

Theorem 2.1. The operators A, Ay and M generate strongly continuous contrac-
tion semigroups (T (t))i>0, (Za(t))i>0 on H and (S(t))i>0 on He.

Theorem 2.2. Assume that
ATV, ATYPOALY,  ASYPCsA (2.8)

are compact operators from Hs to Hy, from Hy to Hy and from Hs to Hs respec-
tively. Then T (t) — Tq(t) is compact for every t > 0.

As a consequence of Theorem we have the following particular results.

Corollary 2.3. Assume that the operators Ai_l, i = 1,2, are compact. Then
T(t) — T4(t) is compact for every t > 0.

Corollary 2.4. Assume that the operators Agl and 141_1/26’1/12_1 are compact.
Then o¢(T (t)) = 0.(S(t)) fort > 0.
3. WELL-POSEDNESS RESULTS

In this section we use Lumer-Phillips theorem (see [9, Corollary 3.20]) for the
proof of Theorem [2.1

3.1. Porous thermoelastic system. To show that the operator (A, D(A)) de-
fined by (2.3)-(2.4) generates a contraction semigroup on the Hilbert H, we need
the following technical lemma.

Lemma 3.1. The operator A is invertible in H and A~ is bounded on H.
f1

w1
P
Proof. Given a vector | fs | € H, we need v | e D(A), such that
fa 5)23
fs
!
ws £
A Z; =1 fs
57\

We have
U1 = f17
wy Al vg = fo,
wa f2
A < 5; ) = f3 =4 A1w1 + Cl’wg + ngg = 7f3,
ws fs —Cwy + Aswz + DD*vy — C3ws = — fy,
—C;’Ul + Cék’l}g + Asws = — f5.
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Hence

v = f17

w1 f1 Vo = f27

wo f2

A (g; ) = ;3 & ¢ Aywy + Crwg + Cowz = — f,

ws f: —Ci"wl + AQU)Q — Cg’wg = —f4 — DD*fQ,
wy = —A3"'(fs — C3 f1 + C5 f2),

v = f1,

vg = fa,

& Arwr + Crwp = CoAy (fs = O3 f1 + Ci fo) — f5 = Ko,
—Ciwy + Agwy = —C3A5 (fs — Ci fr + Ci fo) — fo — DD* f5 = Ko,
wy = —A3(fs — C3 f1 + C5 fo),

vy = f1,

Vg = f2,

S w = 7A1_1C’1w2 + Al_lKl,

(CYATICL + Ap)wy = Ky + CHATTK,
ws = —A3'(fs — C3.f + C3 f2).

We have

v1=fi €Hyip, v2=fo€Hy1po, ws=—A3"(f5 — Csf1+C5fa) € D(As).
Suppose that we have found wy with the appropriate regularity. Then,

w; = —AT Crwy + AT K, € D(A,).
We now solve the equation
(CTATICL + Ap)wy = Ky + CTAT'K. (3.1)
To find ws we introduce a bilinear form A on D(Aé/ %), defined by
A.Q) = (4, 2Cm, A7 2C10) + (Afn A30).

Since A is a bilinear continuous and coercive form on D(A;/ %), the Lax-Milgram

Lemma leads to the existence and uniqueness of ws € D(Aé/ 2) solution to the

equation .

Moreover Ko + CfAflKl — CfAflClwg € Hy and [(A2)_1]"'Hs = D(Ay),
(where (A2)_1 is an extension of As), then wy € D(As), (see [3 Proposision 5]).
Set By = (C’fAl_lCl + As)~ !, then we have

v = fi,
wi 'fl /02 = f27
wa f2 1 1
A :‘Lg = | fs & wp = _Al Cirws +A1 Ky,
w3 fs Wy = BlKQ + Blci‘Al_lKl,
ws = —A3 " (fs — Cs f1 + C5 fa),
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v = f1,

Vo = f27
wy = (A7 C1B1C3 A O + AT CLB1C AT T O A C

— AT Co AT CH) 1+ (AT TO1 B C3 AT O + AT Cy By DD*
— AT CIBIC AT Co AT O 4+ AT Co AT CE) fo
& +(AT'C1 B Cr AT — AT f3 + AT C1 By fa
+(ATTC1B1C3 AT — AT CLBICF AT Co A + AT O AT f,
wy = (B1C3A5C5 — B1C AT CL A1 CS) fu
+(=B1C3A3'Cs — BiDD* + B1Cf A CL A1 C3) fo
—B1Ci AT f3 — Bifs + (—B1C3A; " + BiCT AT Co A Y) f,
ws = —A3 " (fs — C3 f1 + C5 fa).

Thus,

a1 aiz ais AflclBl ais
as asz *BlcfAl_l —B1 ass
0 (3.2)

-1
A = I 0 0 0 )
0 I 0 0 0

AZlcs —AS'Cy 0 0

where

a1 = —A7TC1B1Cs A7 5 + ATNCLBICT AT Co AT Cy — ATTCR A O3,
ara = AJTC1B1C3 AN Cs + AT CiB1DD* — AT'C B O AT Co A1 O
+ AT Cy AT O,
a3 = AT'C1BCTAT — ATY,
a5 = AT'C1B1Cs A7 — ATTCiBIOT AT O AT + AT Co A,
agy = B1C3A;1Cy — BiCT AT Co A1 C3,
age = —B1C3A3'C; — BiDD* + B,C AT Co A3 C5,
ags = —B1C3A; " + BiCT AT CoAg .
The boundedness of the operator A~ follows by the assumptions . |

Now, to prove that the operator A generates a strongly continuous contraction
semigroup (7 (¢));>0 on H, we have only to show that (A, D(A)) is a dissipative
operator on H and A — A is surjective for some A > 0.

wy

For every (7512 > € D(A), by the Cauchy-Schwartz inequality, we have
va

w3
v1
w, w; vy w1
w2 wo 2
p— 7A11U1701U}27CQ’LU3
v v = v
§R(<A v; ’ vé >) §R<< Clwi—Aswa—DD"vy+Czws |’ vé >)
w3 w3 Civ1—Civa—Asws ws

= §R(<7J1,wl>H1,1/2 + (o, w2) i, , ,p — (Arwi,v1)m, — (Crwz, v1)m,
— (Cows, v1) g, + (Clwi,v2) g, — (Aswa, v2) g, — (DD v, v2) i,

+ <03UJ3,U2>H2 + <C§7}1,w3>H3 - <O§U2,’UJ3>H3 — <A3UJ3,U}3>H3
+ {Cvr, wa) g, — < vz,wa1>H2)

1/2
= —||D*va||%, — 145 w3/, < 0.
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Finally, A is dissipative. By a standard argument, one shows that (A — A) is
surjective for A € (0, ﬁ) Thus, [9, Corollary 3.20] leads to the claim.

3.2. Decoupled system. We show that the operator (Aq, D(Ag4)), associated with
the decoupled system (|1.5))-(1.8)), generates a contraction semigroup on the Hilbert
space H. For this, we first show the following lemma.

Lemma 3.2. The operator Ag is boundedly invertible in H.

Proof. Following the argument of the proof of Lemma we show that the oper-
ator Ay is invertible and

b11 b12 b13 AT'C1By 0
bo bas ~-BCfATY —-By 0
Al = I 0 0 0 0o |, (3.3)
0 I 0 0 0
ATty —AFC 0 0 At

where
by = —A7C1B1C3 AT O + ATTCLBICT AT Co ATy — ATTCo AT O3,
b = AT'C1B1Cs A1 C5 + AT'C1BiDD* — A7'C1BiCT AT O AT O
+ AT CyAT O,
biz=A'CiBCTAT — AT,
bo1 = B1C3A;'Cy — B1CT A Co AT Cs,
boy = —B1C3A;'C; — BiDD* + B,C; AT Co A7 C5.
O

wy
Now we show the dissipativity of the operator (Ag, D(A4)) on H. Take (%}E ) €
w3

D(Ay), by the Cauchy-Schwarz inequality, we have

(). ()

= §R(@lawﬁHl 12 (V2 w2)h, = (Arwe, v1)
Clw2v Ul>H1 <C2A§1C;1)1, v1>H1 + <C2A;1C§1)2, 'U1>H1
Cl w1, U2>H2 <A2w23 U2>H2 + <C3A'3?10;v13 U2>H2

(C3A5"C5 + DD*)va,v2) 1, + (Cav1, w3) gy — < Civ2,ws3)

~

+

~

— (Asws, ws) g, + (CTv1, wa) gy, — < wal,vg)Hz)

= R( D%l — 1452 C3unllh, + 2045 2 Chun, 45/ C5n)
— 145 2G50 )

< —|[D* v, <0

The proof of AI — A is surjective for some A > 0, follows as in Theorem
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3.3. Porous elastic system. As above, we can compute the operator

b1 b2 b1s ) ATNCL By
_ b b —BCrAT -B
M- = ;1 (2)2 1 01 1 : 1 , (3.4)
0 I 0 0

where By = (C; A0y 4+ Ap)~ !, and

by = —AT'C1B1C3 AT Cy + ATICiBICT AT Co A 1O — AT CL AT Cs,

bia = AT 01 B1C3 A7 PO + AT'C1B1DD* — ATYOy B C AT Co A C
+ A7 CL A5 1O,
biz=A'CiBCTAT — AT,
boy = B1CsA;'Cy — B1CT AT Co AT Cs,
boy = —B1C3A;'Cs — BiDD* + B,C; A[ ' Co A1 C5,
and show that the operator M generates a strongly continuous contraction semi-
group (S(t))e>0 on He.
4. COMPACTNESS RESULT

In this section we prove the compactness of the difference 7 (¢) —74(t), we use [20,
Theorem 2.3|, where it is sufficient to prove the norm continuity of the difference
between the two semigroups, and the compactness of the difference between the
resolvents of their generators. To show the first assertion, we need the following
technical lemma, see [2I, Theorem 1.4.3] .

Lemma 4.1. The map t — ASe=43t is norm continuous on (0,00) for all o > 0.
Now we can show the following norm continuity result.

Theorem 4.2. The map t — T (t) — T4(t) is norm continuous on (0, 00).

0
wy

0
Wy

Proof. Let t > 0 and g = | wi | € D(A) such that ||zo]| < 1. Let us write

wl
2
71):0
3
wl(t)fﬁl(t) 0
wa (t)—Wa(t) t 0
T(t)zo — Ta(t)wo = | w0 | = / T—s) [ 1 as,
v2(t)—v2(t) 0 g(s)
w3 (t)—ws(t) 0
where
f(S) = CQA:;lC;@l(s) - CQA?le;@Q(S) - 02@3(8)7
g(s) = 70314;10;@1(5) + CgA:S_lC;@Q(S) + 03@3(8).
Let 0 < h < 1, we begin by checking that || f(s + k) — f(s)|| = 0 as h — 0.
We have w3(t) = e~ 4stw] + fg e~ 4= g, (0)do — fg e~ 43(s=9) O, (0)do.
Then

f(S) = CQA:;IC;il(S) — C2A3TIC§EQ(S) _ C2€_A3swg

—CQA;UQ/ Aé/2e—A3(s—U)C;§1(J)dJ
0
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+ CrA 1/2/ Aé/Qe_A3(S_”)C§@(U)dU
0
= (C245 ) (CoAT2) T (5) — (C2451/%)(C5 A5 %) T (s)

— (Co AP AL e Ass ) (CzAgl/Q)/ Age=436=9)(Cy A7)0y (0)do
0
+(CLA; Y% / Age=436=9)(C5 A7 Y?)* 0y (0)do.
0

Since CQA;1/2 and CgAgl/Q are bounded operators from Hj3 to H; and from Hjs

A

: _ /2 :
to Hy respectively, and s — e™ 3% 5 +— Ag/ e~43% are norm continuous on (0, 00),

the map s — (C2A _1/2)Aé/26"43(3) is norm continuous on (0, 00), and there exists

a positive constant «(s) and ((s) such that ||(C2A 1/2)** (o)l < a(s)||v1(o)]| and

1(C5A5 ) T3(0)|| < B(5)|[72(0)|, for every o € [0, s). By the inequality
||(E1,@2,f1,@2,w3)||71 < HxOH’}‘U for all ¢ > Oa

we deduce

I(C5 452y (o) < BCs)l|oll,

1(C2A5 %) B1(0)]] < als)loll,

for every o € [0, s). Thus
51— / Age_AB(s_”)(CgAgl/z)*ﬁl (0)do,
0

5+ / Age_AB(s_”)(C3A;1/2)*@2(0)d0
0

are continuous on (0, o) uniformly with respect to ||zo|| < 1.

Finally ||f(s + h) — f(s)|| — 0, as h — 0, uniformly in zy. Using the same
argument, we have ||g(s + h) — g(s)|| — 0, as h — 0, uniformly in x.

Let us write

w1 (t+h)—w1 (t+h) w1 (t)—w1q (t)
wa (t+h)—wa (t+h) wa (t) —wa(t)
H ’Ul(tJrh ’Ul(t+h) — ’Ul(t) ’Ul(t) H
’Ug(tJrh) Uz(t+h) ’Uz(t) ’Ug(t)
ws (t4+h)—ws (t+h) w3 (t)—ws(t)
t+h 8 t
- / T(t+h—s) fE; ds—/ T(t—s) f(s) dsH
0 0
t+h
_ T(s) | re+h-s) ds— T(s) | £ dsH
o t+h s) (t s)

t
- /T(s) Flt+h—s)—F(t—s) ds+/ T(t+s) | 109 dsH
0 g(t-l—h—so)—g(t—s) g(h —5)

IN

0
t 0
/ F(t+h—s)— f(t—s) ds)+H/ f(h ) dsH.
0 g(t+h—83—g(t—8) g(h
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In addition, there exists constants N; and Ny such that

sup [[f(h—s)[| <N,  sup [lg(h—s)[| < N2
s€[0,t+1] s€[0,t+1]

uniformly with respect to xg, and 0 < h < 1.

Since ||f(s+h) — f(s)]| = 0as h — 0 and ||jg(s+h) —g(s)| = 0ash — 0
uniformly with respect z¢, we deduce that fg lf(t+h—s)— f(t—s)||ds — 0 and
fg lg(t +h —s) — g(t — s)||ds — 0, as h — 0 uniformly for zg € D(A) such that
|lzol| < 1. Finally, ¢t — T (t) — 74(t) is norm continuous on (0, c0). O

Proof of Theorem[2.3. Since the map t — 7 (t)—74(t) is norm continuous on (0, o),
we need only to show the compactness of R(\, A) — R(\, Aqg), A € p(A) N p(Ag).
From the following result

RN, Ag) — RN A) = AR, A)[A™! — AT AR, Ag),

it is sufficient to prove that A~ — Agl is compact. We have

0 0 0 0 c5
0000625
A7 —At=(0 0 0 0 0], (4.1)
0000 O
0000 O

where
Cl15 — Al_lclBngAgl — Al_lC’lBleAl_lCQAgl + A1_102A3_1,
Cop = 7B103A3_1 + BlcfAflchgl.

From the assumption (2.8)), it is clear that the operators ci5 and cy5 are compact,
and this achieves the proof. O

Proof of Corollary[2.7. Since the operators A;' and A1—1/201A2—1 are compact,
assumption (2.8]) is satisfied. In view of Theorem it is enough to show that for
each t > 0,

{Ta(t) (W, w3, wi, wy, wg) — (S(H)(w}, wy, wi, w3); 0) « [|(wh, wh, wi, wy, wh)|| <1}
is a compact set in H, i.e. that

' t
{67A3twg + / e~ (=037, (0)do — / e A=) Cmy (o) do -
0 0

(w8, w, wl, wh,wd) < 1}

is a compact set in Hz, where (w1 (0), w2 (0),v1(0),02(0)) = S(o)(wf, wd, wi, wi).
Since

0,0 ,1. 1 0
(w7, wy, wy, w3, ws)

t
0

t
- / Aze=436=9)(C5 A7)0y (o) do
0

is bounded with values in H3 (we have used the Lemma and Lebesgue’s theorem)
and Ag /2 i compact, the result follows. O
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Remark 4.3. (1) If we have the conditions C3A5 7, Co A3 and C; A, 7 are compact
for some v < 1 then the assumptions are satisfied and we have the compactness
of the difference between 7 (t) — 74(t) for every ¢t > 0, which is similar to Henry’s
condition in [I1].

(2) If we suppose that A7! and A5 ' are compacts we have o.(7 (t)) = 0. (Za(t))
for t > 0 but to have o.(7y(t)) = 0.(S(t)) for t > 0 we need the condition Az"' is
compact.

5. APPLICATIONS
We give two illustrating examples of Theorem and Corollary

Application 1. We give one application of Theorem [2:2] Let Q the bounded open
Jelly Roll set proposed in [26],

1
Q= {(z,y) €R?: §<r<1}\1“,

where T is the curve in R? given in polar coordinates by

3
2% + arctan(¢
r(¢) = 22—(),
m
We consider the initial and boundary problem
i(t, ) — Acu(t,z) — bVe(t,z) + cVO(t,x) =0 in (0,+00) X Q,

B(t,x) — (aA — al)p(t, z) + bdiv u(t, z) — dO(t,z) + rd(t,z) = 0

—00 < ¢ < 0.

in (0,4+00) x Q,
O(t,z) — (A — kDO(t,z) + ediva(t,z) + dé(t,z) =0 in (0,+00) x Q, (1)
u=0, ¢=0, 06 =0 on (0,400) x 99,

on
u(0) =u’, u(0)=u', #0)=¢", ¢0)=¢', 0(0)=06° inQ,

where n denotes the outer uniter normal vector to 9, A, := pA + (u + \)V div,
and u, A\, a, b, ¢, d, r, o, k are positive constants.
To fit this system into the abstract setting of (1.1)-(L.4), we take

Hy=L*(Q)? Ho=Hz=L*Q), Hyy=(H;()? Hyy=H(%),
H=H.x L*(), H.=(H}(Q))? x H(Q) x L*(Q)? x L*(Q),
Ay =—A., D(A)=D(-Ap) = (H*(Q) N Hy(Q))*,
Ay = —(aA —al), D(A2) =D(-Ap) = H*(Q) N Hy (%),
As = —(A—kI), D(As) =D(-An).

We recall that u, ¢, are the displacement vector, the volume fraction and the
temperature. The Dirichlet and Neumann Laplacian operators Ap and Ay are
the unique positive self adjoint operators associated to the closed quadratic form
on H}(Q) and H(Q) respectively

(f.g)= [ Vf9gds.
The operator DD* = rIy,, and the coupled operators
Cl = —bV, 02 = Cv, Cf = bdiV7 C; = —CdiV, 03 = dIH37

1
)
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D(Cy) =D(Cy) = H'(Q), D(C3)=D(C})={uc H(Q)?:u-7 =0in 0Q}.

Note that the conditions are verified and we have A" and A5 ' are compact
from H, and Hs respectively, then the assumptions are satisfied, consequently
the Theorem [2.2]is satisfied. To show o.(74(t)) = 0¢(S(t)) for t > 0, we need the
compactness of Az, but from [26], Az is not compact.

Application 2. We give an application of Corollary Let Q C R? a bounded
open domain with boundary 09 having regularity of class C?, and satisfies the
following condition:

(A1) If ¢ € (H}(Q))? such that
~Ap=7%¢ inQ,
divp =0 in €, (5.2)
=20 in 0Q.
for some v € R, then ¢ = 0.
We consider the initial and boundary problem
U(t,z) — Acu(t,x) —bVe(t,x) +cVO(t,z) =0 in (0,400) x €,
b(t,x) — (a A — ad)(t, ) + bdivu(t, z) + ré(t,z) =0 in (0, +00) X 9,
0(t,x) — AO(t,z) + cdiva(t,z) =0 in (0, +00) x (5.3)
u=0, ¢=0, 6=0 on (0,400) x 99,
u(0) =u’, a(0) =u', $(0)=¢° $(0)=¢'0(00)=6" nQ,

where A, := pA + (u + A\)V div is Lamé operator, p, A, a, b, ¢, v, a are positive
constants, and the condition (X + u)a > b? is satisfied.
To fit this system into the abstract setting of (1.1] m-, we take

Hy = LX(Q), Hy=Hy=[A(Q), Hy ) = (HNQ)? Hy, = H(Q),
H=H. x L*(Q), where H. = (H}(Q))* x H}(Q) x L*(Q)* x L*(Q),
Av=—Ac,  D(A) =D(-Ap) = (H*(Q) N Hy ()%,

Az = —(aA —al), D(Az) = H*(Q) N Hy(Q),

As =—A, D(A3) = D(As).

The operator DD* = rIy,, and the coupled operators
Cy=-bV, Cf=bdiv, Cy=cV, C5=-—cdiv, C3=0,
D(Cy) =D(Cy) = HY(Q), D(C3)=D(C})={uec H(Q)?:u-7 =0 on N}
The decoupled system corresponding to system is given by
i(t,x) — Acu(t,z) — bV@(t, ) + 2 Pu(t,z) =0 in (0,+o0) x Q,
B(t,x) — (aA — al)p(t,z) + bdivu(t,z) + ré(t,z) =0 in (0,400) x €,
O(t,z) — AO(t,z) + cdiva(t,z) =0 in (0,400) x €, (5.4)
u=0, ¢=0, 6=0 on (0,400) x 99,
w(©) =’ w(0)=u', 6(0)=¢" $(0)=¢"0(0)=0" inQ,
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where P := V(A)~!div the orthogonal projection operator from L?(2)? into the
subspace {V;p € H}(Q)}. Now we write the porous elastic system given by the
first and second equation in decoupled system ({5.4))

i(t,r) — Acu(t,z) — bVo(t, ) + Pu(t,z) =0 in (0,+o0) x Q,
b(t, ) — (aA — al)p(t,z) + bdivu(t,z) + ré(t,z) =0 in (0,400) x €,
u=0, ¢=0 on (0,+00) x 09,
w(©0) =u’, W0)=u', ¢(0)=¢% &0)=9¢" nQ.

Let (7 (t))i>0 the porous-thermoelastic Cy-semigroup generated by the system
and (S(t));>0 the porous elastic Co-semigroup generated by the system (5.5)).

Note that the operators Afl, As L and Ay L are compact, consequently the assump-
tions of Corollary 2:4] are satisfied, then

(T (t)) = 0.(S(t)) fort > 0.

(5.5)

The second aim of this application is to characterize the exponential energy decay
of solution of system , and then deduce the one of the coupled systems ([5.3)).
Now we show that (S(t)):>0 is exponentially stable in H,, by using a similar
argument as in the proof of [I5, theorem 4.4]. Let £(t) := S(t)e°, t > 0, be the

solution of

de 0
i Me, ¢(0)=c¢", (5.6)

where €% := (u®, ¢% ul,¢'). We look for £(¢) having the form 2(t) = X2 ble(t),
where ¢;(t) = (ul(t),¢g(t)7ul(t),él(t)), £(0) = €% and | € {0} UN. After the
formal substitution into the equation we derive equations for (uy, ¢;), where
1 € {0} UN. For (ug, ¢9) we obtain

iig(t, ©) — Aeuo(t, ) + 2 Plg(t,2) =0 in (0, +00) x £, (5.7)
do(t, ) — (aA — al)go(t, ) +rdo(t,z) =0 in (0,+00) x O, (5.8)
u =0, ¢o=0 on (0,+00) x I,
uo(0) =u’, io(0) =u', ¢0(0) =¢° Go(0)=¢' .
For k € {0} UN, (t41, Pr+1) will be the solution of problem
tigr1(t, ) — Acupy1(t, ) — bV @g(t, x) + *Pigyr =0 in (0,400) x Q,  (5.9)
bra1(t, ) — (aA — al)ppyi (t, z) + bdivug(t, z) + répi(t, z)
=0 1in (0,400) x Q,
ugr1 =0, drr1 =0 on (0,400) x 99,
ue1(0) =0, tky1(0) =0, Gri1(0) =0, Gri1(0)=0 inQ.
Let € = (u, ¢, v,9) € H,, and define the norms
1Cu(t), v(@)IF = /Q[M|VU(!M)\2 + A+ )l divu(e, O + [v(z, t)*]de,

1(o(t), ()3 := /Q[G\qu(ﬂwt)l2 +ald(z, )] + [¢(a, t)*]de,
lell® == ll(u(®), v@)IF + (e(t), w(E)I3-
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From [19], there exists My, > 0, such that

1(d0(t), do(t))]13 < M= (¢%, M3, ¢ >0.

Note that the damped Lamé system (5.7)) has been studied by Zuazua and Lebeau
in [I7] and they proved the exponential decay of solution of (5.7)) if the following
inequality of observability holds true for some T, C > 0, i.e,

T
1%l 2@ + e sy < C / | div ol -1 ey, (5.11)

where ¢(t) is solution of the Lamé system
G(t, ) — Aep(t,z) =0 in (0,400) X £,
=0 on (0,+00) x 09, (5.12)
0(0) =", p(0) = ¢' Q.
Under the condition that is satisfied, we have
[(uo(t), a0 ()T < Mae™ 2| (u®,u')|F, t20,
for positive constants Ma,y2. Let v = inf(y1,72), we have

H(uo(t)v¢0(t)7u0(t)7q.50(t))” < Me—%t||(u0’¢0’ul7¢1)”7 t>0. (513)
Let (G(t))t>0 and (K(t))r>0 be the contraction Cp-semigroups generated by the

equations (5.8) and (5.7) respectively, where (¢o(t),do(t)) = G(t)(¢°, ¢'), and
(uo(t), o(t)) = K(t)(u’, ut). For the solution of system ([5.10)) we have

(Dr+1(1), et (t)) = /Ot G(t — s)(0, — divug(s))ds.

Then .

(G (0, Sua )l < [ rem 0, v (5))ads.
Since ||(0, — divug(s))]l2 < C1|[(ur(s), ux(s))||1, we have

IGer(®): @)l < | O My (), () s
For the solution of system we have

(s ()i (1) = | K(t — $)(0,bV6u(3))ds.
Then
I (@inin @)l < | My ) (0,59 9u () s

Since [|(0, bV (s))[[1 < Cabl|(¢x(5), di(s)) 2, we have

[ (urt1(t), drgr(t))]11 S/O bCoMae™ % =) || (¢4(5), di(5)) 2ds.

Then we have
[ (o1 (£), Prg1 (), o1 (£), Prgr ()]

¢ . . (5.14)
< / Mae™ 309 (u(s), dx (), i (5), di(s)) | ds.
0
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From (5.13) and (5.14) we deduce that
4
!

[ (ua(2), du(t), @ (t), (D) < MMaﬁf%tll(uo,¢°,u1,¢>1)ll-

Let 0 < b < ﬁ, the sequence $9°ble;(t) is convergent in C([0,7]; H,.) for every
7> 0. Let 2"(t) = 1 _;blei(t), n € N where £"(¢) is the solution of the problem
dg™(t)

o ME™(t) + Bn(t); E"(0) =2°,

where 3, (t) := (0,b"Vn(t),0, —b" div u”(t))T. We have

() = S(t)E° + /t S(t — 5)Bn(s)ds,
and i
E(t) = S@)E°|| = |1252,,4 1 bler(t) + /Ot S(t—s)Bn(s)ds|| — 0, asn — oo, VneN.
This means that S(¢)e® = £(¢) and
ISl < BZob[lea ()] < MziﬁoblMé%ef%HEOH < Me™?|[°)],

where ¢ := 7 — M3sb. Consequently (S(t))¢>0 is exponentially stable and w.(M) <
0. Since 0.(7 (t)) = 0.(S(t)) for t > 0, then

we(A) < 0.

Now we prove that (7 (t));>0 is exponentially stable in H, i.e, |7 (t)|| < Me™%,
t > 0, where M, 6 > 0. From [I4, Theorem 2.9] the semigroup (7 (¢)):>0 is asymp-
totically stable in H i.e, lim;_ ||7 (¢)x]| = 0, for every & € H. Then s;(A) < 0,
where

51(A) = sup{RA/\ € o(A)\o.(A)}.

To show that wq(A) < 0, it suffices to prove that s;(A) < 0. Suppose that s1(A) =
0, then there exists {)\,,}$° C o(A)\oc(A), such that R\, — 0, as n — oo. e*nto
is an eigenvalue of 7 (tg), we have |e* | < 1 and |e* 0| — 1 as n — oco. Let y be
the accumulation point of {e*#%0}$¢ in C. Then y € 0.(7 (t9)) and |y| = 1. Thus,

re(7 (to)) = 1,

furthermore
re(T (o)) = e?eto < 1,

This contradiction implies that s1(A) < 0, using we(A) < 0, we obtain wg(A) < 0.
Finally we have proved the uniform stabilization of the energy of solution of system

B3).
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