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OPTIMAL CONTROL FOR THE MULTI-DIMENSIONAL
VISCOUS CAHN-HILLIARD EQUATION

NING DUAN, XIUFANG ZHAO

Abstract. In this article, we study the multi-dimensional viscous Cahn-Hilliard
equation. We prove the existence of optimal solutions and establish the opti-

mality system.

1. Introduction

In this article, we consider the viscous Cahn-Hilliard equation

ut − k∆ut + γ∆2u = ∆ϕ(u), (x, t) ∈ Ω× (0, T ), (1.1)

where Ω ⊂ Rn(n ≤ 3) is a bounded domain with smooth boundary, the unknown
function u(x, t) is the concentration of one of the two phases, γ > 0 is the interfacial
energy parameter, k > 0 represents the viscous coefficient, ϕ(u) is the intrinsic
chemical potential. The viscous Cahn-Hilliard equation, which was first propounded
by Novick-Cohen [12], arises in the dynamics of viscous first order phase transitions
in cooling binary solutions such as glasses, alloys and polymer mixtures (see[1, 6]).
Note that if we take k = 0, the equation becomes the well-known Cahn-Hilliard type
equation (see [17, 20]), which is originally proposed for modelling phase separation
phenomena in a binary mixture, and it can be used to describe many other physical
and biological phenomena, including the growth and dispersal in the population
which is sensitive to time-periodic factors.

During the past years, many papers were devoted to the viscous Cahn-Hilliard
equation. In [10], Liu and Yin considered the global existence and blow-up of
classical solutions for viscous Cahn-Hilliard equation in Rn (n ≤ 3). In Grinfeld and
Novick-Cohen’s paper [7], a Morse decomposition of the stationary solutions of the
1D viscous Cahn-Hilliard equation was established by explicit energy calculations,
and the global attractor for the viscous Cahn-Hilliard equation was also considered.
Li and Yin [8] investigate the existence, uniqueness and asymptotic behavior of
solutions to the 1D viscous Cahn-Hilliard equation with time periodic potentials
and sources. We also noticed that some investigations of the viscous Cahn-Hilliard
equation were studied, such as in [3, 4, 11, 13].

In past decades, the optimal control of distributed parameter system had been
received much more attention in academic field. Many papers have already been
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published to study the control problems of nonlinear parabolic equations, for ex-
ample [2, 5, 14, 16, 17, 19].

In this article, we consider the distributed optimal control problem

min J(u,w) =
1
2
‖Cu− zd‖2S +

δ

2
‖w‖2L2(Q0), (1.2)

subject to the initial boundary value problem for the viscous Cahn-Hilliard equation

ut − k∆ut + γ∆2u−∆ϕ(u) = Bw, (x, t) ∈ Ω× (0, T ),

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(0) = u0, x ∈ Ω,

(1.3)

where Ω ⊂ Rn (n ≤ 3) is a bounded domain with smooth boundary, k > 0 and
γ > 0 are two constants, ϕ(u) is an intrinsic chemical potential with typical example
as

ϕ(u) = γ2u
3 + γ1u

2 − u,
for some constants γ2 > 0 and γ1.

Remark 1.1. The main difference between the viscous Cahn-Hilliard equation and
the standard Cahn-Hilliard equation is the viscous term k∆ut, which describe the
viscosity of glasses, alloys and polymer. Note that the viscous term k∆ut is not
only dependent on x but also dependent on t. Because of the existence of this term,
we can obtain the results on the a prior estimates more directed.

Remark 1.2. In [18], Zhao and Liu studied the optimal control problem for equa-
tion (1.1) in 1D case with ϕ(s) = s3 − s. Based on Lions’ [9] classical theory,
they proved the existence of optimal solution to the equation. Here, we consider
the n-D case of equation (1.1), where n ≤ 3. We also established the optimality
system, which was not established in [18]. In fact, for the well-known Cahn-Hilliard
equation, using the same method as above, we can also obtain the results on the
existence of optimal solutions and the optimality conditions.

The control target is to match the given desired state zd in L2-sense by adjusting
the body force w in a control volume Q0 ⊆ Q = Ω× (0, T ) in the L2-sense.

In the following, we introduce some notations that will be used throughout the
paper. For fixed T > 0, V = H2(Ω)

⋂
H1

0 (Ω) and H = L2(Ω), let V ∗, H∗ be dual
spaces of V and H. Then, we obtain

V ↪→ H = H∗ ↪→ V ∗.

Clearly, each embedding being dense.
The extension operator B ∈ L

(
L2(Q0), L2(0, T ;V ∗)

)
which is called the con-

troller is introduced as

Bq =

{
q, q ∈ Q0,

0, q ∈ Q \Q0.
(1.4)

We supply H with the inner product (·, ·) and the norm ‖ · ‖, and define a space
W (0, T ;V ) as

W (0, T ;V ) =
{
v : v ∈ L2(0, T ;V ),

∂v

∂t
∈ L2(0, T ;V ∗)

}
,

which is a Hillbert space endowed with common inner product.
This article is organized as follows. In the next section, we prove the existence

and uniqueness of the weak solution to problem (1.3) in a special space and discuss
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the relation among the norms of weak solution, initial value and control item; In
Section 3, we consider the optimal control problem and prove the existence of
optimal solution; In the last section, the optimality conditions is showed and the
optimality system is derived.

In the following, the letters c, ci (i = 1, 2, · · · ) will always denote positive con-
stants different in various occurrences.

2. Existence and uniqueness of weak solution

In this section, we study the existence and uniqueness of weak solution for the
equation

ut − k∆ut + γ∆2u−∆ϕ(u) = Bw, in Ω× (0, T ), (2.1)
with the boundary value conditions

u(x, t) = ∆u(x, t) = 0, in ∂Ω× (0, T ), (2.2)

and initial condition
u(x, 0) = u0(x), in Ω, (2.3)

where Bw ∈ L2(0, T ;V ∗) and a control w ∈ L2(Q0).
Now, we give the definition of the weak solution for problem (2.1)-(2.3) in the

space W (0, T ;V ).

Definition 2.1. For all η ∈ V, t ∈ (0, T ), the function u(x, t) ∈ W (0, T ;V ) is
called a weak solution to problem (2.1)-(2.3), if

d

dt
(u, η) + k

d

dt
(∇u,∇η) + γ(∆u,∆η) + (∇ϕ(u),∇η) = (Bw, η)V ∗,V . (2.4)

We shall give Theorem 2.2 on the existence and uniqueness of weak solution to
problem (2.1)-(2.3).

Theorem 2.2. Suppose u0 ∈ V , Bw ∈ L2(0, T ;V ∗), then the problem (2.1)-(2.3)
admits a unique weak solution u(x, t) ∈W (0, T ;V ) in the interval [0, T ].

Proof. Galerkin’s method is applied for the proof. Let {zj(x)} (j = 1, 2, · · · ) be the
orthonormal base in L2(Ω) being composed of the eigenfunctions of the eigenvalue
problem

∆z + λz = 0, z(0) = z0,

corresponding to eigenvalues λj (j = 1, 2, · · · ).
Suppose that un(x, t) =

∑N
j=1 unj(t)zj(x) is the Galerkin approximate solution

to the problem (2.1)-(2.3) require un(0, ·)→ u0 in H holds true, where unj(t) (j =
1, 2, · · · , N) are undermined functions, n is a natural number. By analyzing the
limiting behavior of sequences of smooth function {un}, we can prove the existence
of weak solution to the problem (2.1)-(2.3).

Performing the Galerkin procedure for the problem (2.1)-(2.3), we obtain(
unt − k∆unt + γ∆2un −∆ϕ(un), zj

)
= (Bw, zj),

(un(·, 0), zj) = (un0(·), zj), j = 1, 2, · · · , N.
(2.5)

Obviously, the equation in (2.4) is an ordinary differential equation and according
to ODE theory, there exists an unique solution to the equation (2.4) in the interval
[0, tn). what we should do is to show that the solution is uniformly bounded when
tn → T . we need also to show that the times tn there are not decaying to 0 as
n→∞.
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There are four steps for us to prove it.
Step 1. Multiplying both sides of the equation in (2.4) by unj(t), summing up the
products over j = 1, 2, . . . , N , we derive that

1
2
d

dt
(‖un‖2 + k‖∇un‖2) + γ∆un +

∫
Ω

ϕ′(un)|∇un|2dx = (Bw, un)V ∗,V .

By Hölder’s inequality, we conclude that

(Bw, un)V ∗,V ≤ ‖Bw‖V ∗‖un‖V ≤ c1‖Bw‖V ∗‖∆un‖

≤ γ

2
‖∆un‖2 +

c21
2γ
‖Bw‖2V ∗ .

Note that

ϕ′(un) = 3γ2u
2
n + 2γ1u

2
n − 1 ≥ − γ2

1

3γ2
− 1 = −c2.

Summing up,
d

dt
(‖un‖2 + k‖∇un‖2) + γ‖∆un‖2

≤ c21
γ
‖Bw‖2V ∗ + 2c2‖∇un‖2

≤ c21
γ
‖Bw‖2V ∗ +

γ

2
‖∆un‖2 +

c22
γ
‖un‖2

≤ c21
γ
‖Bw‖2V ∗ +

γ

2
‖∆un‖2 +

c22
γ

(‖un‖2 + k‖∇un‖2).

Since Bw ∈ L2(0, T ;V ∗) is the control item, we can assume that ‖Bw‖V ∗ ≤ M ,
where M is a positive constant. Then, we have

d

dt
(‖un‖2 + k‖∇un‖2) +

γ

2
‖∆un‖2 ≤

c21
γ
M2 +

c22
γ

(‖un‖2 + k‖∇un‖2).

Using Gronwall’s inequality, we obtain

‖un‖2 + k‖∇un‖2 ≤ e
c22
γ t(‖un(0)‖2 + k‖∇un(0)‖2) +

c21
c22
M2

≤ e
c22
γ T (‖un(0)‖2 + k‖∇un(0)‖2) +

c21
c22
M2 = c23.

(2.6)

By Sobolev’s embedding theorem, we immediately obtain

‖un(·, t)‖p ≤ c4, p ∈
(n

2
,

2n
n− 2

)
. (2.7)

Step 2. Multiplying both sides of the equation of (2.4) by λjunj(t), summing up
the products over j = 1, 2, · · · , N , we obtain

1
2
d

dt
(‖∇un‖2 + k‖∆un‖2) + γ‖∇∆un‖2 = −(∆ϕ(un),∆un)− (Bw,∆un)V ∗,V .

Note that

∆ϕ(un) = (3γ2u
2
n + 2γ1un − 1)∆un + (6γ2un + 2γ1)|∇un|2.

Hence
1
2
d

dt
(‖∇un‖2 + k‖∆un‖2) + γ‖∇∆un‖2 + γ2‖un∆un‖2
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= −2γ2

∫
Ω

u2
n|∆un|2dx− 2γ1

∫
Ω

un|∆un|2dx+ ‖∆un‖2

− 6γ2

∫
Ω

un|∇un|2∆un dx− 2γ1

∫
Ω

|∇un|2∆un dx− (Bw,∆un)V ∗,V

≤ γ2

∫
Ω

u2
n|∆un|2dx+ c5(‖∆un‖2 + ‖∇un‖44 + ‖Bw‖2V ∗ + ‖un‖2)

+
γ

4
‖∇∆un‖2.

Using Nirenberg’s inequality, we deduce that

c5‖∇un‖44 ≤ c4(c′‖∇∆un‖
n
8 ‖∇un‖1−

n
8 + c′′‖∇un‖)4 ≤ γ

8
‖∇∆un‖2 + c6.

On the other hand, we also have

c5‖∆un‖2 ≤
γ

8
‖∇∆un‖2 +

2c25
γ
‖∇un‖2 ≤

γ

8
‖∇∆un‖2 +

2c23c
2
5

γk
.

Summing up, we derive that

d

dt
(‖∇un‖2 + k‖∆un‖2) + γ‖∇∆un‖2 ≤ 2c6 + 2c23c5 +

4c23c
2
5

γk
+ 2c5‖Bw‖2V ∗ , (2.8)

which means
d

dt
(‖∇un‖2 + k‖∆un‖2) + γ‖∇∆un‖2 ≤ 2c6 + 2c23c5 +

4c23c
2
5

γk
+ 2c5M2.

Therefore,

‖∇un‖2 + k‖∆un‖2

≤ ‖∇un(0)‖2 + k‖∆un(0)‖2 + (2c6 + 2c23c5 +
4c23c

2
5

γk
+ 2c5M2)T

= (c′6)2.

(2.9)

By (2.7), (2.9) and Sobolev’s embedding theorem, we conclude that

‖un(·, t)‖∞ ≤ c7. (2.10)

Adding (2.7) and (2.9) together gives

‖un(x, t)‖2L2(0,T ;V ) ≤ c
∫ T

0

(‖un‖2 + ‖∇un‖2 + ‖∆un‖2)dt ≤ c28. (2.11)

Step 3. We prove a uniform L2(0, T ;V ∗) bound on a sequence {un,t}. Set yn =
un − k∆un, by (2.4) and Sobolev’s embedding theorem, we obtain

‖yn,t‖V ∗ = sup
‖ψ‖V =1

(yn,t, ψ)V ∗,V

≤ sup
‖ψ‖V =1

{(Bw,ψ)V ∗,V + γ|(∆un,∆ψ)|+ |(ϕ(un),∆ψ)|}

≤ c(‖B∗ω̄‖V ∗ + ‖∆un‖+ ‖un‖)
≤ c(M + ‖∆un‖+ ‖un‖).

(2.12)

Integrating (2.12) with respect to t on [0, T ], we obtain

‖yn,t‖2L2(0,T ;V ∗) ≤ c(M
2T + ‖∆un‖L2(0,T ;H) + ‖un‖L2(0,T ;H)).
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Hence
‖un,t‖2L2(0,T ;V ∗) = ‖(I − k∆)−1yn,t‖2L2(0,T ;V ∗) ≤ c

2
9. (2.13)

Step 4. Integrating (2.9) with respect to [0, T ], combining its result and (2.11)
together, we deduce that

‖un‖L2(0,T ;H3) ≤ c10. (2.14)

By the compactness of the embedding L∞(0, T ;H2) ↪→ L∞(0, T ;H1) and of
L2(0, T ;H3) ↪→ L2(0, T ;H1), we find that there exist u ∈ L∞(0, T ;H1) and u ∈
L2(0, T ;H1) such that, up to a subsequence,

un → u strongly in L∞(0, T ;H1),

un → u strongly in L2(0, T ;H1).
(2.15)

It then follows from (2.14) that

‖un − u‖L∞(0,T ;H1) → 0, ‖∆un −∆u‖L2(0,T ;H2) → 0.

According to the previous subsequences {un}, we conclude that ∆ϕ(un) weakly
converges to ∆ϕ(u) in L2(0, T ;V ∗). In fact, for any w ∈ L2(0, T ;V ∗), we have∣∣ ∫ T

0

(∆ϕ(un)−∆ϕ(u), w)V ∗,V dt
∣∣

≤ C
∣∣ ∫ T

0

(ϕ(un)− ϕ(u))wdt
∣∣

≤ C
∣∣ ∫ T

0

ϕ′(θun + (1− θ)u)(un − u)wdt
∣∣

≤ C
∫ T

0

‖ϕ′(θun + (1− θ)u‖∞‖un − u‖‖w‖dt

≤ C‖un − u‖L2(0,T ;H)‖w‖L2(0,T ;H),

(2.16)

where θ ∈ (0, 1). By (2.16), we know that there exists a subsequence {un(x, t)}
such that ∆ϕ(un) converges weakly to ∆ϕ(u) in L2(0, T ;V ∗). On the other hand,
the subsequence {un,t} weakly converge to {ut} in L2(0, T ;V ∗).

Based on the above discussion, we conclude that there exists a function u(x, t) ∈
W (0, T ;V ) which satisfies (2.4). Since the proof of uniqueness is easy, we omit it.
Then, Theorem 2.2 has been proved. �

For the relation among the norm of weak solution and initial value and control
item, basing on the above discussion, we obtain the following theorem immediately.

Corollary 2.3. Suppose that u0 ∈ V , Bw ∈ L2(0, T ;V ∗), then there exists positive
constants C ′ and C ′′ such that

‖u‖2W (0,T ;V ) ≤ C
′(‖u0‖2V + ‖w‖2L2(Q0)) + C ′′, (2.17)

3. Optimal control problem

In this section, we consider the optimal control problem associated with the
viscous Cahn-Hilliard equation and prove the existence of optimal solution.
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In the following, we suppose L2(Q0) is a Hilbert space of control variables, we also
suppose B ∈ L(L2(Q0), L2(0, T ;V ∗)) is the controller and a control w ∈ L2(Q0),
consider the following control system

ut − k∆ut + γ∆2u−∆ϕ(u) = Bw, (x, t) ∈ Ω× (0, T ),

u(x, t) = ∆u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u(0) = u0, x ∈ Ω.

(3.1)

Here it is assume that u0 ∈ V . By Theorem 2.2, we can define the solution map
w → u(w) of L2(Q0) into W (0, T ;V ). The solution u is called the state of the
control system (3.1). The observation of the state is assumed to be given by Cu.
Here C ∈ L(W (0, T ;V ), S) is an operator, which is called the observer, S is a real
Hilbert space of observations. The cost function associated with the control system
(3.1) is given by

J(u,w) =
1
2
‖Cu− zd‖2S +

δ

2
‖w‖2L2(Q0), (3.2)

where zd ∈ S is a desired state and δ > 0 is fixed. An optimal control problem
about the viscous Cahn-Hilliard equation is

min J(u,w), (3.3)

where (u,w) satisfies (3.1).
Let X = W (0, T ;V )×L2(Q0) and Y = L2(0, T ;V )×H. We define an operator

e = e(e1, e2) : X → Y , where

e1 = (∆2)−1(ut − k∆ut + γ∆2u−∆ϕ(u)−Bw),

e2 = u(x, 0)− u0.

Here ∆2 is an operator from V to V ∗. Then, we write (3.3) in the form

min J(u,w) subject to e(y, w) = 0.

Theorem 3.1. Suppose that u0 ∈ V , Bw ∈ L2(0, T ;V ∗), then there exists an
optimal control solution (u∗, w∗) to problem (3.1).

Proof. Suppose that (u,w) satisfy the equation e(u,w) = 0. In view of (3.2), we
deduce that

J(u,w) ≥ δ

2
‖w‖2L2(Q0).

By Corollary 2.3, we obtain that ‖u‖W (0,T ;V ) →∞ yields ‖w‖L2(Q0) →∞. There-
fore,

J(u,w)→∞, when ‖(u,w)‖X →∞. (3.4)
As the norm is weakly lower semi-continuous, we achieve that J is weakly lower
semi-continuous. Since for all (u,w) ∈ X, J(u,w) ≥ 0, there exists λ ≥ 0 defined
by

λ = inf{J(u,w) : (u,w) ∈ X, e(u,w) = 0},
which means the existence of a minimizing sequence {(un, wn)}n∈N in X such that

λ = lim
n→∞

J(un, wn) and e(un, wn) = 0, ∀n ∈ N.

From (3.4), there exists an element (u∗, w∗) ∈ X such that when n→∞,

un → u∗, weakly, u ∈W (0, T ;V ), (3.5)

wn → w∗, weakly, w ∈ L2(Q0). (3.6)
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Since un ∈ L∞(0, T ;V ), un,t ∈ L2(0, T ;V ∗), we also have L∞(0, T ;V ) is con-
tinuously embedded into L2(0, T ;L∞). Hence by [15, Lemma 4] we have un → u∗

strongly in L2(0, T ;L∞), as n→∞, un → u∗ strongly in C(0, T ;H), as n→∞.
As the sequence {un}n∈N converges weakly, then ‖un‖W (0,T ;V ) is bounded. Based

on the embedding theorem, ‖un‖L2(0,T ;L∞) is also bounded.
Because un → u∗ in L2(0, T ;L∞) as n → ∞, we know that ‖u∗‖L2(0,T ;L∞) is

also bounded.
It then follows from (3.5) that

lim
n→∞

∫ T

0

(unt (x, t)− u∗t , ψ(t))V ∗,V dt = 0, ∀ψ ∈ L2(0, T ;V ).

and

lim
n→∞

∫ T

0

(∆unt (x, t)−∆u∗t , ψ(t))V ∗,V dt

= lim
n→∞

∫ T

0

(unt (x, t)− u∗t ,∆ψ(t))V ∗,V dt = 0, ∀ψ ∈ L2(0, T ;V ).

Using (3.6) again, we derive that∣∣∣∣∣
∫ T

0

∫
Ω

(Bw −Bw∗)η dx dt

∣∣∣∣∣→ 0, n→∞, ∀η ∈ L2(0, T ;H).

By (3.5) again, we deduce that∣∣ ∫ T

0

∫
Ω

(∆ϕ(un)−∆ϕ(u∗)) η dx dt
∣∣

=
∣∣ ∫ T

0

∫
Ω

(ϕ(un)− ϕ(u∗)) ∆η dx dt
∣∣

=
∣∣ ∫ T

0

∫
Ω

[γ2((un)3 − (u∗)3) + γ1((un)2 − (u∗)2)− (un − u∗)]∆η dx dt
∣∣

=
∣∣ ∫ T

0

∫
Ω

[
γ2(un − u∗)((un)2 + unu∗ + (u∗)2) + γ1(un − u∗)(un + u∗)

− (un − u∗)
]
∆η dx dt

∣∣
≤ c
∣∣ ∫ T

0

(
‖(un)2 + unu∗ + (u∗)2‖∞ + ‖un + u∗‖∞ + 1

)
‖un − u∗‖H‖∆η‖Hdt

∣∣
≤
(
‖(un)2 + unu∗ + (u∗)2‖L2(0,T ;L∞) + ‖un + u∗‖L2(0,T ;L∞) + 1

)
× ‖un − u∗‖C(0,T ;H)|‖η‖L2(0,T ;V ) → 0, n→∞, ∀η ∈ L2(0, T ;V ).

Hence we have u = u(ω̄) and therefore

J(u, ω̄) ≤ lim
n→∞

J(un, ω̄n) = λ.

In view of the above discussions, we obtain

e1(u∗, w∗) = 0, ∀n ∈ N.
Noticing that u∗ ∈ W (0, T ;V ), we derive that u∗(0) ∈ H. Since un → u∗ weakly
in W (0, T ;V ), we can infer that un(0) → u∗(0) weakly when n → ∞. Thus, we
obtain

(un(0)− u∗(0), η)→ 0, n→∞, ∀η ∈ H,
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which means e2(u∗, w∗) = 0. Therefore, we obtain

e(u∗, w∗) = 0, in Y.

So, there exists an optimal solution (u∗, w∗) to problem (3.1). Then, the proof of
Theorem 3.1 is complete. �

4. Optimality conditions

It is well known that the optimality conditions for w are given by the variational
inequality

J ′(u,w)(v − w) ≥ 0, for all v ∈ L2(Q0), (4.1)

where J ′(u,w) denotes the Gateaux derivative of J(u, v) at v = w. The following
Lemma 4.1 is essential in deriving necessary optimality conditions.

Lemma 4.1. The map v → u(v) of L2(Q0) into W (0, T ;V ) is weakly Gateaux
differentiable at v = w and such the Gateaux derivative of u(v) at v = w in the
direction v − w ∈ L2(Q0), say z = Du(w)(v − w), is a unique weak solution of the
problem

zt − k∆zt + γ∆2z −∆(ϕ′(u(w))z) = B(v − w), (x, t) ∈ Q,
z(x, t) = ∆z(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

z(0) = 0, x ∈ Ω.

(4.2)

Proof. Let 0 ≤ h ≤ 1, uh and u be the solutions of (3.1) corresponding to w+h(v−
w) and w, respectively. Then we prove the lemma in the following two steps:
Step 1. We prove that uh → u strongly in C(0, T ;H1

0 ) as h→ 0. Let q = uh − u,
then

dq

dt
− kd∆q

dt
+ γ∆2q −∆(ϕ(uh)− ϕ(u)) = hB(v − w), 0 < t ≤ T,

q(x, t) = ∆q(x, t) = 0, x ∈ ∂Ω,

q(0) = 0, x ∈ Ω.

(4.3)

Using Corollary 2.3 and Sobolev’s embedding,

‖u‖∞ ≤ c′1, ‖uh‖∞ ≤ c′2.

Taking the scalar product of (4.3) with q, we have

1
2
d

dt
(‖q‖2 + k‖∇q‖2) + γ‖∆q‖2 = (hB(v − w), q) + (∆(ϕ(uh)− ϕ(u)), q).

Noticing that

(∆(ϕ(uh)− ϕ(u)), q) = (γ2(u3
h − u3) + γ1(u2

h − u2)− (uh − u),∆q)

= ([γ2(u2
h + u2 + uhu) + γ1(uh + u)− 1]q,∆q)

≤ ‖γ2(u2
h + u2 + uhu) + γ1(uh + u)− 1‖∞‖q‖‖∆q‖

≤ c′3‖q‖‖∆q‖ ≤
γ

2
‖∆q‖2 +

(c′3)2

2γ
‖q‖2.

Hence
d

dt
(‖q‖2 + k‖∇q‖2) + γ‖∆q‖2 ≤ (c′3)2

γ
‖q‖2 + 2h‖B(v − w)‖‖q‖
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≤
( (c′3)2

γ
+ 1
)
‖q‖2 + h2‖B(v − w)‖2,

Using Gronwall’s inequality, it is easy to see that ‖q‖2 → 0 as h→ 0. Then, uh → u
strongly in C(0, T ;H1

0 ) as h→ 0.
Step 2. We prove that uh−u

h → z strongly in W (0, T ;V ). Rewrite (4.3) in the
following form

d

dt

(uh − u
h

)
− k d

dt
∆
(uh − u

h

)
+ γ∆2

(uh − u
h

)
−∆

(ϕ(uh)− ϕ(u)
h

)
= B(v − w), 0 < t ≤ T,

uh − u
h

(x, t) = ∆
(uh − u

h

)
(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

uh − u
h

(0) = 0, x ∈ Ω.

We can easily verify that the above problem possesses a unique weak solution in
W (0, T ;V ). On the other hand, it is easy to check that the linear problem (4.2)
possesses a unique weak solution z ∈W (0, T ;V ). Let r = uh−u

h − z, thus r satisfies

d

dt
r + k

d

dt
∆r + γ∆2r −∆

(ϕ(uh)− ϕ(u)
h

− ϕ′(u)z
)

= 0, 0 < t ≤ T,

r(x, t) = ∆r(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

r(0) = 0, x ∈ Ω.

(4.4)

Taking the scalar product of (4.4) with r, we obtain

1
2
d

dt
(‖r‖2 + k‖∇r‖2) + γ‖∆r‖2 =

(
∆(

ϕ(uh)− ϕ(u)
h

− ϕ′(u)z), r
)
.

Noticing that (
∆(

ϕ(uh)− ϕ(u)
h

− ϕ′(u)z), r
)

=
(ϕ(uh)− ϕ(u)

h
− ϕ′(u)z,∆r

)
≤ ‖ϕ(uh)− ϕ(u)

h
− ϕ′(u)z‖‖∆r‖

= ‖ϕ′(u+ θ(uh − u))
uh − u
h

− ϕ′(u)z‖‖∆r‖

≤ γ

2
‖∆r‖2 + c′4‖ϕ′(u+ θ(uh − u))

uh − u
h

− ϕ′(u)z‖2,

where θ ∈ (0, 1). We have uh → u strongly in C(0, T ;H1
0 ) as h→ 0, then

‖ϕ′(u+ θ(uh − u))
uh − u
h

− ϕ′(u)z‖2

→ ‖ϕ′(u)(
uh − u
h

− z)‖2

≤ c′5‖r‖2 as h→ 0.

Therefore, (
∆(

ϕ(uh)− ϕ(u)
h

− ϕ′(u)z), r
)
≤ γ

2
‖∆r‖2 + c′4c

′
5‖r‖2.
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Summing up, we obtain

d

dt
(‖r‖2 + k‖∇r‖2) + γ‖∆r‖2 ≤ 2c′4c

′
5(‖r‖2 + k‖∇r‖2).

Using Gronwall’s inequality, it is easy to check that uh−u
h is strongly convergent to

z in W (0, T ;V ). Then, Lemma 4.1 is proved. �

As in [9], we denote the Λ the canonical isomorphism of S onto S∗, where S∗

is the dual spaces of S. By calculating the Gateaux derivative of (3.2) via Lemma
4.1, we see that the cost J(v) is weakly Gateaux differentiable at w in the direction
v − w. Therefore, (4.1) can be rewritten as

(C∗Λ (Cu(w)− zd), z)W (V )∗,W (V ) +
δ

2
(w, v − w)L2(Q0) ≥ 0, ∀v ∈ L2(Q0), (4.5)

where z is the solution of (4.2).
Now, we study the necessary conditions of optimality. To avoid the complexity

of observation states, we consider the two types of distributive and terminal value
observations.

Case 1. C ∈ L(L2(0, T ;V );S). In this case, C∗ ∈ L(S∗;L2(0, T ;V ∗)), (4.5) may
be written as∫ T

0

(C∗Λ(Cu(w)− zd), z)V ∗,V dt+
δ

2
(w, v − w)L2(Q0) ≥ 0, ∀v ∈ L2(Q0). (4.6)

We introduce the adjoint state p(v) by

− d

dt
[p(v) + k∆p(v)] + γ∆2p(v)− ϕ′(u(v))∆p(v) = C∗Λ(Cu(v)− zd), (x, t) ∈ Q,

p(v) = ∆p(v) = 0, x ∈ ∂Ω,

p(x, T ; v) = 0.
(4.7)

According to Theorem 2.2, the above problem admits a unique solution (after chang-
ing t into T − t).

Multiplying both sides of (4.7) (with v = w) by z, using Lemma 4.1, we obtain∫ T

0

(
− d

dt
p(w), z

)
V ∗,V

dt =
∫ T

0

(
p(w),

d

dt
z
)
dt,∫ T

0

(
− d

dt
∆p(w), z

)
V ∗,V

dt =
∫ T

0

(
p(w),

d

dt
∆z
)
dt,∫ T

0

(
∆2p(w), z

)
V ∗,V

dt =
∫ T

0

(p(w),∆2z)dt,∫ T

0

(ϕ′(u(w))∆p(w), z)V ∗,V dt =
∫ T

0

(
p(w),∆(ϕ′(u(w))z)

))
dt

Thus, we obtain∫ T

0

(C∗Λ(Cu(w)− zd), z)V ∗,V dt

=
∫ T

0

(
p(w),

d

dt
(z + k∆z) + γ∆2z −∆(ϕ′(u)z)x

)
dt



12 N. DUAN, X. ZHAO EJDE-2015/165

=
∫ T

0

(p(w), Bv −Bw)dt

= (B∗p(w), v − w).

Therefore, (4.6) may be written as∫ T

0

∫ 1

0

B∗p(w)(v − w) dx dt+
δ

2
(w, v − w)L2(Q0) ≥ 0, ∀v ∈ L2(Q0). (4.8)

Then, we have proved the following theorem.

Theorem 4.2. Assume that C ∈ L(L2(0, T ;V );S) and all conditions of Theorem
3.1 hold. Then, the optimal control w is characterized by the system of two PDEs
and an inequality: (3.1), (4.7) and (4.8).

Case 2. C ∈ L(H;S). In this case, we observe Cu(v) = Du(T ; v), D ∈ L(H;H).
The associated cost function is

J(u, v) = ‖Du(T ; v)− z‖2S +
δ

2
‖v‖2L2(Q0), ∀v ∈ L2(Q0). (4.9)

Then, for all v ∈ L2(Q0), the optimal control w for (4.9) is characterized by

(Du(T ;w)− z,Du(T ; v)−Du(T ;w))V ∗,V +
δ

2
(w, v − w)L2(Q0) ≥ 0. (4.10)

We introduce the adjoint state p(v) by

− d

dt
[p(v) + k∆p(v)] + γ∆2p(v)− ϕ′(u(v))∆p(v)x = 0, (x, t) ∈ Q,

p(v) = ∆p(v) = 0, x ∈ ∂Ω,

p(T ; v) = D∗(Du(T ; v)− zd).

(4.11)

According to Theorem 2.2, the above problem admits a unique solution (after chang-
ing t into T − t).

Set v = w in the above equations and scalar multiply both side of the first
equation of (4.11) by u(v)− u(w) and integrate from 0 to T . A simple calculation
shows that (4.10) is equivalent to∫ T

0

∫ 1

0

B∗p(w))(v − w) dx dt+
δ

2
w, v − w)L2(Q0) ≥ 0, ∀v ∈ L2(Q0). (4.12)

We obtain the following result.

Theorem 4.3. Assume that D ∈ L(H;H) and all conditions of Theorem 3.1 hold.
Then, the optimal control w is characterized by the system of two PDEs and an
inequality: (3.1), (4.11) and (4.12).
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