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EXTREMAL POINTS FOR A HIGHER-ORDER FRACTIONAL
BOUNDARY-VALUE PROBLEM

AIJUN YANG, JOHNNY HENDERSON, CHARLES NELMS JR.

Abstract. The Krein-Rutman theorem is applied to establish the extremal

point, b0, for a higher-order Riemann-Liouville fractional equation, Dα0+y +

p(t)y = 0, 0 < t < b, n < α ≤ n + 1, n ≥ 2, under the boundary conditions

y(i)(0) = 0, y(n−1)(b) = 0, i = 0, 1, 2, . . . , n − 1. The key argument is that a

mapping, which maps a linear, compact operator, depending on b to its spectral
radius, is continuous and strictly increasing as a function of b. Furthermore, we

also treat a nonlinear problem as an application of the result for the extremal

point for the linear case.

1. Introduction

Differential equations of fractional order have proved to be valuable tools in
modeling many physical phenomena [12, 21, 22]. Also, there has been a significant
development in the theory for fractional differential equations; we refer the readers
to the monographs by Kilbas et al [17], Miller and Ross [23], Podlubny [25] and
Samko et al [26].

The Krein-Rutman theorem [19], a generalization of the Perron-Frobenius the-
orem for compact linear operators in infinite-dimensional Banach spaces, has been
applied extensively to establish the existence of extremal points for second order
differential equations, higher order differential equations, and m-dimensional sys-
tems of differential equations; we refer the reader to the monograph of Coppel [1] or
to the landmark papers of Hartman [15], Levin [20] or Schmitt and Smith [27]. A
standard approach for the description the extremal point of boundary value prob-
lems involves discussion of the existence of a nontrivial solution that lies in a cone;
see [3, 5, 9, 10, 16]. Cone theoretic arguments are applied to linear, monotone, com-
pact operators, which are constructed to complement the usual Green’s function
approach. The u0-positivity of these operators is obtained by showing the operator
maps nonzero elements of a cone into the interior of that cone. Sign properties of a
Green’s function, which serve as the kernel of the operators, are employed to prove
the mapping preserves the cone. The theory of u0-positive operators, as developed
by Krein and Rutman, gives the existence of largest eigenvalues of the operator,
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with the corresponding eigenfunction existing in a cone. This methods were ex-
tended in works by Eloe et al [3, 4, 8], Eloe and Henderson [6, 7], and Hankerson
and Henderson [14] for a range of boundary-value problems for nth-order differential
equations.

Inspired by above works, in this article, for b > 0, we investigate the following
family of higher-order fractional boundary value problems (BVPs):

Dα
0+y + p(t)y = 0, 0 < t < b, (1.1)

y(i)(0) = 0, y(n−1)(b) = 0, i = 0, 1, 2, . . . , n− 1, (1.2)

where Dα
0+ is the standard Riemann-Liouville derivative with n < α ≤ n + 1 for

n ≥ 2, and p(t) is a nonnegative continuous function on [0,∞) which does not
vanish identically on any compact subinterval of [0,∞).

The purpose of this article is to establish the existence of a largest interval, [0, b0),
such that on any subinterval [γ1, γ2] of [0, b0), there is only the trivial solution
of(1.1) satisfying(1.2). In particular, we define the first extremal point of(1.1)
corresponding to the boundary conditions(1.2), to be this value b0. Since b is a
variable in this article, we shall refer to the BVP (b), (1.1)-(1.2).

In Section 2, we give some preliminary definitions and theorems from the theory
of cones in Banach spaces that are employed to obtain the characterization of
the first extremal point. In Section 3, we first give some sign properties of Green’s
function for −Dα

0+y = 0 under the boundary conditions(1.2), and construct suitable
cones in Banach spaces, and then we apply preliminary results to characterize the
first extremal point. Finally, in Section 4, we establish sufficient conditions for the
existence of nontrivial solutions of a nonlinear fractional differential equation.

2. Preliminaries

We will state some definitions and theorems on which the paper’s main results
depend.

Definition 2.1. The (left-sided) α-th fractional integral of a function u : [0, b]→ R,
denoted Iα0+u, is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided the right-hand side is pointwise defined on [0, b], where Γ(α) is the Euler
gamma function.

Definition 2.2. Let n < α ≤ n+ 1. The α-th Riemann-Liouville fractional deriv-
ative of the function u : [0, b]→ R, denoted Dα

0+u, is defined as

Dα
0+u(t) =

1
Γ(n+ 1− α)

( d
dt

)n+1
∫ t

0

u(s)ds
(t− s)α−n

,

provided the right-hand side exists.

Definition 2.3. We say b0 is the first extremal point of the BVP(b), (1.1)-(1.2), if

b0 = inf{b > 0 : (b), (1.1)-(1.2) has a nontrivial solution}.

A cone P is solid if the interior, P◦, of P, is nonempty. A cone P is reproducing
if B = P − P; i.e., given w ∈ B, there exist u, v ∈ P such that w = u− v.

Remark 2.4. Krasnosel’skii [18] showed that every solid cone is reproducing.
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Let P be a cone in a real Banach space B. For u, v ∈ B, u � v with respect to
P, if u − v ∈ P. A bounded linear operator L : B → B is said to be positive with
respect to the cone P if L : P → P. L : B → B is u0-positive with respect to P if
there exists u0 ∈ P\{0} such that for each u ∈ P\{0}, there exist k1(u) > 0 and
k2(u) > 0 such that k1u0 � Lu � k2u0 with respect to P.

Remark 2.5. Throughout this article, let B be a partially ordered Banach space
over R and P a cone in the Banach space B. Let � be the partial ordering on the
Banach space B induced by the cone P, and ≤, the usual partial ordering on R
induced by R+. Also, u � v will be used in the same way as v � u. In addition,
We will denote the spectral radius of the bounded linear operator L by r(L).

The following five results are fundamental to our extremal point results. The
first two results are found in Krasnosel’skii’s book [18]. The third one is proved in
Nussbaum [24]. The last two results are found in [18, 19]. In each of the following
theorems, assume that B is a Banach space and P is a reproducing cone, and that
L : B → B is a compact, linear, and positive operator with respect to P.

Theorem 2.6. Let P ⊂ B be a solid cone. If L : B → B is a linear operator such
that L : P \ {0} → P◦, then L is u0-positive.

Theorem 2.7. Let L : B → B be a compact, u0-positive linear operator. Then
L has an essentially unique eigenvector in P, and the corresponding eigenvalue is
simple, positive, and larger than the absolute value of any other eigenvalue.

Theorem 2.8. Let Lb, η ≤ b ≤ β be a family of compact, linear operators on
Banach space such that the mapping b 7→ Lb is continuous in the uniform operator
topology. Then the mapping b 7→ r(Lb) is continuous.

Theorem 2.9. Assume r(L) > 0. Then r(L) is an eigenvalue of L, and there is a
corresponding eigenvalue in P.

Theorem 2.10. Suppose there exists γ > 0, u ∈ B, −u /∈ P, such that γu � Lu
with respect to P. Then L has an eigenvector in P which corresponding to an
eigenvalue λ with λ ≥ γ.

3. Criteria for extremal points

First, we introduce a family of Green’s functions for −Dα
0+y = 0 with n < α ≤

n+ 1, n ≥ 2, under the boundary conditions(1.2), can be calculated as

G(b; t, s) =
1

Γ(α)bα−n

{
tα−1(b− s)α−n, 0 ≤ t ≤ s ≤ b,
tα−1(b− s)α−n − bα−n(t− s)α−1, 0 ≤ s < t ≤ b.

Obviously, G(b; t, s) > 0 and

∂G(b; t, s)
∂b

=
(α− n)tα−1s

Γ(α)bα+1−n(b− s)n+1−α > 0

on (0, b)× (0, b). In particular, we note that G(b; t, s) = tα−nK(b; t, s), where

K(b; t, s) =
1

Γ(α)bα−n

{
tn−1(b− s)α−n, 0 ≤ t ≤ s ≤ b,
tn−1(b− s)α−n − bα−ntn−α(t− s)α−1, 0 ≤ s < t ≤ b.

It is easy to deduce the sign properties of K as:
(1) K(b; t, s) > 0 for (t, s) ∈ (0, b]× (0, b).
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(2) K(b; 0, s) = 0 for s ∈ (0, b).
(3) ∂iK(b;0,s)

∂ti = 0, i = 1, 2, . . . , n− 2.

(4) ∂n−1K(b;0,s)
∂tn−1 = (n−1)!(b−s)α−n

Γ(α)bα−n > 0 for s ∈ (0, b).

(5) ∂K(b;t,s)
∂b = α−n

Γ(α)b
n−α−1(b− s)α−n−1stn−1 > 0 for (t, s) ∈ (0, b)× (0, b).

(6) ∂
∂b (

∂n−1K(b;0,s)
∂tn−1 ) = (α−n)(n−1)!

Γ(α) bn−α−1(b− s)α−n−1s > 0 for s ∈ (0, b).

Next, we consider the Banach space (B, ‖ · ‖) defined by

B := {y : [0, b]→ R : y = tα−nz, z ∈ C[0, b]}, ‖y‖ := sup
0≤t≤b

|z(t)| = |z|0.

Also, we define a cone P ⊂ B by

P := {y ∈ B : y(t) ≥ 0 on [0, b]}.

The cone P is a reproducing cone since if y ∈ B,

y1(t) = max{0, y(t)}, y2(t) = max{0,−y(t)},

are in P and y = y1 − y2.
For each β > 0, define the Banach space

Bβ := {y : [0, β]→ R : y = tα−nz, z ∈ Cn−1[0, β], z(i)(0) = 0, i = 0, 1, 2, . . . , n−2}

with the norm
‖y‖β := sup

0≤t≤β
|zn−1(t)| = |zn−1|0.

By this norm, for y ∈ Bβ , we have

|z(t)| =
∣∣ ∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

z(n−1)(s)ds · · · dt2dt1
∣∣

≤ tn−1

(n− 1)!
|z(n−1)|0

=
tn−1

(n− 1)!
‖y‖β , t ∈ [0, β].

Then

|y(t)| = |tα−nz(t)| ≤ tα−1

(n− 1)!
‖y‖β , t ∈ [0, β].

For each β > 0, define the cone Pβ ⊂ Bβ to be

Pβ := {y ∈ Bβ : y(t) ≥ 0 on [0, β]}.

Lemma 3.1. The cone Pβ is solid in Bβ and hence reproducing.

Proof. Define

Ωβ =
{
y ∈ Bβ : y(t) > 0 for t ∈ (0, β), z(n−1)(0) > 0,

z(β) > 0, where y = tα−nz
}
.

We will show Ωβ ⊂ P◦β . Let y ∈ Ωβ . Since z(n−1)(0) > 0, there exists an ε1 > 0
such that z(n−1)(0)− ε1 > 0. Since z ∈ C(n−1)[0, β], there exists a γ1 ∈ (0, β) such
that z(n−1)(t) > ε1 for t ∈ (0, γ1). So,

y(t) = tα−nz(t)
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= tα−n
∫ t

0

∫ t1

0

· · ·
∫ tn−2

0

z(n−1)(s)ds · · · dt2dt1

>
tα−1

(n− 1)!
ε1, t ∈ (0, γ1).

Now, since z(β) > 0, there exists an ε2 > 0 such that z(β) − ε2 > 0. Since
z ∈ Cn−1[0, β], there exists a γ2 ∈ (0, β) such that z(t) > ε2 for t ∈ (γ2, β). Thus
y(t) = tα−nz(t) > ε2t

α−n for all t ∈ (γ2, β). Also, since y(t) > 0 on [γ1, γ2], there
exists an ε3 > 0 such that y(t) > ε3 for all t ∈ [γ1, γ2].

Let ε = min
{
ε1
2 ,

(n−1)!ε2
2βn−1 , (n−1)!ε3

2βα−1

}
. Define Bε(y) = {ŷ ∈ Bβ : ‖y − ŷ‖β < ε}.

Let ŷ ∈ Bε(y), then ŷ = tα−nẑ, where ẑ ∈ Cn−1[0, β] with ẑ(i)(0) = 0, i =
0, 1, 2, . . . , n− 2. Now,

|ŷ(t)− y(t)| ≤ tα−1

(n− 1)!
‖ŷ − y‖β <

tα−1

(n− 1)!
ε, t ∈ [0, β].

So for t ∈ (0, γ1),

ŷ(t) > y(t)− tα−1

(n− 1)!
ε >

tα−1

(n− 1)!
ε1 −

tα−1

(n− 1)!
ε >

tα−1

2(n− 1)!
ε1 > 0.

For t ∈ (γ2, β),

ŷ(t) > ε2t
α−n − tα−1

(n− 1)!
ε >

(
ε2 −

βn−1

(n− 1)!
ε
)
tα−n >

ε2

2
tα−n > 0.

Also,

ŷ(t) > y(t)− tα−1

(n− 1)!
ε > ε3 −

βα−1

(n− 1)!
ε > 0

for t ∈ [γ1, γ2]. So ŷ ∈ Pβ and thus Bε(y) ⊂ Pβ . Then Ωβ ⊂ P◦β . �

Let N0y(t) ≡ 0, t ∈ [0, b], and for each β > 0, define Nβ : B → B by

Nβy(t) =


∫ β

0
G(β; t, s)p(s)y(s)ds, 0 ≤ t ≤ β,∫ β

0
G(β;β, s)p(s)y(s)ds, β ≤ t ≤ b.

(3.1)

We shall refer to Nβ : Bβ → Bβ , where Nβ is defined by

Nβy(t) =
∫ β

0

G(β; t, s)p(s)y(s)ds

= tα−n
∫ β

0

K(β; t, s)p(s)y(s)ds, 0 ≤ t ≤ β.

By employing the methods used in [10], the existence of the extremal point b0
for BVP (b),(1.1)-(1.2), is positive, can be seen from the following theorem.

Theorem 3.2. Let δ > 0 be such that( 1
Γ(α)(α− n+ 1)

+
2n

Γ(α− n+ 2)(n− 1)!

)
Pδα = 1,

where P = max0≤t≤β |p(t)|. Then the BVP(β), (1.1)-(1.2) has a unique solution
for β ∈ (0, δ); in particular, if β ≥ δ, then u ≡ 0 is the only solution of BVP (β),
(1.1)-(1.2).
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Proof. We shall show there exists δ > 0 such that for β ∈ (0, δ), Nβ : Bβ → Bβ is a
contraction map. Let y1, y2 ∈ Bβ and consider

(Nβy2 −Nβy1)(t) = tα−n
(∫ β

0

tn−1(β − s)α−n

Γ(α)βα−n
p(s)(y2 − y1)(s)ds

×
∫ t

0

(t− s)α−1

Γ(α)tα−n
p(s)(y2 − y1)(s)ds

)
.

Set

z(t) =
∫ β

0

tn−1(β − s)α−n

Γ(α)βα−n
p(s)(y2 − y1)(s)ds−

∫ t

0

(t− s)α−1

Γ(α)tα−n
p(s)(y2 − y1)(s)ds.

Then, ‖Nβy2 −Nβy1‖β = |z(n−1)|0. For t ∈ (0, β),

|z(n−1)(t)|

=
∣∣∣ ∫ β

0

(n− 1)!(β − s)α−n

Γ(α)βα−n
p(s)(y2 − y1)(s)ds

− 1
Γ(α)

∫ t

0

∂n−1((t− s)α−1tn−α)
∂tn−1

p(s)(y2 − y1)(s)ds
∣∣∣

≤ (n− 1)!
Γ(α)βα−n

· P · |y2 − y1|0
∫ β

0

(β − s)α−nds+
1

Γ(α)
· P · |y2 − y1|0

×
∫ t

0

n−1∑
k=0

Ckn−1

Γ(α)
Γ(α− k)

Γ(α− n+ (n− k − 1))
Γ(α− n)

(t− s)α−k−1tn−α−(n−k−1)ds

≤
( (n− 1)!

Γ(α)(α− n+ 1)
+

2n−1

Γ(α− n+ 2)

)
Pβ|y2 − y1|0

≤
( 1

Γ(α)(α− n+ 1)
+

2n−1

Γ(α− n+ 2)(n− 1)!

)
Pβα‖y2 − y1‖β ,

where ∂n−1((t−s)α−1tn−α)
∂tn−1 is calculated by Leibniz rule formula for derivative, and∑n−1

k=0 C
k
n−1 = 2n−1 due to binomial formula (a + b)n−1 =

∑n−1
k=0 C

k
n−1a

kbn−1−k

with a = b = 1. Thus, if( 1
Γ(α)(α− n+ 1)

+
2n−1

Γ(α− n+ 2)(n− 1)!

)
Pβα < 1,

then Nβ is a contraction map.

Choose δ > 0 such that
(

1
Γ(α)(α−n+1) + 2n

Γ(α−n+2)(n−1)!

)
Pδα = 1 and the proof

is complete. �

Lemma 3.3. For each β > 0, Nβ is positive with respect to P and Pβ. In addition,
Nβ : Pβ \ {0} → P◦β.

Proof. The positivity of Nβ with respect to P and Pβ is an easy consequence of
the sign properties of Green’s function G and the kernel K. Now, we shall show
that Nβ : Pβ \ {0} → P◦β . From Lemma 3.1, we have Ωβ ⊂ P◦β . Next, we prove
Nβ : Pβ \ {0} → Ωβ .
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Let y ∈ Pβ \{0}, then there exists [γ1, γ2] ⊂ [0, β] such that p(t) > 0 and y(t) > 0
for all t ∈ [γ1, γ2]. So

Nβy(t) =
∫ β

0

G(β; t, s)p(s)y(s)ds

≥
∫ γ2

γ1

G(β; t, s)p(s)y(s)ds > 0, for all t ∈ (0, β).

Note z(t) =
∫ β

0
K(β; t, s)p(s)y(s)ds, we have

z(β) =
∫ β

0

K(β;β, s)p(s)y(s)ds ≥
∫ γ2

γ1

K(β;β, s)p(s)y(s)ds > 0,

z(n−1)(0) =
∫ β

0

∂n−1K(β; 0, s)
∂tn−1

p(s)y(s)ds > 0.

Thus, Nβy ∈ Ωβ and Nβ : Pβ \ {0} → P◦β . �

Remark 3.4. According to Theorem 2.6, Nβ is u0-positive with respect to Pβ .

Lemma 3.5. The mapping β 7→ r(Nβ) with Nβ defined on B for each β ∈ (0, b] is
continuous.

Proof. We shall prove that the mapping β 7→ Nβ is continuous in the uniform
operator topology with Nβ defined on B for each β ∈ (0, b]. Since p(t) is continuous
on [0,∞), the linear operator Nβ defined on B can be proved to be compact as in
[9]. Now, let f : (0, b] → {Nβ}|b0 be given by f(β) = Nβ . Assume y = tα−nz ∈ B
with ‖y‖ = 1. Note P = max0≤t≤b |p(t)|. Let 0 < γ1 < γ2 ≤ b. Then

‖f(γ2)− f(γ1)‖
= ‖Nγ2 −Nγ1‖
= sup
‖y‖=1

‖Nγ2y −Nγ1y‖

= sup
‖y‖=1

sup
0≤t≤b

∣∣∣ ∫ γ2

0

K(γ2; t, s)p(s)y(s)ds−
∫ γ1

0

K(γ1; t, s)p(s)y(s)ds
∣∣∣.

Since K(β; t, s) is continuous for each β ∈ (0, b], for ε > 0, there exists δ > 0 such
that |K(γ2; t, s)−K(γ1; t, s)| < ε

2bP whenever |γ2 − γ1| < δ.

Case (i) t ≤ γ1. Let sup0≤t≤γ1,γ1≤s≤γ2 |K(γ2; t, s)| ≤ K1. Choose δ = ε
2K1P

. Then∣∣∣ ∫ γ2

0

K(γ2; t, s)p(s)y(s)ds−
∫ γ1

0

K(γ1; t, s)p(s)y(s)ds
∣∣∣

≤
∫ γ1

0

|K(γ2; t, s)−K(γ1; t, s)|p(s)y(s)ds+
∫ γ2

γ1

K(γ2; t, s)p(s)y(s)ds

≤ ε

2bP
· γ1 · P · 1 +K1 · P · 1 · |γ2 − γ1| < ε.

Case (ii) γ1 ≤ t ≤ γ2. Let supγ1≤t≤γ2,0≤s≤γ1
∣∣∂K(γ2;t,s)

∂t

∣∣ ≤ K2 and

sup
t,s∈[γ1,γ2]

|K(γ2; t, s)| ≤ K3.
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Choose δ = ε
2(K2b+K3)P . Then∣∣∣ ∫ γ2

0

K(γ2; t, s)p(s)y(s)ds−
∫ γ1

0

K(γ1; γ1, s)p(s)y(s)ds
∣∣∣

≤
∫ γ1

0

|K(γ2; t, s)−K(γ1; γ1, s)|p(s)y(s)ds+
∫ γ2

γ1

K(γ2; t, s)p(s)y(s)ds

≤
∫ γ1

0

|K(γ2; t, s)−K(γ2; γ1, s)|p(s)y(s)ds

+
∫ γ1

0

|K(γ2; γ1, s)−K(γ1; γ1, s)|p(s)y(s)ds+
∫ γ2

γ1

K(γ2; t, s)p(s)y(s)ds

≤
∫ γ1

0

∣∣∣∂K(γ2; ξt,γ1 , s)
∂t

∣∣∣(t− γ1)p(s)y(s)ds+
ε

2bP
· γ1 · P · 1 +K3 · P · 1 · |γ2 − γ1|

≤ (K2γ1 +K3)P |γ2 − γ1|+
ε

2
< ε.

Case (iii) t ≥ γ2. The similar technique is used in Case (ii), so we omit it here.
From above discussion we can see that β 7→ Nβ is continuous in the uniform operator
topology. Therefore, the mapping β 7→ r(Nβ) is continuous due to Theorem 2.8. �

Theorem 3.6. For 0 < β ≤ b, r(Nβ) is strictly increasing as a function of β.

Proof. Let λ > 0 and y ∈ Pβ \ {0}. Theorem 2.7 implies that Nβy(t) = λy(t) for
t ∈ [0, β]. Let y(t) = y(β) for t > β. Then, for t ∈ [0, b], Nβy(t) = λy(t), and
r(Nβ) ≥ λ > 0, i.e., r(Nβ) > 0.

Next, let 0 < β1 < β2 ≤ b. Since r(Nβ1) > 0, by Theorem 2.9, there exists
y ∈ Pβ1 such that Nβ1y = r(Nβ1)y. Let u1 = Nβ1y and u2 = Nβ2y. Then for
t ∈ [0, β1], we claim that u2−u1 ∈ P◦β1

. In fact, by noting (u2−u1)(t) = tα−2z12(t),
we have

z12(t) =
∫ β2

0

K(β2; t, s)p(s)y(s)ds−
∫ β1

0

K(β1; t, s)p(s)y(s)ds

=
∫ β1

0

[K(β2; t, s)−K(β1; t, s)]p(s)y(s)ds+
∫ β2

β1

K(β2; t, s)p(s)y(β1)ds.

Since y ∈ Pβ1 \{0} and p(t) does not vanish identically on any compact subinterval
[0, β1] ⊂ [0, b], it follows that z12(t) > 0 as K(β2; t, s) > K(β1; t, s). So, u2(t) >
u1(t) on (0, β1). In view of ∂iK(β;0,s)

∂ti = 0, for β ∈ (0, b] and s ∈ [0, b], i =
0, 1, 2, . . . , n− 2, we have

z
(i)
12 (0) =

∫ β2

0

∂iK(β2; 0, s)
∂ti

p(s)y(s)ds−
∫ β1

0

∂iK(β1; 0, s)
∂ti

p(s)y(s)ds = 0,

for i = 0, 1, 2, . . . , n − 2. Since ∂K(b;0,s)
∂t > 0 and ∂

∂b

(
∂K(b;0,s)

∂t

)
> 0 for s ∈ (0, b),

we can get

z
(n−1)
12 (0) =

∫ β2

0

∂n−1K(β2; 0, s)
∂tn−1

p(s)y(s)ds−
∫ β1

0

∂n−1K(β1; 0, s)
∂tn−1

p(s)y(s)ds

=
∫ β1

0

[∂n−1K(β2; 0, s)
∂tn−1

− ∂n−1K(β1; 0, s)
∂tn−1

]
p(s)y(s)ds
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+
∫ β2

β1

∂n−1K(β2; 0, s)
∂tn−1

p(s)y(β1)ds > 0.

Also,

z12(β1) =
∫ β2

0

K(β2;β1, s)p(s)y(s)ds−
∫ β1

0

K(β1;β1, s)p(s)y(s)ds

=
∫ β1

0

[K(β2;β1, s)−K(β1;β1, s)]p(s)y(s)ds

+
∫ β2

β1

K(β2;β1, s)p(s)y(β1)ds > 0,

due to ∂K(β;t,s)
∂b > 0 for β ∈ (0, b) and K(β2;β1, s) > 0 on (β1, β2).

Thus, the restriction of u2 − u1 to [0, β1] belongs to Ωβ1 ⊂ P◦β1
. So there exists

δ > 0 such that u2 − u1 � δy with respect to Pβ1 . Let u1(t) = u1(β1) for t > β1.
In view of u2 ∈ Pβ2 , it follows that u2 − u1 � δy with respect to Pβ2 . Thus,

u2 � u1 + δy = r(Nβ1)y + δy = (r(Nβ1) + δ)y,

i.e., Nβ2y � (r(Nβ1) + δ)y. So by Theorem 2.10,

r(Nβ2) ≥ r(Nβ1) + δ > r(Nβ1).

Hence, r(Nβ) is strictly increasing for 0 < β ≤ b. �

Theorem 3.7. The following three statements are equivalent:

(i) b0 is the first extremal point of the BVP (b), (1.1)-(1.2);
(ii) there exists a nontrivial solution y of the BVP(b0), (1.1)-(1.2) such that

y ∈ Pb0 ;
(iii) r(Nb0) = 1.

Proof. (iii) ⇒ (ii) is an immediate consequence of Theorem 2.9.
Next, we prove (ii) ⇒ (i). Let y ∈ Pb0 \ {0} satisfy BVP(b0),(1.1)-(1.2) for

0 ≤ t ≤ b0. Extend y(t) = y(b0) for t > b0. For Nb0y(t) = y(t), we have r(Nb0) ≥ 1.
If r(Nb0) = 1, then by Theorem 3.6 that r(Nβ) < r(Nb0) for 0 < β < b0, i.e.,

r(Nβ) < 1. So the BVP(β),(1.1)-(1.2) has the only trivial solution. Thus, b0 is the
first extremal point of BVP (b),(1.1)-(1.2).

If r(Nb0) > 1. Let v ∈ Pb0 \ {0} such that Nb0v = r(Nb0)v. From Lemma 3.3,
we know that the restriction of v to [0, b0] belongs to P◦b0 . Thus, there exists δ > 0
such that y � δv with respect to Pb0 , 0 ≤ t ≤ b0. Extend v(t) = v(b0) for t > b0.
Then y � δv with respect to P. Assume δ is maximal such that the inequality
y � δv holds. Then,

y = Nb0y � Nb0(δv) = δNb0v = δr(Nb0)v.

Since r(Nb0) > 1, δr(Nb0) > δ. But this contradicts the assumption that δ is the
maximal value satisfying the inequality y � δv. So r(Nb0) = 1.

Finally, to prove (i) ⇒ (iii) observe that limb→0+ r(Nb) = 0. If b0 is the first
extremal point of BVP (b),(1.1)-(1.2), then r(Nb0) ≥ 1. If r(Nb0) > 1, then by the
continuity of r about b, there exists β0 ∈ (0, b0) such that r(Nβ0) = 1, and for this
β0, the BVP (β0),(1.1)-(1.2) has a nontrivial solution, which is a contradiction. �
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4. A nonlinear problem

Consider a BVP for a nonlinear fractional differential equation of the form

Dα
0+y + f(t, y) = 0, 0 < t < b (4.1)

with boundary conditions(1.2). Suppose that f(t, y) : [0,∞)×R→ R is continuous,
and f(t, 0) ≡ 0, f(t, y) is differentiable in y. Assume ∂f(t,0)

∂y is continuous and
nonnegative on [0,∞) and does not vanish identically on each compact subinterval
of [0,∞). Then the variational equation along the zero solution of (4.1) is

Dα
0+y +

∂f(t, 0)
∂y

y = 0, 0 < t < b. (4.2)

To obtain sufficient conditions for the existence of solutions of the BVP (4.1)-(1.2),
we shall apply the following fixed point theorem, see [2, 11, 27].

Theorem 4.1. Let B be a Banach space and let P ⊂ B be a reproducing cone. Let
M : B → B be a completely continuous nonlinear operator such that M : P → P and
M(0) = 0. Assume M is Fréchet differentiable at u = 0 whose Fréchet derivative
N = M ′(0) has the property:

(A1) There exist w ∈ P and µ > 1 such that Nw = µw, and Nu = u implies
u /∈ P. Further, there exists ρ > 0 such that, if u = 1

λMu, u ∈ P and
‖u‖ = ρ, then λ ≤ 1.

Then the equation u = Mu has a solution u ∈ P \ {0}.

Now, we shall use this theorem and the main conclusions of Section 3 to prove
the following result.

Theorem 4.2. Suppose that b0 is the first extremal point of BVP (4.2)-(1.2). For
each β > b0 assume the property:

(H1) There exists ρ(β) > 0 such that if y(t) is a nontrivial solution of the BVP

Dα
0+y +

1
λ
f(t, y) = 0, 0 < t < b, (4.3)

with boundary conditions (1.2), and if y ∈ P with ‖y‖ = ρ(β), then λ ≤ 1.
Then the BVP(β),(4.1)-(1.2) has a nontrivial solution y ∈ P for all β ≥ b0.

Proof. For each β > b0, let Nβ : B → B be defined by (3.1), where p(t) ≡ ∂f(t,0)
∂y .

Define the nonlinear operator Mβ : B → B by

Mβy(t) =


∫ β

0
G(β; t, s)f(s, y(s))ds, 0 ≤ t ≤ β,∫ β

0
G(β;β, s)f(s, y(s))ds, β ≤ t ≤ b.

The differentiability of f with respect to y is sufficient to argue that Mβ is Fréchet
differentiable at y = 0 since∣∣ ∫ β

0

G(β; t, s)[f(s, y(s))− p(s)y(s)]ds
∣∣

=
∣∣ ∫ β

0

G(β; t, s)[fy(s, ỹ(s))− p(s)]y(s)ds
∣∣

≤ Qβ‖y‖
∫ β

0

|fy(s, ỹ(s))− p(s)|ds,
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where 0 ≤ ỹ(t) ≤ y(t) for t ∈ [0, β] and Q = supt,s∈[0,b] |G(β; t, s)|. Moreover,
M ′β(0) = Nβ .

By Theorems 3.6 and 3.7, it follows that r(Nb0) = 1 and r(Nβ) > 1 if β > b0.
Moreover, since b0 is the first extremal point of the BVP (b),(4.2)-(1.2), it also
follows from Theorem 3.7 that if Nβy = y and y is nontrivial for β > b0, then
y /∈ P. So, for β > b0, we can apply property (H1) to check the condition (A1) in
Theorem 4.1. Then we obtain the existence of a y ∈ P \ {0} such that y = Nβy
and the proof is complete. �

Remark 4.3. Condition (4.3) may always be satisfied when f(t, y) is sublinear for
large |y|, in the case when α = 2 we can refer the readers to see [27].
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