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TRAVELING WAVEFRONTS IN NONLOCAL DIFFUSIVE
PREDATOR-PREY SYSTEM WITH HOLLING TYPE II
FUNCTIONAL RESPONSE

SHUANG LI, PEIXUAN WENG

ABSTRACT. This article concerns the existence of traveling wavefronts for a
nonlocal diffusive predator-prey system with functional response of Holling
type II. We first establish the existence principle for the system with a general
functional response by using a fixed point theorem and upper-lower solution
technique. We apply this result to a predator-prey model with Holling type
IT functional response. We deduce the existence of traveling wavefronts that
connect the zero equilibrium and the positive equilibrium.

1. INTRODUCTION

We consider the reaction system based on the predator-prey interaction model
with nonlocal diffusion

ou(x,t
QUL — [ ), 0) — e, 0]+ e, 1) — (uCe, D)o 1),

(1.1)
ov(x,t
QL) _ (o)) — vl )] + hafv(a ) + o (u(a D)o 1),

where v and v are the densities of the prey and the predator, respectively; d; >
0, do > 0 are the diffusion coefficients; J;(x)(i = 1,2) are the kernel functions
describing the spatial migration probability of individuals and is given by

(hwmﬁ:Ah@ﬂmmW%(bMWﬁ:Ab@ﬂmmM%

f(uw) is the predator response function; hi(u) is the growth function of prey which
is a positive function within the maximal carrying capacity of the prey, and ho(v)
is the growth function of the predator; p € (0,1) is the transmission coefficient.
If the predator only depends on the prey given in , then hy(v) is a negative
function. Otherwise, it may be positive.
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A classical mathematical model for describing the spatial-temporal pattern for
prey-predator (abbreviated as P-P) species is

Uy = Dluxz + au(ﬁ - u) - f(u)v,

1.2
vy = Dovyy — dv + pf(“)v7 ( )

where in (|1.2)), the predator has only the u-species as its food resource. Assuming
that the predator has resource other than the wu-species, and obeys the logistic
dynamical growth rule without the u-species, then the P-P model is

Uy = Ditlgy, + au(8 —u) — f(u)v,

vy = Dovgy + (6 —v) + pf (u)v. (1.3)

Both (1.2]) and (|1.3)) used the Laplacian operator A := 88—;2 to model the diffusion of
species, which is a local operator which suggests that the population at the location
x can only be influenced by the variation of the population near the location z. In
(1.1), at time ¢, the total individuals of u-species and v-species moving from the

whole space into the location z are expressed as [*_Ji(z — y)[u(t,y) — u(t, z)]dy
and ffooo Ja(z — y)[v(t,y) — v(t, z)]dy, respectively. Generally speaking, one may
call a system with nonlocal diffusion, and correspondingly, call and
as systems with local diffusion. In recent years, models with nonlocal diffusion have
attracted much attention, e.g., see [l 2| B 4, [l 5] 18], 19, 23, 25]. Similar to the
study of traveling wave solutions of reaction-reaction systems with local diffusion
(e.g., see [20] and [22]), the traveling wave solutions for the nonlocal reaction-
diffusion systems are important in describing the phenomena in physical process,
biological process, and other fields (e.g., see [2] [18] [19] 24]).

Pioneering works on the existence of traveling wave solutions connecting two
steady states (point-to-point orbit) for diffusive predators-prey systems are
found in Dunbar [6 [7, 8] with f(u) = wv (D1 =0 and Dy # 0) and f(u) = 75,
(D1 = 0) by using the shooting method, which is based on a variant of Wazewski’s
theorem [6] [7} 8] and LaSalle’s invariant principle. Following Dunbar’s ideas, (|1.2)

with f(u) = %= (D1 # 0) and f(u) = 7% (D1 = 0) for point-to-point orbits
were proved by Huang, Lu & Ruan [12] and Li & Wu [14], respectively. Also Yang
& Yang [11] considered a model with a more general form. Lin, Weng & Wu [16], 21]
considered a P-P model with Sigmoidal response function and simplified Dunbar’s
method by constructing a bounded set W to replace the unbounded Wazewski set
in [6l [7, [§]. See also Huang [I3] for further development.

Combining fixed point theory with the method of upper-lower solutions is ef-
fective in obtaining the existence of solutions for mixed quasi-monotonic reaction-
diffusion systems. For P-P system , au(f —u) — f(uw)v is non-increasing on
v and yv(d — v) + pf(u)v is nondecreasing on u. Thus, is a mixed quasi-
monotonic system (same for (L.2))). In this article, we obtain traveling wavefronts
for the P-P system only by using the upper-lower solution technique and fixed
point theorem.

This article is organized as follows. In Section 2, some preliminaries are done
and an existence theorem of traveling wavefronts connecting two steady states for
is derived briefly using fixed point theorem. As applications of the existence
theorem, we need to find a pair of upper-lower solutions for the wave profile system
with given functions hi, ho and f. The main contribution of this article is the
construction and verification of upper-lower solutions for the wave profile systems
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with logistic growth and Holling type II functional response. These works are done
in Section 3.

2. AN EXISTENCE THEOREM OF TRAVELING WAVEFRONTS

We adopt the usual notation for the standard ordering in R?. Let |- | denote the
Euclidean norm in R? and || - || denote the supermum norm in space C(R,R?). Let
0 = (0,0).

We make the following assumptions on hq(u), he(v) and f(u).

(H1) There exist two positive numbers ug,vg such that hy(ug) — f(ug)vg = 0,

ha(vo) + pf(uo)vo = 0, and f(0) = h1(0) = ha(0) = 0;
(H2) f, hy and hg are Lipschitz continuous functions on any compact interval;
(H3) f is nondecreasing on [0, 400).

Remark 2.1. (H1) guarantees that the system (1.1]) has a trivial steady state (0,0)
and a positive steady state (ug, vp). On the other hand, (H1) and (H3) imply that
fw) >0 for u > 0.

We first consider systems of the form

% =d; /R Ji(x —y)[u(y, t) — u(z, t)]dy + fi(u(z,t),v(z, 1)),
(2.1)
81}53? ) - d /R Jo(x = y)lv(y,t) —v(@,t))dy + fa(u(z,1), v(z,1)).

Here we assume that J; and f; (i = 1,2), satisfy
(J1) [gJi(x)de = 1, Ji(x) > 0, Ji(z) = Ji(—=) for z € R; for v € (0,400,
Jg Ji(@)er da < oo;
(F1) fi € C(R,R) (i = 1,2), f1(0,0) = f2(0,0) = 0, fi(uo,v0) = fa(uo,v0) = 0;
there exist two positive constants L; > 0, Ly > 0 such that
|f1(p1, 1) = fi(p2,¥2)| < Laf|@ — ¥,
|f2(<P17¢1) - f2(902,¢2)| < L2H¢ - \I’”’
for any ® = (¢1,11), ¥ = (p2,12) € C(R,R?) with 0 < &(t), ¥(¢) < K,
and K = (K1, K2) > (ug,vg) is some vector in R? which will be given later;
(F2) fi1(u,v) is non-increasing on v, and fa(u,v) is non-decreasing on u, where
(u,v) € [0,K].

A traveling wave solution of (2.1) is a solution with the form (u(t, z), w(t,z)) =
(p(z+ct),(x+ct)), where (¢, 1) € CH(R,K) is the wave profile which propagates
at a constant velocity ¢ > 0. Substituting (u(t, z),v(t,z)) = (p(z + ct), Y (z + ct))
into (2.1) and replacing x + ct by ¢, then we obtain

g/ (1) = di (i = 9)(1) — daolt) + fa(o(0), ¥(1))

' (t) = da(J2 #Y)(t) — dato(t) + fa((t),9(2)),
where (J1*p)(t) = [ Ji(t—s)p(s)ds and (Jox)(t) = [ J2(t—s)1p(s)ds. Recalling
the physical and biological motivation (see e.g., [2, [0, [I7]), we also require that the
traveling solution (¢, ) satisfies the asymptotic boundary conditions

Jim (o). 0(0) = (0,0), lm (o(0).0(0) = (w.w).  (23)

We call a solution of (2.2)) satisfying (2.3)) as a traveling wavefront of (2.1).

(2.2)
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Let 3 > 0 be large. For any (¢,v) € Cjp k) := C(R,[0,K]), define the operator
H = (Hy, Hy) : Cp ) — C(R,R?) by

Hy(p,9)(t) = Bro(t) +di(J1 * ) (t) — dip(t) + fi(p(t), (1)),

Ha (. 0)(8) = Barb(t) + daC % ) (1) — da(t) + folo(t). (). )
Then can be written as
e/ (t) = =Prp(t) + Hi(p, ¥)(t), 2.5)
/(1) = —Bo(t) + Halip, ) (2).
By (2.5), we further define F' = (Fy, F») : Cjo k] — C(R,R?) by
Filp)) = ze [ ¥ Heu)(s)ds,
1 _s _too B (26)
Palet) = 2o [ E M) (s)as.

Thus, a fixed point of F' is a solution of , which is a traveling wavefront of
(2.1), and vice verse. Therefore, in what follows, we shall search for the fixed point
of F connecting (0,0) and (ug, vg).

We introduce an exponential decay norm as follows. Let p > 0 such that u <
min{ﬁ—cl, ’%2} Define

L(R,R?) = {u(t) € C(R,R?) : sup |u(t)|e ! < oo},
teR

and |u(t)|,, = sup,ep [u(t)le ! for u € B,(R,R?). Then (B,(R,R2),|-|,) is a
Banach space.
We give a definition of upper and lower solutions of (2.2)) as follows.

Definition 2.2. A pair of continuous functions ®(t) = (B(t),¥(t)) and ®(t) =
((p(t) P(t)) € Cpok is called a pair of upper-lower solutions of ( ., respectively,
if @ (t) and @'(t) exist for ¢ € R\ T, which are bounded and satisfy

@ (t) > di(J1 +2)(t) — dip(t) + fr1(@(t),¥(t)), teR\T,
' (t) > da(Jo * 9)(1) — do(t) + fo(B(t), (2)), teR\T;

e (t) < di(Jy+ ) (t) — dap(t) + fr(p(t), ¥(t), te€R\T,
) (t) < da(Jo * ) (1) — dotp(t) + fa(o(t),9(t)), teR\T.

Here T=(t1,t2,...,tn) is a set of finite points with ¢; <ty < -+ < tp,.

In this article, we assume that a pair of upper-lower solutions ®(t) = (@(t), ¥ (t))
and ®(t) = (p(t),¥(t)) of (2.2) satisfies

(P1) (0,0) < (f Y)(t) < (%w)( ) < (K1, K3), t€R;

(P2) lim_(,0)(1) = (0,0), ,lim (2,9)(t) = lim (@ 9)(t) = (o, vo).
Now we state an existence theorem for traveling wave solution of (2.1)). A similar
proof can be found in [I0} 23] 25], and we omit its proof here.

Theorem 2.3. Assume that (J1), (F1), (F2) hold. If . ) has a pair of upper-
lower solutions ¥ = (p,¢) and ¥ = (¢, 1) satisfying (P1)—~(P2). Then ) has a
solution satisfying (2.3)). That is, (2.1) has a traveling wavefmnt satzsfymg .
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Remark 2.4. Let fi(u,v) = hi(u) — f(u)v, fo(u,v) = ha(v) + pf(u)v, where h;
(1 = 1,2) and f satisfy (H1)-(H3). It is obvious that f; and f> satisfy (F1) and
(F2). Therefore, the conclusion in Theorem 2.3 holds for system (1.1 if J; (i = 1,2)
satisfy (J1).

3. PREY-PREDATOR SYSTEM WITH HOLLING TYPE II RESPONSE

We consider the prey-predator system with Holling type II response,

ou(z,t) u(zx, t)v(x,t)

pr = Q)@ 1) — diu(e,t) + aul@, (8 = u(@, 1) - TR

a”(aﬁ’ b _ do(Jz % v) (2, 1) — dav(z, t) + yv(z, 1) (5 — v(z, 1)) + pm.
(3.1)

in which z € R, t > 0, and all parameters are positive, and J; (i = 1,2) satisfy
(J1).
Obviously, (3.1) has three trivial equilibria as follows:
Ey=(0,0), E;=(8,0), FE>=/(0,9).

Furthermore, we assume that (3.1]) has a unique positive equilibrium E3 = (ug, vo)
satisfying

Vo PUo
— — =0, 60— =0. 3.2
af — aug T g ’Y’UoJrl_'_uO (3.2)

It is clear that ug < 3, vo > d and yvg > ITEO.
Let us consider the algebraic system
v ou

_ - =0, 0 — — =0, 3.3
off —au— o V-t (3.3)

which is equivalent to
(af —au)(1+u)=v, (v0—~v)(1+u)+pu=0.
Substituting the first equation into the second equation, we obtain
(V6(1 +u) — (B — au)(1 +u)?] + pu = 0.
That is,

Qu) := au® + 20 — af)u?® — (208 —a — 6 — g)u + (@ —ap)=0.

Note Q(0) = § — af, Q(—0) = —oo and Q(o0) = oo, and Q(u) = 0 is a cubic
algebraic equation. If § — a8 < 0, then Q(u) = 0 has a positive real root u = uy.
Since

Q(ﬁ)=aﬂ3+2a62—aﬁ?’—2aﬁ2+aﬁ+6ﬂ+§ﬁ+6—aﬁ=6ﬁ+§ﬁ+6>o,

we have ug < 8. Let vg = (af — aup)(1+ug), then vy > 0 and (ug, vo) is a positive
solution of . Therefore, the assumption is feasible.

Assume ¢ > 0. Let u(x,t) = o(x + ct), v(z,t) = Y(x + ct), and denote the
traveling wave coordinate x + ct still by ¢, then the corresponding wave profile
system is

e(t)p(t)

' (t) = di(J1 % ) (t) — dip(t)op(t) (B — o(t)) — Tw(t)’

ey (t) = da(Ja * )() — dgo(t) + 19 ()8 — (1)) + pm.

(3.4)
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We first do some preliminaries. For A € R and ¢ > 0, define

Ai1(\¢) = dl/ J1(y) (e —1)dy — e + af,
R

As(M, ) = dy / To() (€ — 1)dy — cA + .
R

Here 02 is some constant which will be given in the following subsections. By (J1)
and some direct calculations, we have the following lemma.

Lemma 3.1. The following conclusions hold.
(i) There is a ¢§ > 0, such that for any given ¢ > i, Ay(\, ¢) has two distinct
real roots A1(c) and Aa(c) satisfying 0 < A1(c) < A2(c) and
>0, either 0 <X < Ai(c) or A > Aa(c),
Al(Aa )
<0, Ai(e) <A< A(e).
(i) There is a c5 > 0, such that for any given ¢ > ¢35, Aq(\, ¢) has two distinct real
roots A3(c) and Aq(c)(> 0) satisfying As(c) < Aa(c) and
>0, either A <A\ A > Alc),
As(\ ) either 3(c) or 4(c)
<0, Aslc) <A< A(e).
Remark 3.2. If §; > 0, then ¢5 > 0 and A3(c) > 0. If 2 = 0, then ¢5 = 0 and
As(c) = 0. If 63 < 0, then ¢5 = 0 and A3(c) < 0.

3.1. Traveling waves connecting F, and FE3. In this subsection, we are inter-
ested in the solution of (3.4)) with asymptotic boundary conditions

Jlim (), () = (0,0), lim_((t), $(t)) = (o, vo). (3.5)

Here, we choose K1 = 3, Ky = 6 + gﬁ, then we have K1 > ug and Ky > vyg.
To construct lower-upper solutions of (3.4)), we need the following lemma.

Lemma 3.3. Suppose that

(3 +2v2)vg 4(v/2 — 1) pug

> el > 3.6
ato = 1+ug = 1+ up ( )
hold, then there exist £1 € (0, (V2 — 1)ug] and e € (0,2] such that
2(up —
—Ozé‘% + (2\/5 — 2)0&@6061 + Yoo (Uo 61)1)0 > €q,
T+uyg 1+ (ug—e1) (3.7)
2 PUOEL ’
—7€3 + Yoz — ( > €0,

1 +U0)(1 “+ ug — 61)

where €9 > 0 is some constant. Particularly, one can choose €1 = (\/5 — Dug and
g9 = V9 /2.

Proof. The proof of the first inequality is similar to that of [10, Lemma 4.2]. We
only prove the second inequality. Let
PVOEL
1 +UO)(1 +’LLO —51).
Note that g1(0) = 0, max g1 (£2) = g1(%) = 2y0d. If 1 € (0, (V2 — 1)uo), then

PUOEL < (V2 — 1) pvoug (V2 — 1) pvoug

LT+ug)(L+uo—e1) = (14up)[l+ (2 — v2)ug 1+ ug

gi(e2) = —ve5 + yvoe2, ga(e1) = (

g2(e1) = (
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If yug > w, then for any &; € (0, (V2 — 1)ug], there exist €5 € (0,v0/2]

1+4ug
such that g1 (e2) > ga(e1) for €5 < e3 < vp/2. The proof is complete. O
Remark 3.4. If we assume that
(4 +2v2)vg (42 — 5) pug
> — 6> — 2 — 3.8
aﬂ 1+ Ug 7 1+ Uup ( )

then from (3.8]) we derive that
Vo > (3 + 2\/§)U0

auozaﬂ—1+u0 1+ ug
2 2
aug = aff — el >af — o :( +\f)aﬂ’
g = Y6 + Pio_ 4(v2 — Dpuo
0 1+uy — 1+ ug ’
pug yvo 1
5 = o — > g — — 05 oy,
Y Yo 1+UO_7U0 4(\@71) 3’71)0

That is, (3.6]) holds.

In this subsection, let o = ~4d, then we have from Remark that ¢ > 0
and Asz(c) > 0. We denote A;(c) by A; in what follows, where ¢ = 1,2,3,4. Let
¢ > c* :=max{c},cs}, ¢ > 1 and
A2 Ag A+ A3 A+ A3 2})
PYRD VAR VIR W '

n € (1, min{>= (3.10)

Define two continuous functions
Li(t) == — g™t Ly(t) = et — genst
Let L;(t) = 0,i = 1,2, we obtain
o' mg<0, B———
(n—1\ (n—1)As
Let €1,e2 be defined as in Lemma For any given ¢ > 1, we can choose small
A > 0 such that t < to,t4 < t4 and

ug — 5167>\t2 = Ll(tg), Vo — z’-:z(fi)\t4 = L2(t4).

Ing < 0.

Using the above constants, define the continuous vector functions:

At At _ genAat
_ et t <ty e qgett t <t
p(t) = { . N p(t) = { a

min{ Ky, ug +uge M}, t>t, — ug —e1e” M, t > to,
D) = et et E<ts, Ly st —qenst, ¢ <ty
min{ Ky, vo +voe M}, t>1t3, — vg —ege Mt >y,

where A > 0 is small and will be determined later. We can see B(t), ¥ (t), o(t), % (t)
satisfy (P1)-(P2) in Section 2. Moreover, if ¢ > 1 is large enough, then it is obvious
that

t3 <0 and t; > max{tg,t3,t4}.

Lemma 3.5. Assume . holds. If ¢ > 1 is large and A > 0 is small, then
(@(t),¥(t)) and (p(t),¥(t)) is a pair of upper solution and lower solution of (3.4).
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Proof. Firstly, we note the following facts: for ¢ € R,

B(t) <M, B(t) Sug+ue M, B(t) < Ky,

P(t) < e+ g™t P(t) < vg +voe M,

f(t) > e>\1t _ qu]Miﬁ7 f(t) > g — 516_’\t, f(t) >0, '
P(t) = e — g™, Y(t) > vg —e2e” M, P(t) >0

These inequalities will be used in the following arguments without extra explana-
tions.

Now we consider p(t). If t < t1, p(t) = eM! and ¥ (t) > 0, then

di(J1 < P)(t) — i () — &7 () + aB(1)(8 — (1)) - %
< eMA; (A, ¢) =0.

If t > t1, we have B(t) = K; = 3, then the result is clear. Otherwise, $(t) =
ug + uge M, P(t) > vy — g2 implies that

di(J1+P)(t) — dip(t) — c@'(t) + aB(t)(B — B(t)) — f(fzg))
<dy /R Ji(y — t)(uo +uoe™ ) dy — dy(uo + uoe ) + cAuge

Y
—t ey _ (o Fuoem )y (t)
+ a(ug +uge™ ") [B — (uo + uoe™ )| — 14 ug + uge=

up + uge M)rp(t
=upe MA (=N, ¢) + afug — aud — 20ude ™™ — aue M — (o + uo JE()

14 ug + upge=
= uge M[AL (=), ¢) — 2(2 — V2)au)

(1+e)p(t) vo
_ 24/2 — 2 — At —2At .
uo[(2V2 — 2)auge ™ + auge t1 gt use ™ Ttug
Note from the second inequality in (3.9) that A;(0,¢) —2(2—v2)aug = aff—2(2—
V2)aug < 0, and thus Aj (=X, ¢) —2(2 — v/2)aug < 0if A > 0 is small. Then there

exists a constant A} such that A;(—\, ¢) —2(2 — v2)aug < 0 for any A € (0, \}).
On the other hand, let

L4+ e)y(t
Ii(\ 1) := (2V2 — 2)aupe ™M + auge M + A+ )el) kil

1+ ug +uge M 1+ ug
1 —At _ — At
> (Q\f — 2auge M + auge M + (14 e”™) (v = eze” )

Vo
1+ug

14 ug + uge=
Let t > ¢; and z := e~ € (0,00). Then

1 _
Ii(\t) > (2V2 — 2)augx + augz? + (1 + 2)(vo — €2) Vo

1+ ug + uox B 1+ ug
= ((2\/§ — 2)aupz(1 + ug + uoz) + augz*(1 + ug + uox)

v
+ (14 2)(vg — £22) — : +Ou0 (14 up + uox))/(l + up + upz)

 w)
14 ug + uox’
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Here
g(z) = aa® +br+¢, a:= oug,
b= aug(1+up) — e2 + (2v2 — 2)aud,

()
¢= oo et (2v/2 — 2)auo(1 + ug).

Let e9 = vg/2. Note that we have from (3.8)),

b= auo(l+ug) — 2 + (2v2 — 2)au

> aup(l + uo) - %’
Vo
— 1 _ 9
= [0 — 5ol + o) =
3v
ﬁ(1+uo)—7o
3
>(4+\@)U0—%207
~ v
3(0) = +°uo — 2+ (2V2 — 2)aug(1 + ug),
v
> - — 2v2-2)(3+4+2 0,
= 1+u +(f )( + \/>)Uo>

g’(x):2ax+b>0f0r3:>0.

Therefore, f(z) := xg(x) is increasing on z € (0,00). Since f(0) = 0, we have
f(x) > 0 for z € (0,00). That is Iy(A\,t) > 0 for t > ¢;. Thus B(t) satisfies the
definition of upper solution.

We now consider ¥(t). If t < t3, then () = et 4 ge™ 3!, B(t) < e**. Noting
nAs < A1 + A3 and t3 < 0, we have

po(t)(t)
1+3(t)

<d / 5(y — 1) (e + qe™Y)dy — da (e + qe™3) — c(A3e™! + gnAze™")
R

da(J2 %) (t) — datp(t) — e’ () + yih(£)(8 — ¥(t)) +

pP(t) (e + geme")
1+7(t)

= Mt Ao (N3, ) + g3 Ay (nhs, c) — (e 4 ge™e)? 4

+ ,y(e)\3t + qe’r])\gt)(a _ e)\gt _ qe’l’]/\gt) +

pp(t) (e + gem™!)
1+72(t)

peklt(ekgt +qen>\3t)
1+ eMt

< qe"AStAg(nAg,c) _ ,y(e)\gt + qenA3t>2 +
< qe”’\?’tAg(n)\g,c) + pe(/\1+/\3)t + qpe,\ltJrnAgt

< e (g2 (nAg,€) + p + gpe?).
(3.12)
Note Ay(nAs,c) < 0. Let ¢ > 1 be large enough, then —t3 > 0 is also large enough
such that

g2 (), ¢) + p+ qpe ™ = g[Ag(nhs, ¢) + pe’] + p <0,
which leads to gA2(nAs3, c) + p + gpe*1t < 0 for ¢ < t3.
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If t > t3 and 1) (t) = Ky, then from the definition of K;, K, we have

By # D)) — ) — (0 P06 —F0) + R
< ’7K2((5 - KQ) + pK1 Ko = 0.

Otherwise, ¥(t) = vo + voe ™, B(t) < ug + uge " implies that

— — — — — Pp(t)(t)
da(J2 * ¥)(t) — datp(t) — ' (t) + (1) (6 — (1)) + FES=0)

<dy / Ja(y — t)(vo + voe*’\y)dy — da(vo + voe”‘t) + cAvge M
R
Ay

_ _ pp(t) (v + voe~
+ ~v(vo + voe M) (8 — vy — voe M) +
’Y( 0 0 )( 0 0 ) 1+¢(t)

p(ug + uge ™) (vy 4 voe ™)

14 ug + uge= A
—Aty2

< wvge  MAs (=, ¢) + vovo — (v + voe M) +

Y 2 —At 9 _oxt  Puovo . puguo(l+e
= Asg(=N,c) —2 — —
e 2(=A €) = 2yvpe 1€ 1+ ug 1+ up + uge=M
%Puo ]
1+ up + uge M
PlUg puo(1 + %e"\t + 6_2)‘t)}
14+ ug 14 ug + upe= '

= vge M [AQ(—)\, c) —yvo +

—2At +

— g [’yvge*)‘t + yvpe

1 1
Note that Ax(0,c) — yvg + % <96 — vy + l"’fr)zz < 0. Thus there exists
1
a constant A5 such that Ag(—A\, ¢) —yvo + % < 0 for any A € (0, A3).
On the other hand, from (3.9) we have

3 -\t —2At
L Y —2At PUo puo(1+35¢ " +e )
Iy(Ast) : = quoe™ ™ + yuge” ™ + T+uo  1+ug+uge >
1+ 3eM 4 72N
. iV ot puo po( 2
= Yvoe T+ yvoe T A w 1+ ug
U 3
_ ’}/’U()e_M + ,yvoe—/\t _ 1/;(; (56_/\t + e—2>\t)
0
~ 3 pug puo
NV M
—e VU — — vg — —)e >0
I:’YO 21+u0+(70 1—|—UQ) } ’

uniformly for ¢ > t3. Therefore, v(t) satisfies the definition of upper solution.
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Now we consider ¢(t). If t < t5, then p(t) = e — ge™, 0 < (t) < et +
ge™3t. Thus we have

0y (J1 * )(8) — daip(t) — e (1) + ap(t) (5 — (1)) — (§

> d; / Jiy — ) (MY — g™ Y)dy — dy (M — ge™)
R
— c(AeM! — gnAre™) + a(eMt — g™ (B — eM! 4 g™
(M — ge™ )it
1 + e/\lt _ qe’r]klt
= eMIA (A, ) — ge™ AL (DA, €) — a(eMt — genit)?

(Mt — g™
1 + e)\lt _ qe’r]/\lt

(3.14)

e)qt _ qe’r])\lt)(e)\gt + qe’r]/\gt)
1 + e)\lt _ qe?’])\lt
> _qenAltAl(nA17c) _ an)\lt _ e)\lt(e)\gt + qenA;;t)

> —e™tgA1(nA1, ¢) + o + 1 + gePatmrs—nAnt

Z —qen/\ltA1(ﬂ)\1,C) o a(e)\lt o qen/\lt)Q o (

Note that Aj(nA1,c) < 0 by Lemma[3.1] and from (3.10) that A; +nXs — nA; > 0.
Let ¢ > 1 be large enough, then —t5 > 0 is also enough such that

gA1 (A1, ) + o+ 1 + gePaFmia—nAnts
= q[Ai(nhr,€) + e FRTINEL 4 (a4 1) <0,
which leads to
_emlt[qu(n)\l,c) +a+1+ qe(>‘1+">‘3—”>\1)t} >0 fort <t

If t > ty, p(t) = ug — 1™, 0 < P(t) < vo + voe ™, then

di(J1* @) (t) — dip(t) — e/ (t) + ap(t) (8 — ¢(t) — =—

>d; / Ji(y —t)(ug — e1e )dy — di(ug — e1e™ ™M) — chere™
R

(uo —e1e”)9(t)
1+ ug—ere M
A2 _ (uo — e1e)(t)
1+ ug — €1€_>‘t
=16 M=A1 (=), ¢) + (4 — 2vV2)aug] + (2V2 — 2)augeie M — agle M
ugvo  (uo —e1e”M)p(t)
1+’LLO 1+UO—€16_M '

+ a(ug — 6le_>‘t)[ﬁ — (up — ele_kt)] —

= —6167>‘tA1(—)\, ¢) + afug — a(ug — e1e

Note that —A1(0,¢) + (4 — 2v2)aug = —af + (4 — 2v/2)auy > 0 by the second
inequality in (3.9). We can choose A} > 0 such that —A; (=), ¢)+(4—2v2)aug > 0
for A € (0, A3).
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Let
I3(>‘7t)
—A\TT,
_ t)
= (22— 2 -t _ 2 —2Xt Uovo o (UO €1€ )w(
(2V2 — 2)aupe e agie + T4 Py
—At —At
_ _ - + voe~ M)
> (2/2 — 92 At 2 2\t UpVo _ (UO €1€ )(UO
> ( V2 = 2)augere aele + T+ T RT——Y
By Lemma we have
UpVo 2U0(Uo — €1)
I3(\,0) > (2v2 -2 —ag? - > g > 0.
3( ) = ( f )auoel aeg] + T+ ug —— €0
Choose & > 1 satisfying
upvo  (vo +voé)(uo — 1) _ €o
2V2 — 2)auge £ — afe1€)? — >—>0 (3.15
(2V2 — 2)auge€ a(1€)+1+uo [y 5 (3.15)

for £ € [1,&]. Let A3 > 0 be small enough, such that e~*3*2 < &. For given
A € (0,)\%), t € [t2,0], the above relations leads to e™* € [1,£;]. Therefore,
I5(A\,t) > 0 for t € [to, 0].

Let t >0 and z := e~ € (0,1), @ := (2v2 — 2)aug, b := 0% Then

1+uo
_ _ UQVg (UO — 5167)\t)(1}0 + ’eri)\t)
2V/2 -2 gre M —aeZe M 4 -
( Juoere acie 14+ ug 14+ ug—eje

(ug — e12) (v + vox)
1 + Uy — €1

=ac1x — agsx + b —

1 —
= m[&a(l +up)r — astr? — a(l +ug)e?a? + agdaz® + b(1 + up)
— I_Jslx — UgVgy — UQVZ + E1VoX + 5lvow2]

(&51(1 +ug)r — actr? — a(l + ug)e?a? + acdar® — beyx — upvox + £1v0x
+ alvaQ)/(l +ug — €1T)
W
1+ ug — Ell‘.
Here f(z) := zj(z) = x{az® + bx + ¢} and
a:=ae, b:=ewy—ac? — ol +ug)e? = e1fvg — aey — a(l + ug)ey],
¢:=ae1 (1 +ug) — bey — upvg + €10p.

Let &1 = (v/2 — 1)ug, then we have from the assumption aug > BA2v2)uo 4ot

1+wug
. e1v
&= (2v2 — 2)(V2 — 1o (1 + uo) — ugvp + ——2
1+ ug
> 2(3 — 2v2)(3 + 2v2)uguo — wgvg + —-°
1 —|— (')
€109
pry 2 —_ = > 0.
UV — UoVo + T+ ug UoVo + T+ ug

There are three cases.

Case 1: If b > 0, then a similar discussion to I1(\, ¢) yields to g(z) > 0, and then
I3(A,t) > 0 for A €€ (0,A}) and t > 0.
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Case 2: If b < 0 and b% — 4a¢ < 0, then the equation §(z) = 0 has either no real
roots or a double real root. Therefore, g(xz) > 0 for € (0,00), which leads to
I5(A,t) > 0 for A € (0,A3) and ¢t > 0.

Case 3: If b < 0 and b2 — 4a¢ > 0, then the equation g(z) = 0 has two real roots:

T12 = %(—B:l: Vb2 — 4a¢). Consider the small root 1 = %(—B— Vb2 — 4ac). We
(422000 4,4

derive from aug > TTug

Vo
V21
2(v2 — 1)%aug + (V2 — Dauo(1 + ug) — vo > 2(v/2 — 1)%2au2,

—b=as; + a(l +ug)er —vo > 2ae? = 2a,

—b—2a> 0.

aug(1 +ug) > (34 2V2)v > (V2 + 1)y =

Let 21 < 1, which is equivalent to

—b—2a < \/b?—4dac & (b+2a)? <b®—4ac = a+b+e<0.
It is derived that

a+b+é=(vV2-1)>3au] - [2(vV2 - Daug + a(l + up)] (V2 — 1)*u]

+ [2(\[2 — l)OéUQ _ to% + 21}0](\/5 - 1)Uo — Uy
1+ ug

= (V2 -13%aud — (V2 = 1)20u(1 + uo) + 2(vV2 — 1)%2au?
B (v2 — 1)udw

1+U0

+ 2(\/5 — 1)’LLO’U() — ugvg < 0.

Therefore, z; < 1. Since we already known that f(1) = §(1) > 0 (see (3.15))
and §(0) = ¢ > 0, by the graph of § we know that xzo < 1, which leads to 0 >

b+ 2a > /b2 — 4aé. This is a contradiction, and thus Case 3 is impossible. Now,
we conclude g(z) > 0 for z € (0,1). That is, I3(\,t) > 0 for ¢ > 0. Summarizing
the above discussion, we know that ¢(t) satisfies the definition of lower solution.

Now we consider (t). If t < t4, then 1 (t) = et — ge™3t, ©(t) > 0. Noting
n < 2, we have a a B

—l—v(e)“"t _ qenz\gt)((s _ e/\3t + qenkgt)
—_ _qenz\gtA2(n)\37C) _ ’7(€>\3t _ qenz\gt)2
> —qe™3t Ay(nhs, c) — ye?*s!
> €™ (—qAs(nAs,0) —7) 2 0

for ¢ > 1 large enough.
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14
“— is nondecreasing for x € (—1,00). If p(t)

Note that the function y =
uy —e1e~* > —1 for t > t4, then
#(t) up —€1e”

L+o(t) ~ 1+ug—ere ™

>

At

In fact, if A > 0 is small enough, one can have (v/2 — 1)e M < “‘;71'1, which leads

to
up — (V2 = Duge ™ > —1 = wug —e1e™M > 1 fore; < (V2 — Dug, t > t4.

Now, if ¢ > t4, then ¢ (t) = vo — e2e™ and ¢(t) > up — g1 > —1 (assuming

A > 0 small). Thus
pe(t)(t)
do(Jo ) (t) — datp(t) — ' (¢) + v () (6 — 9 (t)) + ——==
2 )(0) = o) = e/ (1) + 7 0)(5 — 000 +
Z dg/ Jz(y — t)(l/o — EgeiAy)dy — dg(l]o — E9€ ) — C)\Ezei)\t
R
_ oy, Pe()(v0 — e2eN)
+v(vg — £2e M) (6 — vy 4 967 M) + =
¥(vo 2 ) 0 2 ) 1+£(t)
— At
At Cane , PE(t) (v — e2e)
> —e9e” M Ag(= ¢) + ydvg — y(vo — e2e™ ) E——
= —e9e M A (=, €) + yovg — YUE 4 2e9qvpe N — yede M
pp(t)(vo — e )
14 ug — 81€_>‘t
m—1 — At
_ m=p(ug — e1e” ™) _ _
> e9e M[Ag (=N, €) + yvo — ER—— | + eayvge M — yede M
~ Puovo pvo(ug — 1€~ M) B %p&ge”‘t(uo —g1e M)
14 ug 1+U0—€1€_)‘t 1+UO—€1€_)‘t
Here m is some positive integer. Note
m—1 — At m—1
o p(ug —ere”™) e PUo
As(0 - m > —v0 -2 — >0,
2(0,¢) + v 1+ug—ee ™M — 70+ 1Yo 1+ ug
we can choose A} > 0 such that
m—1 — At
plug —e1e™)
Ao(=M - >0
2=A )+ —
for A € (0, A}).
)

pvo(ug — ege™

Let
_ — PUOVo
I\ 1) = eayvge M — yele M —
(7) Y 72 1+'U,0 1+u0_€1e,/\t

1 At Y

—peae” M (ug —ere” )
14+ ug —ere=

At
2 ,—2X\t _ PUog1e

(14 up)(1+ug —ere=)
/\t)

= 62’}/’[)067)\t — yese

1 Y
 mPe2e (up — e1€
14+ ug —ere
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Obviously, we have I;()\,00) = 0. By Lemma we obtain

1

PUOET —pea(ug —€1) _ g
L(X,0) = — e - - 727"
4( ) = e2yv0 — V€5 (14 up)(1 +up —&1) 14+wug—e1 2

if m is large. Similar to the argument for I3(\,t), we can also obtain that I4(\,t) >
0 uniformly for ¢ > t4. We omit the details here. Therefore, 1(t) satisfies the
definition of lower solution. N

Taking A € (0, miny<;<4{\}), we see that (p(t),v(t)) and (p(t),(t)) is a pair
of upper-lower solutions of . O

From the above statements, the following result is obvious. Note that the fol-
lowing asymptotic behaviors of (¢(t),1(t)) can be obtained from the forms of lower
solutions and sandwich method.

Theorem 3.6. Assume (3.8)) holds and ¢ > ¢* = max{cj,c5}. Then (3.1) has a
traveling wave solution (p, ) with speed ¢ connecting Ey = (0,0) and Es = (up, vp)-
Furthermore,

Jim o(t)e Mt = Jim P(t)e et = 1. (3.16)
3.2. The particular case § = 0. If § =0, then (3.1]) reduces to
% = dy(Jy ) (2, 1) — dyu(z,t) + au(z, £)(8 — u(x, 1))
u(z, t)v(z, )
ov(z,t) u(z, t)v(x,t)

= dy(Jo % v)(z,t) — dov(z,t) — yv?(z,t) + p

ot 1+ u(x,t)

This is a P-P system with a mortality rate function yv? for the predator, which
depends on the prey as its unique resource. (3.17)) has three equilibria

EO = (0,0), El = (ﬂ50)7 E2 = (U,(),UO),
where the positive equilibrium Ey = (ug, vo) satisfying

puo  _
14 ug

)
aﬁ—auo—m:(), Yo —

(3.18)
It is clear that uy < 3.

Assume that ¢ > 0, let u(z,t) = o(x + ct), v(z,t) = P(x + ct), and denote the
traveling wave coordinate x+ ct still by ¢. Then we can obtain a wave profile system
(3.4) with 6 = 0. Similar to §3.1, consider the traveling waves connecting Fy and
FEs>. Here, we can choose K1 = (3, Ko = %.

Let us consider Lemma 3.3 Assume that

(4 =+ 2\/§)1}0
- 3.19
ap > 14 ug ( )
which yields to
Vo N (3 + 2\/@)’[]0
14+u = 14w
2 2
Y ap— af +\f)aﬁ'
14+ g 4422 4

aug = aff —
(3.20)

aug = af —
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It is easy to see, that d has no effect on the selection of 1, thus under the first
inequality of (3.20)), we still have 1 € (0, (v/2 — 1)ug] such that the first inequality

in (3.7) holds. Since § = 0, we have yvg = 4% (thus the second inequality of (3.6)

is false), and we need to re-choose a 2 € (0, 2] and to find an inequality similar
to the second one of (3.7). Let

g1(e2) = —753 + 2yvgea,

gole2) = fuovo + puog2 p(uo — e1)(vo — 52)'
+ ug 50(1+UQ) 1+UO—€1
Note that
Vo 3
max{gi(e2)} = g1(v0) =05, 91(5) = 70,
Bn0)=0, go(0) = Pt Lo =)

a 1+ ug 1+ug—e1
If &1 € (0, (v/2 — 1)ug)], then

g (1170) _ Pl n PUYVO _ %P(Uo —€1)v0
2 2 1+ ug 100(1+UO) 1+uy—e;

PUVo PUVo _ 2727\/5,0“000

T 14w 100(1+wuo) 14 (2—v2)ug
PUOVQ PUpVg _ 2_2\@ PUOVQ

- 1+U0 100(1+U0) 1+U0

_ @ PUOVQ PUOVQ
2 14wy 100(1 + ug)
\/§ 1 2 Vo

= (7 + m)’ﬂfo < 91(5)7

then there exist 5 € (0,v9/2] such that g1 (e}) = g2(¢3) and
v
g1(g2) > ga(e2) for ey <eg < ?0. (3.21)

In particular, one can choose g9 = vg/2.

In this subsection, let d2 = 0, and then A3 = A3(c) = 0 for ¢ > ¢§ = 0. Corre-
spondingly, ¢ > ¢* := ¢}. We denote \;(c) by A;, where i = 1,2,3,4. Assume that
Ag > A1. Choose ¢ > 0 with Ay > A4 —(>0,¢g>1and

A2 A+ M —¢

ne (l,min{/\l , T’2})' (3.22)

Define continuous functions

s =" RIS S
min{ Ky, up +uge M}, t>t, - ug —ere N, >ty

a(t) _ e/\4t + qe()\4*C)t’ t S t3, ¢(t) _ 07 t S t4,
min{ Ko, vp + voe M}, t>t3, — Vo — €™Mt > 1y,

where ¢ > 1 is large enough and A > 0 is small which will be defined later. We can

see that @(t), ¥(t), p(t), ¥(t) satisfy (P1)~(P2) in Section 2. Moreover, if ¢ > 1 is
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large enough, then it is clear that
to <0, t3<0, t4<0, t > max{tg,tg}.

Lemma 3.7. Assume that (3.19) holds and Ny > A1, ¢ > 1 is large enough and
A > 0 is small. Then (B(t),¥(t)) is an upper solution and (¢(t),¥(t)) is a lower

solution of (3.17)).

Proof. We omit the argument for $(t) since it is similar to the corresponding ar-
gument in Lemma

We now consider ¢)(t). If t < t3, then i(t) = eM? 4 geP1=9t B(t) < eMt. Using
Ay and Ay — ( to replace A3 and nAs in respectively, we obtain

Pp(t)Y(t)

=0

pe’\lt . (e>\4t + qe(M—C)t)
1+ eMt

da(Jo % B)(t) — daib(t) — P/ (£) — " (1) +

< gePMT (Mg = () — (M geP I +

< M AL (N = G 0) = g7 T 4 p ot pget).

Note As(Ag — (,¢) < 0. Let ¢ > 1 be large enough, then p — vg < 0, and thus we
have from A\; > Ay — ¢ > 0 and t3 < 0 that

qAs(Ay — ¢ ¢) — ygPePM =t 4 pgetits )
< A2 (Mg = (o) + €M (p = 7q)] +p <0,
which leads to
MmO gAL (A — ¢ ¢) — 7% 4 p 4 pge™t] < 0 for t < t3.

If t > t3 and v(t) = Ko, then the proof is similar to (3.13). Otherwise, ¥(t) =
vo +voe M, B(t) < up + uge™ N implies

pB (T

1+9(t)

p(uo + uge ™) (vg + voe ™)

14+ ug + uge= A

puovo(1 4+ e )2 pugug(1 + e=*)?2

B 14+ ug 14+ ug + uge=*t
pugvoe_’\t(l +6—At)2

(1 +up)(1 + ug + uge=)

pug |
(14 uo)(1 + ug + uge=) "

da(Jo % D)(t) — doth(t) — (1) — 19" (£) +

< ’er_)\tAg(—)\,C) — (v + voe_’\t)2 +

= vpe MAy (=), ¢)

= er_/\tAg(—)\, C) —

< woe M[Az(=A,c) —

Note that for ¢t > t3,

’ (1 4 up)(1 + ug + uge=2t) (1 4 u)(1 + ug + uge=2t)
2
Py
< - <0,
T (T4 uwo)(1 + ug + ugeMs)
and thus there exists a constant A5 such that Aq(—A\,¢) — (1+u0)(1f5§+qu,M) <0

for any A € (0, \}). Therefore, ¥(t) satisfies the definition of upper solution.
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If t <ty, then 0 < p(t) = eM? —ge™ ! <Mt 0 <o(t) < eMt 4 ge(Pa=Ot Using
A4 — C to replace nAs in (3.14]), we have from (3.22) that

di (1 % @)(t) — dip(t) — e'(t) + ap(t)(B — (t)) — ;

> e gAL (A1, €) + (o + 1) 4 gePFrememme,

The coming argument for ¢ < 9, and a further discussion for ¢ > to are the same
as the corresponding argument in Lemma so we omit it. Then we know that
(t) satisfies the definition of lower solution.

COIft < tg, Y(t) = 0, @(t) > 0, the following inequality is clear:

da(o *9)(8) — () — ! () — 7 (e) + LEDL

L+o(t) —
If t > ty, then ¢(t) = vg —e2e ™M, @(t) > ug —e1e™* > =1 (A > 0 small), and thus
t)y(t
a2 5 0)0) — o) — et (0 ?(0) + P

p(ug — e1e7 ) (v — g9e™)

1 —+ ug — 6167>‘t

> —e3e MA (=N, ) — y(vo — 26 M) +

=Xt pUo —Xt 2_—axt _ PUo¥o
- CAo(=Ahe)+ P gy - _ Ploto
£2€ [ 2( 76) + 50(1 + uO)] + 2e2vv0€ Y€€ 1+ o
B puoeae M plug — e1e7 ) (vg — g2 M)
50(1+U0) 1+UO7€1€7)‘t
Note —A»(0, ¢) + 5555557 = 500 1agy > 0 thus there exists a constant Aj such that
—AQ(_A7 C) + % > 0 for any AE (0, )\Z)
Let
-[4()‘7 t)
= egqwpe — yele=2M _ PUOY0 _ pugeze ™ plug —e1e” ) (vg — ege” M)
1+U0 50(1+UO) 1+U0 —€1€_>‘t
= tge M — qeZe—2M _ LU pug — e1e™ ) (vg — e9¢™ )
50 14 ug 14 ug—ere M
Obviously, we have I4(\, 00) = 0 and
I4(A,0) = gi(e2) + g2(e2)
PUOVo PUOE2 P(Uo - 81)(110 —€9)
=2 —ye2 — — :
S0 T T e 50(1 + wo) 1T+ u—ey
In view of (3.21)), there exists €5 € (0, %] such that I4(A,0) > eg > 0 where g9 > 0

is a constant. Similar to the argument in (3.15)), we can also obtain I,(A,t) > 0
uniformly for ¢ € [t4,0] and X € (0, \}).

Now we show that I,(A,t) > 0 uniformly for ¢ > 0. Let # = ¢ * and x = 23.
Then
pugvy . plug — e12)(vg — 22)
14 ug 14+ ug—e1x

1 9 9 PUQV
= ———{|keayvox — YE52° — ————
T ay —e.g Ure2wor —9e3a” — =

I\ t) = keayvox — yeaa? —

11+ up — e12]
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+ p(’LLQ — €1LE)(’U0 — 621‘)}

1 v
e o+ 2
T 7€1x{x[a:v + bx + &}

) 1
.1+Uo—€1]}

{zg(x)},

where
4:=ne1e2, b= —rereayvg — e3v(1 + ug) + peieo,
y PE1UGVY
= 1 - - £E1ioto,
¢ 1= keayvo(l + ug) — per1vg — peaug + T+ u
Let €1 = (V2 — 1)up and e = 5. Then from 1{’&’0 = vy we have
. PE1UOVO
= 1 —_— J—
¢ = keayvo(l + wp) — per1vg — peaug + T+ u
9 K 1 9 K 1
:’Wo[§ -(V2-1) - 5] +’YU0U0[§ - (V2-1) - 5 +(vV2-1)]>0,

b= —rereayvy — e2y(1 + ug) + perea

o 1 V2-1 k(V2-1) 1 V2-1

2t 21 _ 2
= yug] 4+ 5 | + yuovg| 5 4+ 5 ] <0,
a+b+¢
1 V2-1 & 1
e VO )
Wil + 5+ 5 —(V2-1) = 3]
2-1 2-1) 1 V2-1 1
—i—vuov%[\[ _Av2-1) 1, V2 +2- =]
4 2 4 2 2 2
3 V2-1 & 3 3v2-1) k(vV2-1) &
_ 27 2 v 27 % _ _
= 5] 1 5 *2]+’W0Uo[ 4+ 1 5 +2]>0~

Since @ + b+ ¢ > 0 is equivalent to x7 > 1, where x; is the smallest real root of
g(x) = 0, similar to proving procedure of Lemma we know that Is(\,t) > 0
uniformly for ¢ > 0 and A € (0, \}). Therefore, 1(t) satisfies the definition of lower
solution. N

Let \* = min;—1234{Af}. Summarizing the above discussion, we know that
(@(t),(t)) and (p(t),(t)) satisfy the definition of upper-lower solutions. O

From the above statements, the following result is obvious.

Theorem 3.8. Assume (3.19)) holds, ¢ > ¢* := ¢} and Ay > A\1. Then (3.17)) has
a traveling wave solution with speed ¢ connecting Eo = (0,0) and Ey = (ug, vo).

Concluding remarks. Using the upper-lower solution method, we proved the
existence of traveling wavefronts connecting Fy and F3 for with hy = au(f —
u), ho = yv(d —v) and f of Holling type II, with either 6 > 0 or § = 0.

Assume that § > 0. Note that the predator in system has logistic growth,
which implies that it has resources other than the prey. Therefore, it is possible to
consider the immigration of the prey into the residence area of predator, and further
a co-existence steady state may be reached as &+ ct — oco. Similar arguments show
the existence of traveling waves connecting Fo and Fjs.

We did not discuss the existence of traveling wavefronts connecting E; and Ej,
which raised in the case of mild invasions. Furthermore, we don’t know if traveling
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wave solutions can be studied using the upper-lower solution technique under one
of the following situations:

(i) k1 = au(B —u),he = —dv and f = 7 (Holling type II);
(ii) hy = au(B —u),hg = yv(d —v) and f = u (Holling type I).
These problems are still open, and we leave it for future investigation.
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