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INELASTIC COLLISION OF TWO SOLITONS FOR
GENERALIZED BBM EQUATION WITH CUBIC
NONLINEARITY

JINGDONG WEI, LIXIN TIAN, ZAILI ZHEN, WEIWEI GAO

ABSTRACT. We study the inelastic collision of two solitary waves of different
velocities for the generalized Benjamin-Bona-Mahony (BBM) equation with
cubic nonlinearity. It shows that one solitary wave is smaller than the other
one in the H'(R) energy space. We explore the sharp estimates of the nonzero
residue due to the collision, and prove the inelastic collision of two solitary
waves and nonexistence of a pure 2-soliton solution.

1. INTRODUCTION

In this article, we study the generalized Benjamin-Bona-Mahony (BBM) equa-
tion with cubic nonlinearity

(1 - 020+ 0, (u+u*) =0, (t,z) €R xR, (1.1)

where u(t, z) is a function of time ¢ and a single spatial variable z. If the nonlin-
earity term u> changes to u2, then the above equation becomes the BBM equation.
Equation was introduced by Peregrine [30] and Benjamin, Bona and Mahony
[2]. In particular, it is not completely integrable. No inverse-scattering theory
can be developed for this equation [23] [29]. This situation is in contrast with the
generalized Korteweg-de Vries equation (gKdV) equations

st + 0,(0%u + f(u)) =0, (1.2)

which is completely integrable for f(u) = u? (KdV equation), f(u) = u? (mKdV
equation) and f(u) = u? — pu® (Gardner equation).

Let us review some classical works related to collision problems of solitons for
the generalized KdV and BBM equations. The two equations have been studied
since the 1960s from both experimental and numerical points of view; see examples
[T, 3, 4 5 8L 10, BI, B3, B34, B5]. Many elegant results have been found on the
existence of explicit solution and stability, local and global well-posedness, long
time dynamical behavior, etc.

It is well-known that the KdV equation has explicit pure N-soliton solutions by
using the inverse scattering transform [9 24, B2]. The stability and asymptotic
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stability of N-solitons of KdV equation were studied by Maddocks and Sachs [12]
in HY(R) using variational techniques and in H'(R) by Martel, Merle and Tsai
[21]. LeVeque [I1] further investigated the behavior of the explicit 2-soliton solution
of KdV equation for nearly equal size. Mizumachi [26] considered the large time
behavior of two decoupled solitary wave of the generalized KdV equation. Martel
and Merle [10] investigated the inelastic collision of two solitons with nearly equal
size for gKdV equation with f(u) = u*. It shows that the 2-soliton structure
is globally stable in H'(R) and the nonexistence of a pure 2-soliton in the regime.
They also considered the so-called BBM equation [15]:

(1= X02)0u + 05 (O%u —u+u?) =0, (t,z) ERxR, A€ (0,1).

For the pure 2-soliton, we mean that the solution u(t, ) of KAV equation satisfies

2
||u(t,z) — Z Qc; (x — ¢t — f17j)||H1(R) —0 ast— —oo,
j=1

2
lu(t, z) — Z Qe,(x — cjt —a))|lgr) — 0 ast — +oo,
=1

for some z; such that the shifts A; = as; —x; depend on ¢y, cz. This solution which

is called the 2-soliton represents the pure collision of two solitons, with no residue
terms before and after the collision. In other words, the collision is elastic.

Except for the collision of two solitons with nearly equal size of two equations, the
collision of two solitons with different velocities has also been studied in [14} 18], 20,
28]. In [14], it was shown that the collision of two stable solitary waves is inelastic
but almost elastic. As a consequence, the monotonicity properties are strict: the
size of the large soliton increases and the size of the small soliton decreases through
the collision with explicit lower and upper bounds. In [I8], they considered the
generalized KdV equation with a general nonlinearity f(u):

wp + (Uge + f(u)e =0, (t,x) €ERT xR, u(0) =uy € H'(R),

assuming that for p = 2,3,4, f(u) = v? + f1(u) where lim, \%| =0, and f;
belongs CP*4.

In [28], it is classified on the nonlinearities for which collision are elastic and
inelastic. For integrable case, the collision of two solitons is elastic, such as KdV,
mKdV and Gardner nonlinearities. For non-integrable case, the collision of two
solitons is inelastic, such as gKdV, a general case f and BBM etc.

There are many unsolved questions related to the collision problems for partial
differential equations. In this study we focus on the existence of a pure 2-soliton for
the gBBM equations in the collision regime. To prove the nonexistence of a pure
2-soliton for non-integrable partial differential equations, we should consider four
conditions [4, [I8, 20]. The first one is that the related Cauchy problem should be
globally well-posed. The second one is that the solutions of the equations should
satisfy the mass and energy conservation laws. The third one is that the equations
should have solitary wave solutions with certain properties. The last one is that
the equations should have asymptotic stability of multi-solitons.

In this article, we consider the collision of two solitary waves with different ve-
locities for the gBBM equation with cubic nonlinearity. Our purposes is to study
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the dynamical behavior of two solitons during the collision and to prove the nonex-
istence of a pure 2-soliton after the collision.

As we know, the Cauchy problem related to is globally well-posed in H!(RR)
[2] and the solutions of satisfy the following conservation laws:

mmmzééﬁmmm+iéwmmszw@ (1.3)
MMW=%4W@@+@@MM=mM) (1.4)

The quantity fR (t,x)dx is also formally conserved. However, admits no more
conserved quantities.

Recall that has a two-parameter family of solitary wave solutions {¢.(z —
ct —xg) 1 ¢ > 1, zg € R}, where ¢, satisfies

gy —(c—1)¢pe+ ¢ =0, inR. (1.5)
The unique even solution of (|1.5)) is given by

bela) = (e~ 1)7Q(1/ ),

c

where Q(x) = v/2cosh™ (z) solves

Q" +@* =0 (1.6)

Let N<1,1<eny <---<ecp and xq,...,xy € R. There exists a unique solution
w of (1.1) such that

Jimflu(t, 2) Zm, — ety =0, (L.7)

which means that the behavior of the sum of N-soliton solutions with different
velocities is asymptotical stable as t — —oo. Following [14, 18], 20], we assume that
1 < ¢y < ¢; and u(t) is the H'(R) solution of (1.1]) such that

imfu(t) =Y be,(x @Hmwfo (1.8)
7j=1,2

By the symmetry + — —x,t — —t of , there exist solutions with similar
behavior as t — +4o00. However, what will occur after the collision of the two
solitons and the global behavior of such solutions is still unknown. We will explore
the collision of two solitons and the nonexistence of a pure 2-soliton solution.

Theorem 1.1. Let ¢; > ¢o > 1 and u be the unique solution of (1.1) such that
i fu(t) =Y e, (@ cit) I =0. (1.9)
7j=1,2

There exists g = £o(c1) > 0 such that if 0 < ca — 1 < gq then there exists cf >
ey > 1,p1(t), p2(t) and Ty, K > 0 such that

wh(t,z) = u(t, ) Z (;5 (1))
Jj=1,2

satisfies

im0 Ol ooy 1 eayy = 0 (1.10)
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1
E(@ -1)

o

1
<cf —c < K(eg— 1)%, ?(02 —1)° <ey—cf < K(ex—1)4,
(1.11)
1
?(02 = 1) < | opwt ()l L2m) + Vez — LlwT ()| 2@y < K(ea — D74, (1.12)
fort > 1Ty.

Remark 1.2. Because the mass and energy conservation, the Sobolev space H!(R)
appears to be an ideal space to study long time dynamical properties of (|1.1)).

Remark 1.3. The results of the Theorem mean nonexistence of a pure 2-
soliton in the regime. By and (L.10), we see that an asymptotic 2-soliton at
—oo cannot be an asymptotic 2-soliton at +o0o. We also see from that the
size of the large soliton increases and the size of the small soliton decreases through
the collision, with explicit lower and upper bounds. The bound in is thus a
qualitative version of nonexistence of a pure 2-soliton.

This article is organized as follows. In Section 2, we construct an approximate
solution to the problem in the collision regime. Section 3 is devoted to preliminary
stability results. Section 4 is concerned with the proof of Theorem

2. CONSTRUCTION OF AN APPROXIMATE 2-SOLITON SOLUTION

The objective of this section is to construct an approximate solution for the
gBBM equation with cubic nonlinearity, which describe the inelastic collision of
two solitons ¢, , ¢, in the case where 0 < co — 1 < gg is small enough. And
the approximate solution z(¢,x) does only exist in the collision region. Also, the
structure of z(t,x) and S(t) are more complicated than that of the BBM equation.

2.1. Reduction of the problem. Let

—1
a>1, A= clc— € (0,1). (2.1)
1
We make the change of variables:
t .32 A 1—A
@:AU%m—Tjjx b=t 2(3) =y ——ult). (2.2)

If u(t,z) is a solution to (I.1]), then z(#,#) satisfies
(1 = X\02)0pz + 02 (032 — 2 + 2°) = 0. (2.3)

Lemma 2.1. (i) Let ¢ > 1. By (2.2), a solitary wave solution ¢.(x — ct) to (1.1)
is transformed into Q4 (y,) which is a solution of (2.3) where

Qo(x) = V00,Q(Voz), Q(z)=v2cosh™ (x), (2.4)

c—1 1—A > | 1 A
= 0, = =(1-)\ XY, —=—_—_~ 4
TT T T );(”) 0, 1-x 1-A°
—1_0—1+()\—1) f:(A ) =&+ pot
Ma—l_)\o_— o 0)s Yo =T T HUol.

j=0
Especially, if c = c1, then uy =0, yo, = , Qo(yo) = Q(%) and
1
Q@ =@ (QP+3@'=Q" nR (2.5)
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(ii) Moreover, Q, satisfies the equations
Qo+ Q= 0Qu (@) + 5 Qh = 2. (26
For o > 0 small, we have
1Qc @ ~ VI = No Q@ Q2@ ~ V(1 =N |Qll2m), (2.7)

33/ (1 — /\)3/2 3\/ J
=—2 —ct+—). 2.
(Q5) (Yo +0) e (@) (z—ct+ ﬁ) (2.8)
The proof of the above lemma is similar to the proof of [20, Claim 2.1}, so we
omit it.

2.2. Decomposition of approximate solution. Firstly, we construct an approx-
imate solution z(t, z) of

(1= X030z + 0,(0%2 — 2+ 2°) = 0, (2.9)
which is the sum of the function Q(y), a small soliton Q(,(yg) and an error term

w(t,z). As in [20], we introduce the new coordinates and the approximate solution
of the form

Yo =T+ pot, Y=z —a(ys),

o) = [ Bdr, B = Y anio'Qhun) (2.10)
0 (kD)€
2(t,7) = Qy) + Qo (yo) + w(t, ), (2.11)
where
w(t,z) = Y o' (Ari(y)Q%(ys) + Bra(y)(@5) (vo)), (2.12)
(k,1)ESo
ZO = {(k7 l) = (17 O)’ (17 1)7 (2’ 0)7 (27 1)’ (37 0)7 (4’ 0)}’ (213)
Define the operator L by
Lf=—f"4f—3Q*f. (2.14)
Definition 2.2. Let M be the set of C* functions f such that
VjeN, 3K;, ;> 0, Vo € R, [fO(2)| < K;(1 + |z])7elol. (2.15)

Following formulas —, we set
S(2) = (1 = X020z + 0.(022 — 2 + 2°) = Smrav(2) + Senm(2),
Sumkav(2) = 0z + 0,(9%2 — 2+ 2%),  Seppm(2) = —A0922.
Then, it gives
S(z(t, 7)) = S(QY)) + S(Qu(yo)) + 6S(w(t, x)) + Sins(t, ), (2.16)
where
0S(w) = 0Smkav(w) + SgeM (W), 0Smrav(w) = Oyw — O, Lw, (2.17)

Sint(t7) = 0a(w? (£, 2) + 3Q* (1) Q0 (o) + 3Q(1)Q5 (v0) + 3Q5 (yo)w(t, 2)
+ 6Q(y)éa(ya)w(t7 ) +3Q(y)w’(t,x) + 3Q0(ya)w2(tv z)).
Since Q. () is a solution to [2:9), we get S(Qqs(ys)) = 0.
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Proposition 2.3. There holds
S(x)= ) 0'Qeue) (ara((A = 3)Q" = 3Q%) — (LAY + Fia) ()

(k,1)exo

D @) () (3 NAL +3Q2 Apy + ara(2X — 3)Q”

(k,1)ESo
— (LBy,) + Gk,l)(y) +e(t, x),
where
Fio=(3Q%", Gio=3Q"
Fii=0B-2N)A 0+ B-NB{y+ 3Q°B1o + A(A — 1)a1,0Q",
G171 = 2a170)\()\ — 1) H,
Fap = a10{(A—3)A7 g — 341,0Q% = 3Q°} + (3Q + 941,0Q)' + (3 — 2X)a3 ,Q",
Gog = ‘“ O {(6A—9)AL o + (A —3)Bly — 3Q*B1,)’

+ (331,0Q +341,0B1,0Q)" +3Q + 941 ,0Q + 5(1 - )\)a%,an~

In addition, the following statements hold:

(1) For all (k,1) € 3¢ such that 3 < k+1 < 4, then Fy,; and Gy depend on Ay 1/
and By p for 1 <k +1<2. Moreover, if Ay 1 is even and By o is odd, then Fy
is odd and Gy, is even.

(i1) If the functions Ag p and By o are bounded, then e(t,x) satisfies

le(t,2)| < Ko®20(Qo (y5)). (2.18)
Before proving Proposition [2.3] we give some preliminary lemmas on ¢,.

Lemma 2.4 (Identities of ¢.). For all ¢ > 1,

[ot=cre=nr [ @
/¢3=%(c—1)/¢3, J e =3 [ o
_/¢+/¢_20+1)1/2 1/2/Q2
m(se) = 5 (5(° /<z> e [ @

E(¢c) — em(ée) = 3 (c— 3/2 1/2/ Q2

(2.19)

d
E(¢e) = c%m(¢C) > 0.

The proof of the above lemma can be completed by a straightforward calcula-
tions.

Lemma 2.5 (Properties of L, [14, Lemma 2.2]). The operator L defined in L*(R)
by is self-adjoint and satisfies the following properties:

(i) by the first eigenfunction, then LQ? = —3Q?;

(ii) by the second eigenfunction, then LQ' = 0; the kernel of L is {c1Q’, c1 € R};
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(iii) if a function h € L*(R) is orthogonal to Q' by the L? scalar product, there
exists a unique function f € H*(R) orthogonal to Q' such that Lf = h.
Moreover, if h is even (odd), then f is even (odd).

Lemma 2.6 ([20, Claim B.1]). Let h(t,x) = g(y) = g(z — a(y,)), where g is a C?
function. Then we have

Oh = —11s8(yo)g' (),  uh = (1= B(y.))d (v),
92h = (1= B(ys))*9" (v) = Bys)g' (v),
0:0th = —p15(1 = B(Yo))B(Yo)g" (v) — 1o (yo)g' (y),
Bh=(1-PBys))’9" (y) = 3(1 = Be))B (vo)g" () — B" (vo) 9 (),

020:h = po{ (1= Blys)*B(ya)g" (v) + 36(4s)8 ()" (v)
~28(4s)g"(y) ~ B"(uo)g () }.
Lemma 2.7. Let A and q be C3-functions. Then we have
0Smrav (A(y)q(ys))
= a(yo){ (LAY (9) + Blyo) (~34" = BAQ? + (1 = 1) AY () = B (4o)(34") ()
+ B2 ) (BA™)(y) + (B) (BA"/2)(1)~B" (9 A'(y) — B* () A" (1)}
+ ¢ (o) {34" (W) + 3AW)Q W) + (o — VA(Y) — Blyw) (6A")(y)
(

= B'(ys) BA)) (y )+62(ya)(3z4")( )} +4¢"(yo) {3(1 = Byo))A'(y)}

+4" (o) Aly).-
Proof. Using Lemma we have

I(AW)q(Ys)) = 1o BWYo)A'q(Yo) + 1o Aq' (Yo ),
and

— 9. L(A(y)a(yo))

= 0, {(03A4 — A+ 34Q%)q(ys) + 2(8:4)q (yo) + Aq" (yo) }

= {0,(974 — A +3AQ%)}a(yo) + (974 — A+ 34Q°)q (y5)
+2(024) (yo) + 3(0:A4)q" (yo) + Ad" (y5)

= q(ya){(l — Byo))* A" = 3(1 = B(yo))B (ys) A" — B (yo) A" = (1 = B(yo)) A’
+3(1 = B(y))(AQ?) | + (9 {3(1 = Blyo))?A” — 35'(y5) A" — A+ 34Q%)
+ 4" (yo) {3(1 = B(yo)) A"} + ¢ (yo) A

Combining the above equalities, we complete the proof. (I
Lemma 2.8 (|20, Claim B.3]). Let A and q be C*-functions. Then we have
Sgnem(A(1Y)q(yo))

= Mioa(yo) {Buo) A" (y) + B (o) 2A" (1))} + Atoa(yo){ 520 ) (24" (1)
(8 (5) (=347 /2) () + 8" (o) A'(y) + B () A" (1) }
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M (00){ = A7(0) + Bluo) (LAY )+ () (BA) ) + (30 (~34")(0)}
+ Mioq" (o) {—2A"(y) + B(ys) BA) (W) } + Moq” (yo) (—A) ().

Lemma 2.9. Let
B = a1,oQa + 01,10Qo + az,o@i + 02,1062(2, + as,o@i + a4,o@§~

Then
B = a1,0(Q0) +a1,10(Q0) + a2,0(Q2) + a2,10(Q3) + as,0(Q3) + a10(Q3)',
B =0Qoa1,0 + Qg(*%) +0Q2(4az,0) + Qa(— fafg\)
)\Cl1,0 M1 %

+9as,0) + 02Q0a171 + (22(—

33 5/2 (A

B = aig@i + 2a1,0a2,0Q5 + 2a1,0a1,10Q% + (2a1,0a3,0 + a;O)Qi
+ (2az2,0a3,0 + 2(11,0(14,0)623 + (2a1,0a2,1 + 2a1’1a2’0)06~23 + US/QO(QJ)»
(B%) = af o(Q3)' + 2a1,002,0(@3)" + 2a1,0a1,10(Q3)" + (21,0030 + a3 0)(Q3)'
+°20(Q,).
In the next four lemmas, we expand the various terms in .
Lemma 2.10. There holds
S@= > o (Qhwoac{(r-3)Q" - 3Q°} )

(k,1)exo

+(Q4) (wo)ara (A — 3)Q" ()

(2.20)
+ Y o (Qhw) L) + (@) 0)GLi)
(k,1)eSo
+0°20(Qq (yo)),
where
Fly=0, Gi,=0, F{;=MA-1)a10Q", Gi;=2a10AA—1)Q"

3
le,o =(3- 2/\)a§,0Q’”, Gé,o = 5(1 - A)a%,o "

and for all (k,1) € ¥ such that 3 < k+1<4, Fk[)l € M is odd, G,ICJ € M is even
and both depend only on ayr p for 1 <k +1' <2.
Proof. By Lemma let A(y) = Q(y) and ¢ = 1, then
Smkav(Q(Y)) = 0Smkav(Q) — 0:(2Q%)
=(Q"—Q+ Q% + B(y,)(-3Q" - 3Q°
+ (1= 16)Q) = ' (y5)(3Q") + 5(y5) (3Q") + (8)'(3Q" /2)
—6"(yo)Q' — 5 (y5)Q"".
Using Q" = Q — Q* and (2.4), we find
Smkav(Q(Y))
= Bys)(—3Q" = 3Q%) — B'(y,)(3Q") + B°(y,)(3Q") + (%) (4,)(3Q" /2)
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—0B(yo) A= 1)Q = 8" (Y5)Q = 8’ (y)Q" — (A = DA*B(ys)Q'
+0°20(Q0 (ys))-
By Lemma and , we have
SeeBM(Q(Y))
= Mo { Blyo)Q" + B'(45) (2Q") + Ao )(—2Q") + (8% () (—3Q" /2)
+ 8" (5)Q + B (5 Q") }
= B(ys)AQ") + B'(45) (2AQ") + B (45 ) (—=22Q"") + (8%) (o) (=37Q" /2)
+ 0By )AA = 1)Q" + 08 (ys) {2A(A — 1)Q"}
+ 6" (4s)AQ") + 5y ) (AQ"™) + 05 (Y )AA — 1)(—2Q"")
+0(8%) (yo)AA = 1)(=3Q"/2) + 78" (ys)AA = 1)Q’
+0°Byo) N’ (A = DQ" + 0B (yo) N> (A = 1)(2Q") + 0°* Q0 (ys)).-
Combining the above discussions, we deduce that
5(Q)
= Blys) {(A =3)Q" = 3Q%} + 8'(y,) (22 = 3)Q" + B (y5) (3 - 2)Q""
+ (0% (o) (1 = N (BQ"/2) + 8" (yo) (A = DQ" + 0B(ys) A — N {AQ" — QY
+ 00 (o) 22N = DQ"} + (o) (A = DQ" + 7 8% (y5) A(A — 1)(—2Q")
+0(8%) (yo)AA = 1)(=3Q"/2) + o 8" (ys)A(A — 1)Q’
+0%B(y) AN = DOAQ" = Q) + 05 (4 )N (A = 1)(2Q") + 0°20(Qs (y))-
By Lemma we derive
5(Q)
= Qo(yo)aro {(A = 3)Q" = 3Q°} + Q. (yo)ar 02\ — 3)Q”
+ Q% (ys) (az,o {(A=3)Q" -3Q°} +(3- 2)\)a§70Q”/)
Q2 (o) (a20(20 - Q" + %(1 ~N)ad @)
+ 00, (ys) (a1 A =3)Q" —3Q%Y + A\ — 1)a,1,oQ”')
+0Q5 (o) (a1,1(2X = 3)Q" + 2A(A — 1)a1,0Q")

Y o (Qhwar {(A - 3)Q" = 3Q%) (1) + (Q5) (wo)ara(2A ~ 3)Q" ()
3<k+1<4
+ o' ( Q5 (yo) Fiy + ( (yg)le) +0°20(Q0 (yo)),
<k+I1<4

for 3 < k+1<4, FkI’l € M and Gé,l € M are as in the statement of Lemma
2.10 O

Lemma 2.11. There holds
dSmKav(w)
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= > o (Qk Yo ) (—LARD) () + (Q2) (yo) (—LBiet)' + A7, +3Q%A)(y ))

(k,1)eZo

+ > o (QEwa) P W) + (@5 ) GEAW) ) + 0720(Qo (o)),

(k,1)EXg
where
Fli=0 Giy=0 F=3A4,4+3B{;+3Q°B1o, G =0,
_3a1,0

F2I{) = a1,0(—3A7 () — 341,0Q%), Gé,[o =5 (34T, + (B y + Q*B1y)') .

For all (k1) € ¢ such that 1 < kK +1' < 2, Flg and Gill depend on Ay and
By for 1 <K +1' < 2. Moreover, if Ay v is even and By is odd, then F,fl 18
odd and GI{I s even.

Proof. Note that
OSmcav (@) = D 0! (S mkav(Ari (1) Qo (Yo)) + S mrav(Bra(1)(@o)' (4)) )

(k,1)€X0

By Lemmas [2.7 and we have
6Smiav (A1,0(¥) Q0 (Yo))
= Qoluo){ — (LAL0) +01,0Q0 (5) (=347 = 341,0Q%) = a1,0Q, (4,) (347 )
+ a2 0Q2(5) (3A10) b + @ (90) {3470 + 341,007 = 01,000 (o) (647 ) }
+ QY (yo) (BAL ) + 032 0(Q0 (yo))-
Using (Q,)%(ys) = 0%/20(Q,(y»)), by ([24) and (2:6), we have

Qi (ys) (341 0) = (0@ () - m@i‘;<yg>)<s’>A;,o> +0%20(Qo ())-

Thus, we get

5SmKdV (Al,O(y)QU (ya))
= Qo (Yo)(—LA10) + QL (ys) (BAY o + 341 0Q%)

+ Q) (n0(~3A% o — 3410@7)") + (B2)' (o) (~ 1,047, )

+ Q3 00) 303 0 ATy — S0 4 Q0 (1) 34 )
+5*20(Qo o).
We study §Smxav (B1.0(y)Q" (y,)) in a similar way:
Smiav(B1,o(y)Q) (ys))
= Qo) { ~(LB10)' + a10Q0 (o) (=381 — 3B10Q%)}

+QU(Yo)3BY o + 3B1,0Q%) + 0*20(Qs (yr))
(*331’70 — 3317()@2)')
2

= Q4 us) (~LB1o) + (Q2) (yo) (1,0
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- . 3B" 4+ 3B Q> .
+ Qo) 3By + 3B10@") + Qo) (- DY 4 920(0, 4,)).

The proof is complete. O
Lemma 2.12. There holds
SgpBM (W) = Z Ul(@ﬁ)/(yo)(_)\fl%,l)(y)

(k,1)€X0
+ > (@) B ) + (@5 )G ()
(k,1)EX0

+ ‘73/20(@0(90))-

where
R =0 Gl =0 FY = oa, - ABY, G =0
A
le,{)j = Aa1 047, Gé,lol = 3Xa1 047 + 7(12170 BY%.

For all (k,1) € 3o such that 1 <K +1' <2, F[i" and G} depend on Ay v and
By for 1 <k +1' <2. Moreover, if Ay is even and By v is odd, then F,ﬁl is
odd and Gﬁll is even.

Proof. By definition, we see that
Sompu(w) = 3 o' (Sumar(Aka(®)Q5(w,)) + Sempa (Bra@)(Q5)(5,))) -

(k,1)EXo
It follows from Lemma and ([2.4)—(2.6) that
Sy (A1,0(Y)Q0(Yo))

= Mo Qo (o) {Ba) ATy + B (ys) (247 o) + B (ys) (—247) }
+ Mo @l (Yo) { =AY o + Blyo) (AAT o) } + Mo QU (Y5 ) (—241 o) + 02 0(Qs (y5))
= 2Q0 (o) {01,0Q0 (5o ) AT + a1.0@ (40) (247 0) + a3 @2 (y0) (—2477) }
+ 2@, (o) { AT+ 01,0Q0 (5o) (44T ) | + AQ (40) (241 ) + 7%/20(Qo (1))
= Qb (o) (~AAY o) + 0Qa (yr)(~27AL ) + Q2 (yr) (a1 0 AT
Q2 (o) (BAa1 04T o) + B (00) (200} o AT + o AL o) + 0¥20(Qs 1))
Similarly, we can derive that
SeBBM(B1o0(1)Q5 (Ys)) = AQ, (o) a1,0Q0 (o) By + AQ (yo) (—BY o)

- ~ A
= 0Qo (s (-ABYp) + (@) (u0) (S22 L

N A N
+ Qo) (725 Blo) + 0/ 20(Qa (u)).

In view of 2 < k + 1 < 4, we have
SeBBM(0'QE (Yo) Ak (1) = 0(QF) (o) (—AAY) + 0*20(Q0 (y5)),

Sy (01 (QF) (Ys) Bra(y)) = 0*20(Q0 (ys))-
The proof is complete O
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Lemma 2.13. There holds
Smilw) = > o' Q) F (1) + (Q8) (o) G 1)) + 020G (06)).

(k,1)ESo

where

Rl =(8Q%, GY5=3Q% R =06 =0,

Fi% =3Q" — 3a1,0(Q%) + (941,0Q),

G =3Q + 941,0Q + (3B1,0Q)" + (3410B1,0Q) .
For all (k,1) € 3¢ such that 3 <K' +1' < 4, F,;nlt and G}g%, depend on Ay yr, By 1
for 1 < K +1 < 2. Moreover, if Ay 1/, are even and By are odd then F]:)I,llt are
odd and G}}} are even.

Proof. By a direct calculation, we have

0 (w”) = 0,(A3 0 (1) Q3 (o)) + */20(Qs (1))
= (1= Bye)) { (430 Q2(90) } + 020 Qs (1))
= Qi (yo) (A ) + 020G (yo)),

9:(3Q%Q0 (yo) +3QQ% (yo))

= 3(1 = Bys)) { Qo (40)(@%) + Q2 () Q' | +3Q%(Q0) (us) + 3Q(Q2) (o)

= Qo (y0)(3Q%) + (Qo) (4 (3Q7) + Q2(y0) (3Q' — 3a1,0(Q%)')
+(Q2) (1) (3Q) + @ yo) Bar.0Q),

830(3623(3/0)“)) = Qi(yo)(3A’1,o) + US/QO(QU(yU))7

and
02(6QQ0 (yo)w)
= 0,(641,0QQ3 (yo) +3B10Q(Q2) (ys))
= Q2 (y5)(641,0Q) + (Q2) (ys) (641,0Q + (3B1,0Q)") — Q3 (ys) (6a1,041,0Q)’
+0%20(Q0 (yo))-
Thus, we further get
9:(3Qu?) = 0, (3141,0@@(27(%) + 3141,03170@(@3)/(%))
= Q2(ys)(341,0Q)" + (@2)' (yo) (3QA1,0B10) +341,0Q)
+ Q2 (y0)(—3a1.0(A1.0Q)") + 0320(Q, (yo ),

895(3@0(?;0)102) = Qi(ya)@A/l,O) + 03/20((20@0))-
By Lemmas and Proposition we obtain explicit expressions of Fj
and Gy, for 1 < k41 < 2. immediately.

By Proposition if the system, ,
(LAg1) = ap (X =3)Q" = 3Q%) + Fi
(LBiy)' = (3= NA{, +3Q*Apy + ari(2A — 3)Q" + Gy
is solved for every (k,l) € o, then S(z) = &(t, ) is small. O

(2.21)
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2.3. Explicit resolution of system (2.21)). In this part, we consider (2.21]) with
k=1and ! =0. We look for explicit solutions of the form

Apy = Aps+v61, Bri= By +brio, (2.22)
where flk,l € M is even and Bk,l € M is odd. Let
Py = gQ—F?xQ/, P=P = gQ—FxQ'.
So we see that
LP=-2Q—-@Q% LPy,=((A-3)Q"—3Q%. (2.23)
Lemma 2.14. Assume that and (ag,1, Ak, Br1) satisfy . Then

o i il [ e [ [ ).

Proof. Multiplying the equation of By ; by @ and using LQ' = 0 gives

ak,l(Q)\ — 3) /R (Q/)z = A ((3 — )\)Q” + 3Q3)Ak,l + /R Gk)lQ

__/(LAkyl)PAJF/Gk,zQ

Then, multiplying the equation of Ay ; by fo Py (y)dy yields

/(LAk,l)l/ Py = */ (LAk,l)PA+’Yk,l/PA
R 0 R R
:—akJ/(LP)\)P)\%-/FkJ/ P.
R R 0

By combining the above two identities, we obtain

ak,l{(2)\_3)/]R(Ql)2+/]R(LP/\)P)\} Z—W’k,l/RP,\-F/RGk,lQ-F/RFk,l /prm

which leads to the formula of a ;. According to Lemma

au{@r -3 [@7+ [ o) =, 290D [@ e
O

Lemma 2.15. The following is a solution of (2.21) with k =1 and [ = 0:
—6A Jp @°

a0 = PR
A=3)(A=17) [Q

Proof. Recall that from Proposition Fi o= (3Q%) and Gy = 3Q*. Thus from
Lemma [2.14] we obtain

3 3—-A
Ao = al,O(iQ + TI'Q,) - Q>

12 B —6) @
MO N7 /Q3 /QSPA T O3 -7 fi@’z
(2.25)

Integrating (2.21) with (k,1) = (1,0) gives
LALO = a170(()\ — 3)@” — 3@3) =+ 3Q2, (2.26)
(LB1,) = (3= NAY o+ 3Q%A1,0 + a1,0(2X — 3)Q" + 3Q°. (2.27)
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Since L(—Q?) = 3Q? and LP\ = (A — 3)Q" — 3Q3, we have

Ao = a1,0P\ — Q7 (2.28)
where Py = (3Q + @)x@’ O
2.4. Resolution of Systems (2.21) for 2 < k+1 < 4.

Proposition 2.16. Let F' € M be odd and G € M be even. Let v € R. Then,
there exists a,b € R, A € M being even, and B € M being odd such that

A=A+~ B=B+bo
and satisfy
(LA) +a((3-NQ" +3Q%) = F

(LB) +a(3 — 20)Q" — (3 — N A" —3Q%A =G. (2.29)

Proof. Using (L1)" = (1—-3Q?)" = —3(Q?)’, we obtain A and B, respectively. Since
F e Misodd, and H(z) = ffoo F(2)dz+ 3vQ? belongs to M and is even, We have
LA+a((3-0MQ" +3Q% =H,

(LB) +a(3 —2M)Q" — (3 - NA" —3Q*A = G + 3yQ* — b(Lo)'.

Since [, HQ' = 0 and H € M, by Lemma there exists H € M such that
LH = H. It follows that A = —aPy + H is even, and belongs to M. O

We need to find B € M be odd, such that (LB) = —aZy + D — b(L¢)’, where
D=(3-NH"+3Q*H +G +3yQ* ¢ M,
Zo=(3-20)Q" + (3— NP +3Q*P) € M.

Let
x
E = / (D —aZy)(z)dz — bL.
0

Since
oy ne _(A=3)(A=T) 2
Az@_@A:yé@) Aumma_—gifngQ¢a

if we choose a = [, DQ/ [, ZoQ, and b = 0+°° (D — aZy)(z)dz, then we have the
following lemma.

Lemma 2.17. There exist a and b such that E € M and fR EQ =0.

2.5. Recomposition of the approximate solution after the collision. Let
1 < ¢y <cp, where 0 < cg — 1 < g is small and set

C1 — 1 Cy — 1
A= = .
C1 ’ 7 Cz)\

Consider the function z(t, z) defined by (2.10)-(2.13)), where for all (k,1) € 3, a.,

Ay, By, are chosen as in Lemmas and [2.17] Set
1 c—1
~100 =
( cA

1
6(1— )

Te =0

=

)f%fﬁ’ d(X\) = bz o(\) + bio(N).  (230)
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Lemma 2.18. There holds: for allt,,, z(t,x) = z(—t, —x),
(1= X02)Dyz + 05(322 — 2+ 2%) || w) < Co TV,
(1) = { @& = 30) + Qo o+ o — 360)
A (@3Y (a4 oo — 50) Hliscey < O™,
Jo(=7) = { @+ 30) + Golw = pms + 360)
AN (@ — o + 20) Jlimrcey < Co®',
where

§ = Z CLkJO'l / in, 5171 = b1,1 — (1/6)()?70, 06 = 2(()1,0 + 0'8171).
(k,[)ESg R

15

(2.31)

(2.32)

(2.33)

(2.34)

Proof. The symmetry property z(t,z) = z(—t, —x) follows from (2.10)—(2.13]), since
the transformation x — —x, t — —t gives y, — —y, and y — —y. Note that ay,

Ak 1, B € X solve Q. , and S(z) = (¢, z). It follows that
IS®ll @ < Co*2Qolli@ < Co.
To prove , we begin with some preliminary estimates
lae($)llzoemy < C, [l ()l Lo ry < CVo
For t = 75, f € M and the small ¢ > 0, we have
1f ) Qo (Yo )|l 1 )y < C™®,
Q) — Q& = 3l < Co™
To prove , by the definition of Q, (see Lemma , we have
0<Q,(z) < Cyoe Vol vz eR.

(2.35)

(2.36)

(2.37)

(2.38)

Let f € M, so that |f(y)| < C|yle”!¥ on R. Note that t = 7,, since p, > 1/2, we

have
1 1
\E‘yal > \E(MUTU - |y‘ - |Oz(yo.)|) > 50 100 — \/E|y| - L
Thus, by (2.38)),
Qo (Yo f(y)|? < Coe™ ™ |yPre 2Vl < Cemo 10 eIl

Using [, e~ Wldy = Jz e“y|#y(ya) < C, we obtain
~ _1,-1/100
Qo (Yo ) f(Y)llL2r) < Ce™ 2

< Col

Fort =1, and x > —7,/2, we have |a(y,) — 26| < Ko'0. Indeed, |a(y,) — 30| <

C’f;oo QU < Ce V7Y% holds for t = 7, and = > —%Tg, so we have y, > i

1
L
50 e VYo < 737 0 < Co10 For t = 7,, we get

1
1Q(y) — Qx — §§)||H1(r>—%7—,,) < Co™.

T, and
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To prove (2.37)), it suffices to use the decay of ). Note that if x < _%7—0’ since
la(ys)| <1, we have y < _%7—0 +1 and

1
||Q(y) - Q(LL' - 56)||H1(I<7%‘r§)

1
<R (y<—grasry + 1R = 501 (< 37,y < C™?

From the expression of z(7,), the structure of the functions Ag;, By, as well as
limy, . &(y) = —1, we have

||Z(7'a) - {Q(y) + Qs — bl,OQZT + ’72,0(23 — bz,o(@i)/ + ’Y1,1GQ0
—b110Q, — b30(Q2) + 73,0Q5 + 72,10Q% + 74,0Q§}HH1(R) < 0o

Note that 0%/4 corresponds to the sizes of by 10(Q2)" and by o(Q%)" in H'(R), where
ba,1 and b4 are bounded.
Let us expand Q, (Yo — b1,0 — ob1,1) and (Q2) (yo — b1,0 — ob1,1) up to the order
i3 . 1
o4 in H'(R) as:

Qo (yo — b1,0 — 0b11) — {Qo —b1,0Ql — b110Q),
1 ~ 1 ~
+ 5820@s = 20800 Hl ey < Co,
1(Q3) (o — bro — ob1,1) = (Q3) |l 1 () < Co®/™. (2.41)
By (2.40) and (2.41]), we have
. . PV U . 1 - P
Qr=0Qs — 7 @5+ 75005, QY =0Q, — 7—(Q3) +010(Qo).

and

(2.39)

(2.40)

1{ Qe v = br.0 = ob1.2) = AN (@) (s = br0 — o)}
{ o — b1,0Ql + (1/2)b3 00Q0 — (b1 + (1/6)b5 1)o@, (2.42)
= (82.0/20 = @2 = b0 (Q2) | sy < Co*/.

Combing (2.38)), with yields
[|2(75) — {Q(y) + Qo — b1,0Ql +72,0Q2% — b2,0(Q2) +71,10Q0 — b110Q),
—b3,0(Q%) + 73,0Q% +72,10Q% + 74,0Q§} ||H1(R) < Co?/*,
[|2(75) — {Q(y) + Qo (yo — b1o — obr1) — d(N)(Q3) (Yo — b1o — 01 1)
+ (711 — (1/2)17%,0)0@0 4+ (=byg + b1+ (1/6)b§,0)0Q; +72,0Q2 — bao(Q%)
+72,10Q% + (13,0 + (B 0/2(1 — X)) Q3 + M@Qg} sy < Co¥/4.

By choosing

1 - 1.
Y11= ibfo, by =bi1— 517?,07 Y2,0 =0,
bt

L0 _ =0
21— AT

bao =0, 71=0 730=—
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together with (2.35)), we arrive at (2.32)). O

2.6. Existence of approximate 2-soliton solutions.

Proposition 2.19. There ezists a function zy of the form (2.10)-(2.11) such that
for allt € [—75,7,],

(1 = XN02)Dyzpe + 00(022 — 2 + 25) | 1 ) < Co™/4, (2.43)
|2(70) = { Q& = (1/2)8) + Qo + 1075 — (1/2)35)
- 2d<A><@3>’<x + 170 = (1/2)50) |

-l (7o) = {Q + (1/2)0) + Qo (@ — ptomo + (1/2)5) s ) < Co™/%,
(2 44)

where for all A € (0,1) and d(\) # 0,

—6A(1 — M)/ ( fQ .
- < Col'/? — 20y 9| < Co. 2.4
Making the change of variable (2.2)), we define
A < (1—N)3/2
1-— )\ co—1 1 1 1—X . 1
T= PP =( o )"27 100 ( 3 JATO0 (2.47)

From the above proposition, we have the following result.

Proposition 2.20. For a positive constant C, the function v defined by (12.46)
satisfies

(1= 0200 + 0,0 + v¥) ey < Clea — P2, Vi€ [-T.T),
1 1
|o(T) = {¢e, (@ — ar T — 3A1) F e, (¢ — T = SA,)
1 1
—2D(¢? ) (@ — 0T — ng }HHl ® T Hv(—T) —{¢e,(x + T + §A1)
+ ey (x + T + AQ }||H1 <K(2—1)9/4
where for all ¢y > 1, D = D(¢1) # 0, and

—6A(1 = NV2 ([ Q)
A=3)A=T7) [g

To prove Propositions and [2.20] we see that the first estimate is a conse-
quence of

’Al N Q2 ‘ <C(c )1/27 |[Ag —2b1 0| < C(ca —1). (2.48)

)\2

(1= 92)0w + 0u(v +v%) = m{(

1 —X02)0;z + 0:(022 — 2+ 2%)}.
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Since ﬁ@c,(yg +0) = ez —ct+ fé) for ¢ = ¢; or ¢z, we have

QU 9) + Qo+ oo — °0) — 2NV (& + oo — )

2
o e (ORCETX SEUSEEERN SPLS

VA 2v/A
(1—N)3/2 So
— 25— (90,) (w — e T - ﬁ)}’
Q(‘% + é) + QU(CE — UeTo + %50)
1—X 0 0o
\ {¢01(x+clT+2\/X)+¢C2( 2\/X)}

Using these identities and the estimates for 2z, we complete the proof of Propo-
sition [2.20l Let

za(t,x) = 2(t ) + wa(t,x), wg(t,x)=

where P is deﬁned in (2.23).
To prove , we replace z = zx — wy in and obtain

—d(N(@Q3) (y) (1 = P(y))

2 (ra) — {Qw—%%w%@+mn—15)

5 o
- d()\)(Qi)/(aﬂ + UoTo — 550)} — (7o)l r) < Co?/1,
Using (2.36) (P € M) gives

Hz#(Ta) - {Q($ - %5) + Qa(m + HoTo — 150)

2
—2d(A\)(Q3) (& + poTo — 550)}”111(11{)

~ 1
< Co?/4 + ||d()\)(Qg)/(x + Ty — 5(50) — w#(Tg)HHl(R)

< 00"+ O(@) (w — 50) — (@)

R) < 00'7/4.
Similarly, we have

et (~7) QU + 50) + Qo — oo + 565)

—wy (7o)l m ) < 009/47
so that

+AN)(@EY (@ — s + 500))

lz4(=75) = {Q(z +

- 1 -
< Co¥t + CI@S) (w+ 50) — (@) lmrcwy < O™/

Note that ([2.45) is a consequence of ([2.34]).

To prove (2.43)), we let
S#(t7 Z‘) =

l\.')\»—l

~ 1
6) + Qa(x — HoTo + 560’)}HH1(R)

—

(1= X02)0r24 + 00 (022 — 240 + 25)
= S(2(t,2)) + 3S(wy) + 0:((2 + wy)® — 2% = 3Q%wy).
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We claim that
165 (wg) || pr1my < Co™™. (2.49)
It follows from Lemmas and that, the lower order term in dS(wy) =
8SmKav(wy) + Syppm(wy) is d(A)(Q2) (ys) (L(1 — P))'. This term is controlled
in H'(R) by ¢7/*. Note that
102 ((2 + wy)® = 2° = 3Q%wy) || 1wy < Corl. (2.50)

This follows from the expressions of z and wx.

3. STABILITY OF 2-SOLITON STRUCTURE

3.1. Dynamic stability in the interaction region. For any ¢ > 1 sufficiently
close to 1, we consider the function zx(t) of the form

2(03) = QW) + Qo) + Y ' (QE(Wo) Ari(y) + (QF) (o) Bra(v)),
(k,1)exg

which is used in Proposition [2.19 (recall that y,y, are defined in (2.10)). As in
Proposition 2:20] we set

A s
v(t,z) = - )\z#(t,x)

= ¢, (Y1) + Pey (y2) (3.1)
+ Y ek, (w2) Aka(yn) + (65, (v2) Bra () },
(k,D)eSo
where
Yo =x —cat, Y= % =x—cat—a(y), a(y2)= %a(\f)\yz),
- 1—-X 1 ~ 1—-AX 11 (3.2)
Ari(y1) = (T)ijk,l(ﬁyl)v Bra(y1) = (T)k*5 \[\Bk,z(\ﬁ\yl)-

Now, we set

S(t) = (1 —0%0w + 0, (v +v*).
Proposition 3.1. Let 8 > 1/2. Suppose that there exists g > 0 such that the
following holds for 0 < cy —1 <eg and allt € [-T,T],

co —1)7
IS0 sy < 16222 (33
and for some Ty € [-T,T],

w(To) = v(To)llmrwy < K(cz —1)%, (3.4)

where u(t) is a H'(R) solution of (1.1)). Then there exist Ko = Ko(0,K,\) and a
function p : [-T,T] — R such that, for all t € [-T,T),
[u(t) = o(t, @ = p(t)) |y < Kolea = 1)%, |0 ()] < Kolea —1)". (3.5)

Proof. We prove the result on [Ty, T]. Using the transformation z — —z, t — —t,
then the proof is the same on [Ty, T]. Let K* > K be a constant to be fixed. Since
w(To) — v(To) || (r) < K(cz —1)%, by continuity in time in H'(R), there exists
T* > Ty such that

T* = sup {T1 € [To, T |3r € CY([Tp, T1)) :
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supu(t) = v(t,x = r(O) ]l my < K (ez = 1)° }.

te[To,T1]
O
Next we give some estimates related to v.
Lemma 3.2. There holds
1(1 = 02) (B + 18,0) (1) | Lo m) + 107 0Z0(t) + 10,050 (8) || L= () (3.6)

< K(ep — 1)V,
1050(t) + c10,0(t) + (c1 — e2)& (y2)dl, (y1) |l r2ry < K(c2 — 1%, (3.7)
|0¢v(t) + c10:0(t) + (c1 — c2)& (y2)br., (Y1) || Lo (r) < K(c2 — 1), (3.8)

1020 — &L, (1)l L2y < K(ca — 1)'2, (3.9)

)

168" (o) o ) + ——7 18 (w2l ) < K ez~ 1). (810

Cy — 1
Note that these estimates are consequence of the (3.1)).

Lemma 3.3 (Modulation). There ezists a C* function p : [Ty, T*] — R such that,
for all t € [Ty, T*], the function £(t,x) defined by e(t,x) = u(t,z + p(t)) — v(t, z)
satisfies

[ et - e, )iz =0, vt (1,1,
R
and for K independent of K*,
le@) @ < 2K*(ca —1)%,
p(To)| + le(To) || g wy < K(ca —1)7, (3.11)
/'O < Klle®)llmz) + KNS @)l -
Proof. Let
(W) = [ W) =t =), ()i
Then
GO = [ U - e, (),
so that from Lemma [3.2 (see(B.9)), for (c; — 1) small enough, we get
0
5 00,0 = [ @.0)(t.2)(1 = 02)(0L, (1)
> [ (@) + (@1, Pldn = Kea = V2
R
1 1\2 /I \2
> 5 [ 16007 + (of, Pl

Since ¢(v,0) = 0, for U is near v(¢) in L?(R) norm, the existence of a unique p(U)
satisfying ((U(x — p(U)),p(U)) = 0 can be seen by the Implicit Function Theorem.
From the definition of 7%, it follows that there exists p(t) = p(u(t)), such that

Uz = p(t)), p(t)) = 0. We set
€(t, l’) = ’U,(t, -+ p(t)) - ’U(t, $)7 (312>
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then [;e(t)(1 —82)(¢l, (y1))dz = 0 follows from the definition of p(t). Estimate
follows from the Implicit Function Theorem and the definition of K*. More-
over, since ([3.4)), we have |p(To)| + [le(T0)| 2 (r) < K (c2 —1)?, where K is indepen-
dent of K*.
To prove
0] < K@l + KISO @, (3.13)
by the definition of £(¢), we have

(1 — 020 + 0l + (e +v)% — %)
—[(1 = 020w + 9 (v + )] + p () (1 — 02)0x (v + €) (3.14)
=—S(t)+ o' () (1 — 020, (v +€).
Since [; e(t, 2)(1 — 82)(¢l, (y1))da = 0, we have

d

0= /. e(t)(1 = )9, (y1))d

- / (1= 82)0he(1)](6, (1)) + / £(1)(1 — 02)[0460, (1)
R

/8 (e + (e +v)2 =3 o, (y1) /S v (1)
R
L) / (1 - 82)8u(v + )., (41)

/R e(1— 82)[—crd” () + cad ()", (40)]

Integrating by parts, we have

J(t) / (0 + (L — 82)0, (6, (1)

/ S(t)ee, (y1) / e((1+ €% + 3ev + 30%) (0,0, (11)] (3.15)
(1= 02)[—c19), (y1) + c2d (y2) bl (y1)]),

and so

0 (t) /R (v +e)[(1 = 02)0:(¢0, (W) < Cllle 2@ + SO 2@)-  (3.16)
it is not difficult to check that

/R (0 +2)[(1 — 82)0, (8%, (1))
- / (1 02) (6 () ][0 (6, (31))] + / (0= ey (02) + (1 — D)0 (%, (1)),
R R

and for co — 1 < g small enough,

- / (1= 02)(6er ()0, (01))] > —> / (6o — )0
R
3 / 2 Ui 2
- 1 \/]R ((2501) + (d)cl) > O’

so that
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holds for co — 1 < g¢ small, and (3.13)) follows from (3.16)). O
Lemma 3.4 (Control of the negative direction). For all t € [Ty, T*], there holds
¢c yl dx
’/ ' | (3.17)

< K(ez = 1) + K(co = D)Y|e(t)l| 2wy + Klle(®) 13 ®)

Proof. Since v(t) is an approximate solution of ([L.1)), m(v(¢)) has a small variation.
Indeed, by multiplying the equation S(¢) by v(¢) and integrating, we obtain
d

M) = |/RS(t,$)v(t,$)d$\ < KISl 2wy

Thus for all t € [To, T™],
Im(v(t)) —m(v(Ty))| < KT supT] 1S wy < K(ea —1)°. (3.18)

Since u(t) is a solution of (L.1)), we have
m(u(t)) = m(v(t) +5( )) = m(u(Ty)) = m(v(To) + £(To))- (3.19)
By expanding (3.19), and using and - we derive

2| / (1 — 82)(t))e(t)

< K(ez— 1) +2] / (1 = 2)o(To))e(To)] + (o) gy + IO g
< K(ez = 1" + e(t) 3 x)
Using this and ||(1 - 92)(0(t) — b, (31))l| 2 < K (e — 1)/4, so we obtain

[ =01~ )0, )i

<|/ (1= B2)(0(6) = 6 ]| +| [ =(0)((1 ~ B2)u(e)

< K(ez = 1) + K(co = D)V Hle()l] 2 ) + Klle(®) 1 2)-

Set

1

F) = 5 [ (e =16+ x(0ue)? = J(w+e)* -t = 20%9)

+yla—en) [ @@ + ).
O

Lemma 3.5 (Coercivity of F'). There exists ko > 0 such that for ca — 1 small
enough, there holds

2
IOl ey < oP(0) + ko] [ O =000 ()da| - 320
The proof of the above lemma can be found in [6] [14].
Lemma 3.6 (Control of the variation of the energy functional). There holds
[F'(0)] < K(c2 = Dle®)llin @ + Klle®lm @ISOl @), (3.21)

where K is independent of co.
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Proof. First, we compute
F(t) = /R(atg) ((c1 — 1)e — crege — (v + ) —v%))
- @) 30+ Ger = e {-ea [ @)+ 2

R
+ [ @wane + )
R
=F + I+ Fs.
We claim that

’Fl Y Ey— (p’(t) / £[(1 — 82)(Bpv + c10,v)] — / (€% + 3ve2) (B0 + clﬁrv)>
R R
< Klle@®)llLz@) SOl mr w).

(3.22)
and

B = (e = e {p/(0) [ el - )@ )0, )] ~ [ (24308 )k, )|
R R
< K(co — 1)H€H%{1(R) + Kllell g @) 1S @) || 1 (r)-
To prove (3.22), using the equation of €(t) (that is (3.14))), we find

F=c /Re((l —03)0se) — /R () (e + (v +€)® —v?))
_ 01{/R (=00 (e + (e + v)* — o))e — /RS(t)s + @) /]R (1 )0, (0 +2))e}

+ / [(1—0%)710u(c+ (e +v)2 —v®)](e + (v + €)% —v?))
R

(3.23)

+ / (1 - 82) 7 S(D](e + (v + ) — o)
R
() / Ba(v + (e + (v + &) —v%)),

o / S(00) — Ser / £2(0,0%) — ¢ / S(t)e + 1/ (1) / [(1 - 02)0, (v)]e
g2y-1 v 3 _ 03 — v / 3.
+ / (1 - 83 L8(D)](e + (v +2)* — %)) — 4 (1) / (Bs0)e + 0/ (1) / (922)

Thus, we have
|F1 - <701 / 53(81”0) — §01 / 52@6(@2)) er/(t) / 6595(01(1 . 33)1) - 03)|
R 2 " Jr R
< Klle@)l 2@ ISl 2 m)-
Using S = (1 — 92)9v + 0, (v + v*), we find that
= (e [ 00) - Ger [ 20.0%) +0(0) [ cl1 - B)Ow + 0,0
R 2 Jr R

< Klle@®)ll 2@ IS @) || 2 (r)-
So (3.22) follows from the definition of F5.
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To prove (3.23)), from (3.10)) we have

|/Rd”(yz)(6i +e)| <& [z llelfn @) < K(c2 = Dllellzn w)

5 [FmaE <) = [ o~ - [ am)e.0)00).

R
Using Lemma[3.2] we have

’Ad//(yz)(awf)(atf)| < Cle2 = Dllell ) (el ey + 15112 (m))-

Using the equation of € gives

/a@ma@fﬁak
R

= / & (y2)(—epe — (€3) e — 3(v2%e)pe — 3(ve?) e
R
—S(t)e +p'(t)e((1 = 87)0:(v + €)))

N 1 3 3 1 B 1
=/w«mg£+1é+5&¥+m@—d@5@%ﬂ£»+ﬂ@/awwg;2
R R

+A&@ﬂkﬁm—%¥@w%+ﬂwﬂﬂ—%WA—Swﬂ

The coefficients of & (y2) and & (i) are controlled, so we get (3.23).
By Lemma [3.4 and (3.11)), we have

| [ )1 = ), ()i
< K(ea = 1)" + K(ea = DY Ye(T) 2wy + Kle(T) 3z
< (K+1)(e2 —1)",
for 0 < cg — 1 < gg small enough. Thus, by Lemma [3.5] we obtain
le(T*) 1 gy < KoF(T*) + K(c2 = 1)*.

Integrating (3.21)) on [To, T*], by (3.11)) and (3.3)), there exists K; > 0 independent
of K* such that

* 3
[F(T*)| < [F(To)| + K(ca = 1)IT  sup  [le(t)|[ 1 w)

te[To, T+

+ KT sup  (lle(®)|lmr @ |1SE)) o @)
tE[TO,T*]

< Ki(ea — D)¥ + K(K*)?(co — 1)2°73 4 K K*(cs — 1)%.

Thus, for 0 < cg — 1 < g9 small enough, we obtain
le(T*) 131 gy < Cle2 — 1?2+ K*).
By fixing K* such that C'(2 + K*) < %(K*){ we see ||5(T*)Hip( < %(K*)2(02 .

R) =
1)29. This contradicts the definition of T, thus we have T* = T, and arrive at

B3). O
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3.2. Stability and asymptotic stability for large time. In this section, we
consider the stability of the 2-soliton structure after the collision. For v € H(R),

we denote [|v]| 2 (r) = \/fR ((v"(x))? 4 (c2 — 1)v2(x)) dz, which corresponds to the
natural norm to study the stability of ¢.,.

Proposition 3.7 (Stability of the two decoupled solitons). Let ¢; > 1. Let u(t)
be an H'(R) solution of such that for some w > 0, Xo > (¢ — c2)T, there
holds
[4(0) = e, = des &+ Xo)llry < (e2 = 1FF. (3:24)
There exists g > 0 such that 1 < co—1 < 14+¢g. Then there exist the C' functions
p1(t), p2(t) defined on [0,+00) and K > 0 such that
(i) (stability)

SUp [[u(t) = (des (z = p1(8)) + bes (= p2(8))) |z, ) < K2 = DIt (3.25)

R U AU
Ip1(to)] < K(ca — 1) |palte) + Xo| < K(ca —1)". (3.26)

(i3) (asymptotic stability) There exist ¢, c§ > 1 such that
i u(t) = (B (2 = 1) + 60 (& = 2O e iy =0 (3:27)
lcb —e1| < K(ea— 13T |ef — o] < K(cp — 1)1 HwtminGzw), (3.28)
The proof of the above proposition is similar to the one of [6, Theorem 1.1], so
we omit it.
4. PrROOF OF THEOREM [L]]

Proposition 4.1. Let ¢y > 1 and 1 < cg < 1+ ¢gq, for g > 0 small enough.
1. Existence and exponential decay: Let x1, 19 € R. There exists a unique H*(R)

solution u(t) = Uy eq,01.,2,(t) of (L.1) such that
tiir}loo lu(t) = ¢e, (x — c1t — 21) — de, (x — ot — 22)| 51 (r) = 0. (4.1)

Moreover, for all t < —%,
u(t) = gy (& — ext — 1) = ey ( — cat — 22) |11y < KedVETI—DE (49)
2. Uniqueness of the asymptotic 2-soliton solution at —oo: if w(t) is an H'(R)
solution of satisfying
i [(0) — g~ 1) ~ bz~ 2Dl =0, (49)
for p1(t) and pa(t), then there exist x1,z2 € R such that w(t) = e, cp,z1,2,(1)-

The above proposition is essentially the same as [6, Theorem 1.3]. Recall that
such a result was first proved for the generalized KdV equations in [19], and refined
techniques were introduced in [13] 21].

Lemma 4.2. Let ¢c; > 1. Let 1 < ca < 1+¢g and g9 = €p(c1) > 0. We suppose
that u(t) is a solution of (L.1) satisfying: for some p1(t), p2(t),

Amu(t) = @, (2 = pi(t) = de, (& = p2(D)) 1) =0, (4.4)
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lim (Ju(t) = e, (x — p1(t)) — dey(z = p2(t)) — w™ ()1 (z) =0, (4.5)

t——+o0
where |cj —¢j| <eole; — 1] and
Jim et (Ol s 4 (14eay) = 05 fim sup lwt ()| ) < eolez — 1[V2. (4.6)
Then, there exist C = C(c1) such that
1
: N + - N
o imsup [[w™ (B, @ < e — e < Climinf [lw™ ()1, @),

1
—(ca — 1)~ limsup |[w* (¢ )HHl <c-c
C t—+00

L \=1/275 + )12
< Clez = )7 liminf [w™ (1) 7 g)-
Proof. By (1.3 , 1.4), (4.4)), (4.5) and (4.6), we have that for the large ¢,
m(u(0)) = m(¢e,) +m(de,) = m(+) +m(z) +mw* () +o(1),  (48)

E(u(0)) = E(de,) + E(¢c,) = E(d+) + E(¢3) + E(w™ (8)) +o(1).  (4.9)
Let (j =1,2),

- B(o) — E(;)
YT m(g) = m(o)’
so that
|a; —cj| < Clef — ¢l (4.10)

Indeed, by (2.19), one has

Bl0e) 7 Bl0e) _ 5E(s.)
m(qbc;r) — m(¢cj) = %N((bc) |C:Cj + O(IC;_ — Cj|) =c¢j + O(|C;_ _ Cj|)-

Considering as F times (4.8]) - (4.9) and then a; times (4.8)) - (4.9), we find that for
the large t

[E(b4) — a2m(@e)] = [E(de,) — aam(de, )] = aam(w™ (t) — E(w™ (1)) + o(1),

(4.11)
@m(0e) — B~ [am(6,5) — B(6,p)] = avm(w*(6) — E(w* (1)) + o(1).
(4.12)
Note that
[ 1< ey [ @ < Coolea =11 [
so that

_ 1
aam(wt () = Bt () > 12 =1) [ @9+ [ @)

Now, let 1 = L£m(¢.)]ezc, > 0, by [£:19), we have

d d
(%E(ch) - d2%m(¢c))|0261 - (Cl - a2) (¢C)|C c19
and so

Ler = D < (L B(60) ~ - em(6))leme, < (e1— 15,
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Thus, from (4.11)), we obtain that for the large t,

of =2 Cllea =) [ @t + [ @)+ 0(1) 2 Cllwrt @), sy + o)

o o1 <Nt Ol @ +o(1).

Similarly, we have

o= >l =1 [ @R+ [ @O+

C

> W”er(t)H%{l(R) +o(1),

c’
C2 — C;r < Wﬂwﬂt)\@p(m + 0(1)
Estimate (4.7)) follows. O

Proof of Theorem[I1. Let ¢; > 1 and €p = €¢(c1) be small enough. Let 1 < cg <
1+ ¢eo and T be defined by (2.47). Let @(t) be the unique solution of (L.1)) such
that

Jim [12(t) = g, (z = e1t) = ea (@ = 2t) |1 @) = 0.

(1) By Proposition forall t < — L

327
[(E) = by (2 = 1) = ey (@ — 2t iy < Ke VAT (413
Let A1, Ay be defined in Proposition and let
1A —
GO R}
2 C1 — Co

Since [A1] 4 [Ag] < C = C(c1), and ¢ — ¢z > ¢1 — 1 — €9 > 1(c1 — 1), we have
T~ < 73—12T, for small ¢ — 1 and so

|@(~T7) = Gy (@ + 1T ™) = Gy (& + 2T ) || 1 my < Ke 1V Hea=DT7 (4.14)
< (02 - 1)107 .

for g9 small enough. Let
u(t,z) =a(t+T -1, x+%A1+cl(T—T*)). (4.15)
Then, u(t) is a solution of and satisfies
[U(-T) ~ e, (& + T+ LAY — by (& + x4 L Ao)aey < (e2 ~ )", (4.26)

It is easily checked that the results obtained for u(t) imply the desired results on
a(t).
(2) By Proposition and (4.16)), we have
lu(=T) = o(=T) [ mr2z) < K (e — 1)/
By Proposition and the above estimate, we can apply Proposition with

0=5—1— 15 =2— 155 There exists p(t) such that for all t € [T, T],

lu(t) — v(t.z — p(t) ||z () + /()] < Clea — 1)27 700,
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In particular, for r = p(T), |r| < C(cy — 1)27 50, we have
lu(T) = v(t,@ =)l gy < Clez = 1)~ T,
and using Proposition we obtain
[u(T) = {@e, (x = 1) + by (x = 72) = 2D(8L,) (2 — r2) i )
< Cles - 1)27ﬁ’ (4.17)

where 1 = 1T + %Al +r and ro = T + %Ag + 7, so that
1 3
5(61 — CQ)T S KT —To S 5(61 — CQ)T.

Moreover, since ||(¢2,)'[| g1 (r) < C(c2 — 1)7/4, we also obtain

[u(T) = {¢e, (& = 11) + by (2 = r2)Hlmr () < Clea = 1)7%. (4.18)

In what follows, (4.18) will serve us to prove that u(t) is close to the sum of two
solitons for ¢ > T, whereas (4.17) will allow us to prove that u(t) is not a pure
2-soliton solution at +o0.
(3) By using Proposition [3.7]with w = 1, it follows from (3.25), (3.27) and (3.28
that there exists py(t), pa(t), i, cq such that
cf = tiigloo a(t), cf = tLieroo e(t), et —e1l <C0lep —1)
¢ — ol <Clea = 1)7%, wh(t,w) = u(t,x) = {.+ (x — p1 (1) + 6,5 (x — p2(D))},

7/4 :
Sup lw ™ )l 2, @) < Cle2 — 1) /4, Jm lw™ (Ol 11 (2> 3 (14¢a)e) = O-

7/4
)

(4.19)
From Lemma [£.2] we obtain
0<cf — SC(CQ—l)%, 0<ch —cy<Cea— 1™
(4) There exists Ky > 0 such that
lim inf lw* (@)l a2, ) = Ko(ez — 1), (4.20)
This follows the proof of the BBM case in [20] immediately, so we omit it.
Based on Cases (1) through (4), The proof of Theorem is complete O
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