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NON-EXISTENCE OF POSITIVE RADIAL SOLUTION FOR
SEMIPOSITONE WEIGHTED P-LAPLACIAN PROBLEMS

SIGIFREDO HERRÓN, EMER LOPERA

Abstract. We prove the non-existence of positive radial solution to a semi-
positone weighted p-Laplacian problem whenever the weight is sufficiently

large. Our main tools are a Pohozaev type identity and a comparison principle.

1. Introduction

We consider the non-existence of positive radial solutions to the problem

−∆pu = W (‖x‖)f(u) in B1(0),

u = 0 on ∂B1(0),
(1.1)

where ∆pu = ∇ · (|∇u|p−2∇u) is the p-Laplace operator, B1(0) is the unit ball in
RN and 2 < p < N .

Note that solving this problem is equivalent to solving the problem

[rnϕp(u′)]′ = −rnW (r)f(u), 0 < r < 1, u′(0) = 0, u(1) = 0, (1.2)

where r = ‖x‖, n := N−1 and ′ = d
dr . The differential equation in the last problem

is equivalent to

(p− 1)|u′|p−2u′′ +
n

r
|u′|p−2u′ +W (r)f(u) = 0, 0 < r < 1. (1.3)

We assume that the nonlinearity satisfies the following hypotheses:
(F1) f : [0,∞) → R is a continuous function with exactly three zeros 0 < β1 <

β2 < β3.
(F2) f(0) < 0 and f is increasing from β3 on.
(F3) Set F (t) :=

∫ t
0
f(s)ds. Then, β3 < θ1 where θ1 is the unique positive zero

of F .
Let us fix β3 < γ < θ1. We will say that a function W is an admissible weight if it
satisfies the following conditions:

(W1) W : [0, 1]→ (0,∞) is continuous and differentiable in (0, 1).
(W2) W̃ (r) := N + rW

′(r)
W (r) is defined a.e. in [0, 1].
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(W3) If we define the following real numbers associated with W :

η := sup W̃ , η := inf W̃ , λ := maxW, λ := minW, C̃λ :=
λ

λ
,

then
η

N
F (s)− 1

p∗
f(s)s ≤ C̃λF (γ), for γ ≤ s < θ1, (1.4)

η

N
F (s)− 1

p∗
f(s)s ≤ C̃λF (γ), for s ≥ θ1, (1.5)

where p∗ = Np
N−p is the critical exponent.

For every fixed T > 0 we consider the class of weights

C(T ) := {W : W is an admissible weight, η > 0 and C̃λ ≤ T}.

We note this class contains admissible weights so that η > 0 and λ/λ is bounded.
Problems related to non-existence of positive radial solutions have been studied,

most of them in the case f(0) ≥ 0. For instance, in the semilinear case, in [2]
considering f(u) = up and suitable conditions on the derivative of W , and p; a
result was showed in RN . See also [12] and references therein. The case f(0) < 0
is more complicated and in this direction, in [10], authors considered the non-
existence of positive radial solutions for a semipositone problem (i.e. f(0) < 0)
if f is not increasing entirely. The nonlinearity was superlinear and had more
than one zero. There, the domain was an annulus and they exhibited a positive
constant weight. Authors in [14], studied a semipositone elliptic system which
involves positive parameters bounded away from zero, and the nonlinearities are
smooth functions that satisfy certain linear growth conditions at infinity. They
established non-existence of positive solutions when two of the parameters are large.
Other works can be found in [1,3,9] but, we refer the reader to the survey paper [4]
and references therein for a review about semipositone problems. In the quasilinear
case, some papers are known in this direction. Chhetri et al [5] showed non-existence
considering a C1-nondecreasing non-linearity with a unique positive zero. They
extend the result in [3] for 1 < p <∞. Also, Hai [8] obtained a non-existence result
if f is locally Lipschitz continuous and lim infs→∞ f(s)/sp−1 > 0. A very simple
non-existence result for a semipositone quasilinear problem was showed in [13],
where W = 1 and a non-linearity given by step function was considered.

The study of such quasilinear equations with semipositone structure is open in
the case of general bounded regions. Moreover, questions on uniqueness remain
open even for radial solutions when the domain is a ball or an annulus. We would
like to mention that Castro et al. [4] wrote: “In general, studying positive solutions
for semipositone problems is more difficult compared to that of positone problems.
The difficulty is due to the fact that in the semipositone case, solutions have to
live in regions where the reaction term is negative as well as positive”. This makes
remarkable our research and we emphasize that in this work we deal, mainly, with
the case 2 < p < N and non-constant weight. Therefore, it is a generalization
of [10,13,5, 8].

The main result reads as follows.

Theorem 1.1. Assume hypotheses (F1)–(F3). Then for every T > 0 there is a
positive real number λ0 such that if W ∈ C(T ) and λ ≥ λ0, then (1.1) has no
positive radial solution.
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A second theorem is obtained when p = 2 and W is constant.

Theorem 1.2. Set Ω = B1(0). Assume that p = 2 < N , W ≡ λ and f satisfies
(F2), (F3),

F (s)− N − 2
2N

f(s)s ≤ F (γ) ∀s ≥ γ, and some γ ∈ (β3, θ1), (1.6)

and
(F1’) f : [0,∞)→ R belongs to C1 with exactly three zeros 0 < β1 < β2 < β3.

Then there exists λ0 > 0 such that (1.1) has no positive radial solution in C2(Ω̄)
provided λ > λ0.

This article is organized as follows: In Section 2 we show some technical lemmas
which will be useful in Section 3 for proving Theorems 1.1 and 1.2.

2. Qualitative Analysis

In this section we assume that there exists a positive radial solution to (1.2),
which is denoted by u(·,W ). We say that u is a solution if r 7→ rnϕp(u′) ∈ C1.

Lemma 2.1. If u(0,W ) > β3, then u(·,W ) is decreasing in [0, 1].

Proof. We note that by (1.3), if u′(r,W ) = 0 for some 0 < r < 1 then u(r,W ) ∈
{β1, β2, β3}. Since u(0,W ) > β3 then we set t3(W ) = t3 := min{r ∈ [0, 1] :
u(r,W ) = β3}. By the mean value Theorem, u′(ξ,W ) < 0 for some ξ ∈ (0, t3).
Since u′(·,W ) cannot change sign in this interval then u(·,W ) is decreasing there.

Now, for all r ≥ t3, we claim u(r,W ) ≤ β3. Indeed, if u(r1,W ) > β3 for some
r1 ∈ (t3, 1) then there would be an interval [r2, r3] ⊆ [t3, 1) such that u(r,W ) > β3

for all r ∈ (r2, r3) and u(r2,W ) = u(r3,W ) = β3. Again, the mean value Theorem
implies u′(ξ0,W ) = 0 for some ξ0 ∈ (r2, r3). Thus u(ξ0,W ) ∈ {β1, β2, β3}, which is
a contradiction and the claim is proved.

Let t2 := t2(W ) := min{r ∈ (t3, 1] : u(r,W ) = β2}. Then the same argument
from above shows that u(·,W ) is decreasing in the interval [t3, t2]. Afterwards we
see that for all r ∈ [t2, 1), u(r,W ) ≤ β2. Assume on the contrary that there exists
r1 ∈ (t2, 1) such that u(r1,W ) > β2. Then we can find an interval [r2, r3] ⊆ [t2, 1)
such that u(r,W ) > β2 for all r ∈ (r2, r3) and u(r2,W ) = u(r3,W ) = β2. The
function v(r,W ) := u(r,W )− β2 satisfies

−∆p(v) = W (r)f(u), in (r2, r3); v(r2) = v(r3) = 0.

Since u(·,W ) ∈ [β2, β3] in (r2, r3), it follows that W (r)f(u(r)) ≤ 0. Therefore,
a comparison principle (see [6, Proposition 6.5.2]) lead us to v(r,W ) ≤ 0 for all
r ∈ (r2, r3). But this means u(r,W ) ≤ β2 for r in this interval. This is an absurd.

Now let t1 := t1(W ) := min{r ∈ (t2, 1] : u(r,W ) = β1}. Then, as at the
beginning of this proof, u(·,W ) is decreasing in [t2, t1]. We claim that for all
r ≥ t1, u(r,W ) ≤ β1. Arguing by contradiction, if there exists r1 ∈ (t1, 1) such
that u(r1,W ) > β1 then this forces u(r,W ) ≥ β1 for all r ∈ (t1, r1), otherwise
there exists r0 ∈ (t1, r1) with u(r0,W ) < β1 and u′(r0,W ) = 0. Thus u(r0,W ) ∈
{β1, β2, β3}, which cannot be. Hence there would exists γ0 ∈ (β1, β2) such that
β1 ≤ u(r) < γ0 in some neighborhood (r2, r3) of t1 and u(r2) = u(r3) = γ0. Then
w(r,W ) := u(r,W )− γ0 satisfies

−∆p(w) = W (r)f(u(r)), in (r2, r3); w(r2) = w(r3) = 0.
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Because of behaviour of u(·,W ) in (r2, r3), f(u(r)) ≥ 0. Using again the same
comparison principle we deduce that w(r,W ) ≥ 0, that is u(r,W ) ≥ γ0 for all
r ∈ (r2, r3). This contradiction shows the claim.

Finally, using the same arguments as before it follows that u(·,W ) is decreasing
in [t1, 1]. Thus, the lemma is proved. �

Remark 2.2. If p = 2 our previous demonstration does not work. However, it is
well known that when p = 2, W ≡ λ (a constant) and f ∈ C1, a regular positive
solution turns out to be radially symmetric and decreasing (see [7]).

Let us define the Energy associated to the problem (1.2) by

E(t,W ) :=
|u′(t,W )|p

p′W (t)
+ F (u(t,W )).

Also, we define

H(t,W ) := tW (t)E(t,W ) +
N − p
p

ϕp(u′(t,W ))u(t,W ).

Suppose that u(·,W ) is a solution of (1.2). Then a Pohozaev type identity takes
place,

tnH(t,W )− snH(s,W )

=
∫ t

s

rnW (r)
[(
N + r

W ′(r)
W (r)

)
F (u)− N − p

p
f(u)u

]
dr,

(2.1)

whenever 0 ≤ s ≤ t ≤ 1 (see [11, formula (2.2)]). Now, from the definition of the
energy we have

E′(r,W ) = −|u
′(r,W )|p

p′W (r)r
[
np

p− 1
+
rW ′(r)
W (r)

] ≤ 0,

since η > 0 and p < N . Thus the energy is a decreasing function of r. Hence

E(r,W ) ≥ E(1,W ) = |u′(1,W )|p
p′W (1) ≥ 0 for all r ∈ [0, 1]. In particular E(0,W ) =

F (u(0,W )) ≥ 0. Thus u(0,W ) ≥ θ1. So, in view of (F3) and the previous lemma,
we conclude the following result.

Lemma 2.3. Under assumption (F3), every positive radially symmetric solution
of (1.1) is radially decreasing.

Lemma 2.4. Let u(·,W ) be a positive solution of problem (1.2) and set tγ = tγ(W )
the unique number in (0, 1) such that u(tγ ,W ) = γ. Then there exists a constant
C independent on W such that |u′(tγ ,W )|tγ ≤ C.

Proof. Using the Pohozaev identity (see (2.1)) with s = 0 and t = tγ we have

tnγ |u′(tγ ,W )|p−1
[ tγ
p′
|u′(tγ ,W )| − N − p

p
γ
]

=
∫ tγ

0

rnW (r)
[
W̃F (u)− N − p

p
f(u)u

]
dr − tNγ W (tγ)F (γ).

(2.2)

Now, from (1.4) and (1.5) we have that for all r ∈ [0, tγ ],

W̃ (r)F (u)− N − p
p

f(u)u ≤ NC̃λF (γ).
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Taking into account 0 < W (tγ) ≤ C̃λW (r) for all r ∈ [0, tγ ] (indeed it is true for
all r ∈ [0, 1]), F (γ) < 0 and the above inequality, we obtain

rnW (r)
(
W̃ (r)F (u(r))− N − p

p
f(u(r))u(r)

)
≤ rnW (tγ)NF (γ).

Integrating over the interval [0, tγ ],∫ tγ

0

rnW (r)
(
W̃ (r)F (u(r))− N − p

p
f(u(r))u(r)

)
dr ≤ F (γ)W (tγ)tNγ .

Therefore, from (2.2),

tnγ |u′(tγ ,W )|p−1
[ tγ
p′
|u′(tγ ,W )| − N − p

p
γ
]
≤ 0;

that is,
tγ
p′
|u′(tγ ,W )| ≤ N − p

p
γ.

The lemma is proved �

Lemma 2.5. Let α ∈ (0, β1) be fixed and set b = b(W,α) the unique number in
(0, 1) such that u(b,W ) = α. Then b(W,α)→ 1 as λ→∞.

Proof. Integrating the equation in (1.2) on [b, 1] we obtain

ϕp(u′(1))− bnϕp(u′(b)) = −
∫ 1

b

rnW (r)f(u)dr

≥ K
∫ 1

b

rnW (r)dr ≥ Kλ

N
(1− bN ),

(2.3)

where −K = −K(α) := max{f(s) : s ∈ [0, α]} < 0. Multiplying the differential
equation in (1.2) by rmu′, with n+m := np′, and integrating by parts the left-hand
side of the resulting equation, we have

bn+m|u′|p − 1n+m|u′|p +
∫ 1

b

rnϕp(u′)[mrm−1u′(r) + rmu′′(r)]dr

=
∫ 1

b

rn+mW (r)[F (u)]′dr.

Now, integrating by parts the right-hand side of the above equation we can estimate
it as ∫ 1

b

rn+mW (r)[F (u)]′dr = −bn+mW (b)F (u(b))−
∫ 1

b

F (u)(rn+mW (r))′dr

≤ −bn+mW (b)F (u(b))− F (α)
∫ 1

b

(rn+mW (r))′dr.

This estimate is due to the fact that F (α) ≤ F (u(r)) for all r ∈ (b, 1) and the as-
sumption that W̃ is positive, which implies that [rn+mW (r)]′ > 0. In consequence,

bn+m|u′|p − 1n+m|u′|p

≤ −F (α)W (1)−
∫ 1

b

rnϕp(u′)[mrm−1u′(r) + rmu′′(r)]dr

= −F (α)W (1) +
∫ 1

b

rn+m−1|u′|p−1[mu′(r) + ru′′(r)]dr,

(2.4)
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where we have noted that by Lemma 2.3, u′(r) ≤ 0 for all r ∈ [b, 1]. On the other
hand, from (1.3) and M = M(α) := maxs∈[0,α] |f(s)| > 0, we have for all r ∈ [b, 1]

(p− 1)|u′|p−2u′′ +
n

r
|u′|p−2u′ = −W (r)f(u) = W (r)|f(u)| ≤ λM.

Then

|u′|p−1[ru′′ +mu′] ≤ λM

p− 1
r|u′|.

Therefore, from (2.4),

bn+m|u′|p − |u′(1)|p ≤ −F (α)λ+
λM

p− 1

∫ 1

b

rn+m|u′|dr

≤ −F (α)λ+
λM

p− 1

∫ 1

b

|u′|dr

= [−F (α) +
αM

p− 1
]λ =: C0λ,

(2.5)

where C0 = C0(α) > 0. Now, from (2.3) and taking into account that u′ ≤ 0,

0 < bnp
′
|u′(b)|p − |u′(1)|p. (2.6)

Hence, combining (2.5) and (2.6),

0 < bnp
′
|u′(b)|p − |u′(1)|p ≤ C0λ.

Thus, using (2.3) again,

0 ≤ λK

N
(1− bN )

≤ ϕp(u′(1))− bnϕp(u′(b))
≤ |bn|u′(b)|p−1 − |u′(1)|p−1|

≤
(
bnp

′
|u′(b)|(p−1)p′

− |u′(1)|(p−1)p′)1/p′

=
(
bnp

′
|u′(b)|p − |u′(1)|p

)1/p′

≤ λ1/p′

C
1/p′

0 ,

which implies

0 ≤ K

N
(1− bN ) ≤ λ

λ

1/p′

C
1/p′

0 ≤ 1

λ
1
p

TC
1/p′

0 ,

where T > 0 satisfies λ/λ ≤ T . The statement of the lemma follows. �

3. Proof of results and examples

Proof of theorem 1.1. Let us argue by contradiction. Suppose there exist T > 0 and
a sequence of admissible weights {Wm}∞m=1 with λm := ‖Wm‖∞ → +∞ as m→∞
and such that for all m problem (1.1) has a positive radial solution u(·,Wm). If we
suppose that there is a positive constant L such that tγ(m) := tγ(Wm) ≥ L for all
m sufficiently large then, from Lemma 2.4, |u′(tγ(m),Wm)| ≤ C

L =: C1, where C is
independent on the weight. This would imply

E(tγ(m),Wm) =
|u′(tγ(m),Wm)|p

p′W (tγ(m))
+ F (u(tγ(m),Wm))

≤ Cp1
p′W (tγ(m))

+ F (γ)
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≤ Cp1
p′λm

+ F (γ)

≤ Cp1T

p′λm
+ F (γ).

Hence 0 ≤ lim supm→∞E(tγ(m),Wm) ≤ F (γ) < 0, what is an absurd. In conse-
quence there is a sub-sequence of {tγ(m)}∞m=1 (denoted in the same way) which
converges to zero. Let us fix α > 0 and we define bm = b(Wm) as in Lemma 2.5.
Then by that lemma we can choose k > 0 such that for all m ≥ k, tγ(m) < 1/4
and 3/4 < bm. Set L̃ := maxs∈[α,γ] F (s) < 0. Thus, there exists ξm ∈ (tγ(m), bm)
such that

|u′(ξm,Wm)| = |u(tγ(m),Wm)− u(bm,Wm)|
|tγ(m)− bm|

≤ 2(γ + α) =: µ > 0.

Then, taking into account that u(·,Wm) is decreasing we have α ≤ u(r,Wm) ≤ γ
for all r ∈ [tγ(m), bm]. Therefore,

E(ξm,Wm) =
|u′(ξm,Wm)|p

p′W (ξm)
+ F (u(ξm,Wm))

≤ µp

p′W (ξm)
+ L̃

≤ µp

p′λm
+ L̃

≤ µpT

p′λm
+ L̃.

Hence 0 ≤ lim supm→∞E(ξm,Wm) ≤ L̃ < 0. This is a contradiction and so the
theorem is proved. �

Proof of theorem 1.2. Assume on the contrary that there exist a sequence λm →∞
and positive solutions um ∈ C2(Ω̄) of the problem

∆u+ λf(u) = 0, in Ω; u = 0 on ∂Ω.

A celebrated result in [7] (see Remark 2.2) implies that um is radially symmetric
and decreasing. Now, after a detailed reading of proofs Lemmas 2.4 and 2.5, one
can see that their conclusions hold for p = 2. In this case we must use hypothesis
(1.6). The proof follows the same argument as in proof of theorem (1.1). �

Examples. Next, we exhibit a nonlinearity f and two weights W , holding all
conditions. First, we consider a constant weight.

Let g : [0, 3]→ R defined by g(t) = (t− 1)(t− 2)(t− 3). Let

f(t) :=

{
g(t) if 0 ≤ t ≤ 3
(t− 3)q if t > 3,

with p∗ < q + 1. Thus f has exactly three zeros, f(0) < 0 and f(3) = 0. Also,
F (t) :=

∫ t
0
f(s)ds = t4

4 − 2t3 + 11t2

2 − 6t < 0 for all t ∈ [0, 3]. Then we have β3 = 3
and 4 = θ1 > β3. We fix γ ∈ (β3, θ1) and note that a simple computation shows

F (t) = F (γ) +
1

q + 1
[(t− 3)q+1 − (γ − 3)q+1], ∀t ≥ γ. (3.1)
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We define the family of constant weights Wλ ≡ λ > 0, which belongs to the class
of weights C(1). Because of p∗ < q + 1 then (t−3)q+1

q+1 ≤ t(t−3)q

p∗ . Therefore

F (t)− F (γ) =
(t− 3)q+1 − (γ − 3)q+1

q + 1
≤ t(t− 3)q

p∗
=
tf(t)
p∗

, for all t ≥ γ.

This gives us (1.4) and (1.5). In consequence, by Theorem 1.1, there exists λ0 > 0
such that for all λ > λ0, problem (1.2) has no radial positive solution.

For the same non-linearity f we introduce another family of weights that satisfy
the hypotheses of Theorem 1.1. For λ ≥ 1, define Wλ(r) := λ + r. Then W̃λ(r) =
N + r

λ+r , C̃λ = λ+1
λ , η = N and η = N + 1

λ+1 . First of all, since limγ→θ1 f(γ) =
f(θ1) > 0 and limγ→θ1 F (γ) = 0, we can take γ between β3 and θ1 such that

−f(γ)γ
p∗

<
λ+ 1
λ

F (γ),

where γ is independent on λ due to the estimate 1 < λ+1
λ ≤ 2. Since F (s) ≤ 0 and

− f(s)s
p∗ ≤ −

f(γ)γ
p∗ for all γ ≤ s ≤ θ1 (t 7→ tf(t) is non-decreasing for t > 3), then

F (s)− f(s)s
p∗

<
λ+ 1
λ

F (γ),

which gives us (1.4). On the other hand, for λ sufficiently large,( 1
N(λ+ 1)

− 1
λ

)
F (γ) ≤ 3(θ1 − 3)q

p∗
,

1
p∗
− 1
q + 1

− 1
N(λ+ 1)(q + 1)

> 0.

Then, for all s ≥ θ1,( 1
N(λ+ 1)

− 1
λ

)
F (γ)

≤ 3(s− 3)q

p∗
+
( 1
p∗
− 1
q + 1

− 1
N(λ+ 1)(q + 1)

)
(s− 3)q+1

+
( 1
q + 1

+
1

N(λ+ 1)
1

q + 1
)
(γ − 3)q+1.

So, keeping in mind (3.1) we have (1.5).
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Colombia

E-mail address: sherron@unal.edu.co

Emer Lopera

Universidad Nacional de Colombia Sede Medelĺın, Apartado Aéreo 3840, Medelĺın,
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