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LIMIT BEHAVIOR OF MONOTONE AND CONCAVE
SKEW-PRODUCT SEMIFLOWS WITH APPLICATIONS

BIN-GUO WANG

ABSTRACT. In this article, we study the long-time behavior of monotone and
concave skew-product semiflows. We show that if there are two strongly or-
dered omega limit sets, then one of them is a copy of the base. Thus, we obtain
a global attractor result. As an application, we consider a delay differential
equation.

1. INTRODUCTION

Recently, monotone skew-product semiflows generated by nonautonomous sys-
tems, in particular almost periodic systems, have extensively investigated, see
3, B 6l [7, 8, @, T0]. Hetzer and Shen [3] considered the convergence of positive
solutions of almost periodic competitive diffusion systems. Jiang and Zhao [5]
established the 1-covering property of the omega limit set for monotone and uni-
formly stable skew-product semiflows with the componentwise separating property
of bounded and ordered full orbits, which is an important property for considering
the long-time behavior of skew-product semiflows. Novo et al [6l [7, 8] considered
the skew-product semiflow generated by almost periodic systems. Under the as-
sumption that there existed two strongly ordered minimal subsets or completely
strongly ordered minimal subsets, a complete description of the long-time behavior
of the trajectories was given and a global picture of the dynamics was provided for
a class of monotone and convex skew-product semiflows. Zhao [10] proved a global
attractivity theory for a class of skew-product semiflows.

In conclusion, the properties of the omega limit set of skew-product semiflows,
especially its structure, play an important role in considering the convergent be-
havior of the orbit. Shen and Yi [9] told us if the omega limit set O is linearly
stable, then there exists an integral number N such that O is the (N — 1)-almost
periodic extension; i.e., there exists a subset Yo C Y (the definition of Y see Section
2) such that for any gy € Yo, card(O N7~ 1(g9)) = N (7 is the natural projector).
If it is uniformly stable, then it is the extension of Y; i.e., card(O Nw~1(g)) = N
for any g € Y. This is not enough to understand the structure of the omega limit
set thoroughly. If we can obtain the conclusion that O is the copy of the base Y;
i.e., card(O N7~ 1(g)) = 1 for any g € Y, it would give a complete description
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for the long-time behavior of the orbit. For this purpose, under the assumption of
the existence of two completely strongly ordered omega limit sets and motivated
by [6l [7], we deduce that one of them is an equilibrium point set if monotonicity
and concavity are satisfied. Naturally, it is a copy of the base. Furthermore, we
establish the convergent results for skew-product semiflows.

This article is organized as follows. In Section 2, we present some definitions
and notation of skew-product semiflows. In Section 3, we establish global attractor
results and consider an almost periodic delay differential equation.

2. PRELIMINARIES

Let (Y, d) be a compact metric space. A continuous flow (Y, o, R) is defined by
a continuous mapping o : Y x R = Y, (g,t) — o(g,t), which satisfies (i) o9 = id,
(ii) o1 - 05 = o1y, for all £, s € R, where 04(g) :=0(g,t) =g-tforge Y andt e R
with g-0=gand g-(s+¢) =(g-s)-t. A continuous flow (Y, 0, R) is distal if for
any two distinct points g; and go in Y, inficgr d(o(g1,t),0(ge,t)) > 0.

A semiflow (X, ®, RT) on Banach space X is a continuous map ® : X xRt — X
(z,t) — ®(x,t), which satisfies (i) &9 = id, (ii) Py - D5 = P44, where Oy(z) :=
®(x,t) for x € X and ¢ > 0.

A compact, positively invariant subset S of a semiflow (X, @, R™") is minimal if
it contains no nonempty, closed and proper positively invariant subset. If X itself
is minimal, then (X, ®, R™") is called minimal semiflow.

In this article, we assume that (X, X 1) is an ordered Banach space with int X T #
(), where int X+ denotes the interior of the cone X*. For z, y € X, we write x < y
ify—zreXtr<yify—oze XT\{0}; 2 <yify—x €int X'. In addition, the
norm of Banach space X is monotone, namely, if 0 < z < y, then ||z|| < ||y|| (see
m).

The ordering on X induces the ordering on Y x X in the following way:
(9,2) < (g,y) ®y—a e X", VYgev,
(9.2) <(g.y) ©y—areX , a#y, Vgey,
(g,2) < (9,y) ©y—z€int X, VgeV.
Consider a skew-product semiflow: II: RT xY x X - Y x X,

(t,g,l’) = (g : t,u(t,g,x)). (21)

We assume that (Y, o, R) is a minimal flow defined by 0 : Y xR =Y, (g,t) — g- ¢t
and wu is locally C! in x € X; that is, u is C! in z, and u, is continuous in g € Y,
t > 0 in a neighborhood of each compact subset of Y x X. Moreover, for any v € X,
lim; g+ uz(t,g,z)v = v uniformly in every compact subset of ¥ x X. Sometimes,
we also use the notation I;(g,z) = I(¢,g,x). We denote 7 : Y x X — Y as the
natural projection.

The forward orbit of (go, z¢) is written as

O(go,0) = {II(t, go, o) : t > 0}.

If u(t, go, xo) is convergent as ¢ — oo, we can define the omega limit set of (go, zo)
as

0(907390) = {(gax) €Y x X : 3t, — oo such that gg - t,, — g, U(tn,gg,xo) - .’K}
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Given a subset K C Y x X, let us introduce the projection set of K into the fiber
space

Ky :={g €Y : there exists z € X such that (g,2) € K} C Y.

An equilibrium is a map a : Y — X such that a(g - t) = u(¢, g,a(g)), for all
geY,t>0. Aset ECY x X is called an equilibrium point set if there exists
a map a such that a(g) = z, for all (g,2) € F and a(g - t) = u(t, g,a(g)), for all
g€ Ey,t>0.

We say that the skew-product semiflow is monotone if

u(t,g,y) = ult,g,x), Vy=u, t=0, (2.2)
and strongly monotone if
u(t,g,y) > u(t,g,z), Vy>ax, t>0.

The skew-product semiflow (2.1)) is said to be eventually strongly monotone if
there exists g > 0 such that

u(t,g,y) > ult,g,x), Yy>uwz, t>to (2.3)
and it preserves the ordering; i.e.,
u(t,g,y) >r u(t,g,x), Yy >z, t>0,

where >, denotes the relations >, > or >.
The skew-product semiflow (2.1]) is called concave, if, whenever z < y,

for g€ Y, A€ [0,1] and t € RT; strongly concave, if, whenever = < ¥,
ut,g, Ay + (1 = A)z) > du(t,g,y) + (1 = Nu(t, g,2) (2.5)

forgeY, A€ (0,1) and t € RT.
From the continuous hypothesis for u, (2.4) is equivalent to, whenever y > =z,
u:c(tmgwr)(y - (E) > uz(t7g7y)(y - l‘)
for g €Y and t € RT. Similarly, (2.5) is equivalent to, whenever y > z,
forgeY and t € RT. Since x < Ay + (1 — M)z and Ay + (1 — )z < y, we have
U (t, g, y)(y — x) < ult,g,y) —ult, g,2) <ue(t, g,2)(y — ) (2.6)

forgeY and t € RT.
Let y > x, we have

u(t, g,) — u(t,g,z) = / o (g, My + (1= N)a)(y — 2)d.

A forward orbit {II(¢, go, xo)|t > 0} of the skew-product semiflow (2.1)) is said to
be uniformly stable if for any ¢ > 0 there is a § = §(¢) > 0, such that if s > 0
and ||u(s, go, o) — u(s, go, x)|| < d(€), we have

Hu(t + 5, 9o, SU()) - U(t + SvQva)H <k¢ vt > 0.

A forward orbit {II(t, go,zo)|t > 0} of the skew-product semiflow (2.1)) is said to
be uniformly asymptotically stable if it is uniformly stable and there is 5 > 0
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with the following property: for each € > 0 there exists a tg(€) > 0 such that if
s 2 0 and [[u(s, 9o, 70) — u(s, go, z)|| < o, we get

llu(t + s, go, x0) — u(t + s, 90, 2)|| <€, Vt > to(e).
3. GLOBAL ATTRACTOR RESULT

In this section, we assume that the skew-product semiflow (2.1) satisfies even-
tually strong monotonicity and (strong) concavity. Based on this, we establish the
global attractor results.

Definition 3.1. Two subsets S, So of Y x X are ordered S; < Sy if for each
(g,x1) € Sy, there exists (g, x2) € Sa such that z; < zo. We say S; < Sy if S < Sy
and they are different.

Definition 3.2. We say the subset Sy, So of Y x X to be ordered S; < S5 if for
each (g,z1) € S, there exists (g,22) € So such that 27 < xs.

Definition 3.3. Two subsets S;, So are said to be completely strongly ordered
S1 < Sy if 1 < x5 holds for all (g,xl) € 51 and (g,l‘g) € S,.

Definition 3.4. Let M C Y x X be a compact, positively invariant subset of the
skew-product semiflow (2.1). For (g,x) € M, we define the Lyapunov exponent
Mg, z) as
1 t.g,
A(g, ) = limsup In flu. (¢, 9, 2) :E)”
t—o0 t

The number Ay = SUP (g, 2)e M A(g,x) is called the upper Lyapunov exponent
on M. If Ap; <0, then M is said to be linearly stable.

In addition, the following assumptions are necessary.

(A1) Every bounded forward orbit {II(¢,g, ) : ¢ > 0} is precompact.
(A2) u(t,g,0)=0,forallge VY, tecRT.

Theorem 3.5. Assume that (A2) holds and O CY x int Xt with A\o < 0. Then
O is uniformly asymptotically stable, that is, for each g € Y, the forward orbit
{II(t, g, a(g)|t > 0} is uniformly asymptotically stable. Moreover, O is the copy of
the base Y, i.e., card(ON7=1(g)) =1, forallg €Y.

Proof. The proof of the uniformly asymptotical stability is completely similar to
[0, Theorem 8.1], we omit the details here.

In view of the theory of [9] about the structure of omega limit sets, we deduce
that O is an (N — 1)-extension of Y as A\p < 0, that is, card(O N 7~1(g)) = N for
any g € Y, where N is an integral number, and hence, we denote O N7 1(g) =
{z1(g),...,2xn(g)}. Since X is a normal cone and int X+ # (), it is easy to deduce
that, for each g € Y, the finite set {z1(g),...,2n(g)} is bounded with respect to
the ordering induced by X+. Thus, there exists the supremum

b(g) = Sup{xl(g)7 oo >xN(g)}7

which is a continuous map on Y. The positive invariance and monotonicity of the
semiflow imply that

b(g-t) <u(t,g,blg)), VgevY,t>0. (3.1)

Furthermore, we claim that b is invariant under the flow o, that is, b(g - t) =
u(t, g,b(g)) for each g € Y and ¢t > 0.
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On the contrary, we assume that there exist g € Y and s > 0 such that

b(g - s) <u(s,g,b(g))- (3.2)

Our assumption implies that x; > 0, ¢ = 1,..., N, from which we deduce that
b(g) > 0. For e > 0 we define e-norm by

2]l =: inf{y > 0: —ye <g = <k ve}. (3.3)
Let e = b(g) > 0 and
a=1inf{||b(g) —zi(g)|le :4=1,...,N}. (3.4)

Obviously, v < 1 and there exists j € {1,..., N} such that a = [|b(g) — z;(9)]e-
Hence, b(g) — z;(g) < ab(g), which is equivalent to

zj(g) = (1 = a)b(g).
The monotonicity and concavity of the skew-product semiflow and (A2) imply that
u(s, g,2(9)) = (1 — )u(s, g,b(g)) > (1 — a)b(g - 5).

If &« = 0, then we obtain b(g - s) > (g - s) = u(s, g,z;(g)) > u(s,g,b(g)), which
contradicts to (3.2)), and hence, « is strictly positive. Moreover, the eventually
strong monotonicity and strong concavity of the semiflow show that

’LL(S +thgaxj(g)) > (1 - a)u(to,g : Sab(g : S))

The property of cones implies that we can find 0 < ay < « such that

u(s + to, g.;(9)) > (1 — ao)ulto,g - 5,b(g - 5)).

Using the eventually strong monotonicity and strong concavity of the semiflow
again, it then follows from (3.1]) that

u(t,g,2;(9)) > (1 —ag)b(g-t), Vt>s+to.
Since the flow is minimal, there exists a sequence t,, — oo such that

lim (g - tn,u(tn,g,xj(g)) = (g’xk(g))

n—00

for some k € {1,..., N}. Thus, we have

zi(g9) = (1 — ap)b(g);

ie., b(g) — zx(9) < apb(g) = ape, which contradicts to (3.4). Hence, b is invariant
under the flow o.
Define

Oy = {(g,b(9)) : g € Y}.
Finally, we verify that O, = O. On the contrary, assume that there exist g € Y and
Jj €{1,...,N} such that b(g) > z;(g). The eventually strong monotonicity of the
semiflow implies that b(g) > z;(g), forallg € Y, j € {1,..., N}, which contradicts
that b is the supremum. Hence, we get O, = O. Furthermore, the conclusion that
O is a copy of the base Y can be obtained straight. (Il

Corollary 3.6. Let the assumptions of Theorem[3.5 hold. Then O is an equilibrium
point set.
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Proof. By Theorem [3.5] we have

O ={(g,0(9)) : g €Y},
and the map g — b(g) is a bijection with b(g - t) = u(t,g,b(g9)), Vg € Y, t > 0.
Hence, O is the equilibrium point set. O

Lemma 3.7. Assume that two omega limit sets satisfy O1 <o Os. Then there
exists a positive constant ¢y such that

||ul(t,g,x2)|| <ci, V(g,J?Q) € 025 t>0.

Proof. In view of the proof of [0, Lemma 5.6], we know that, for e > 0 there exists
a constant ¢ (depending on e) such that

||Ux(t,g,£t)H S EH’Mw(t,g,CE)EH, V(g,l') € Y X Xa t Z 0 (35)

The conclusion of [6, Lemma 5.3] implies that there exists a positive constant 3 > 0
such that zo — x1 > fe, for all (g,z1) € O1, (g,22) € Oz. The positiveness of the
linear operator wu,(t, g, x2) shows that

ug(t, g, 22) (T2 — 1) > Pus(t, g, v2)e.
The monotonicity and concavity of the semiflow and (2.6 show that
c

Hux(tv 9, 'TQ)H < 7Hu$(t7 9, 1'2) - uér(ta 9, xl)”v vt > 0.
From the above and the compact positive invariance of O and Oy we can conclude
that there exists a positive constant ¢; such that

||Ux(t7g,:E2)H Scla V(g,l'g) 6027 tZO

The proof is complete. (I

Proposition 3.8. If 01 <¢ Oz holds, then Oy is a linearly stable set, i.e., Ao, <
0.

Proof. By Definition [3.4 and Lemma the conclusion can be obtained immedi-
ately. O

Proposition 3.9. There exists the function g — a(g) such that the set
Yo={9€Y:(g,a(g)) € O}
is the continuous point set of the mapping g — a(g).

Proof. Tt is sufficient to prove that for any gr — ¢ there exists g — a(g) such that
a(gr) — a(g). Because of the minimality of the flow, we only to prove a(g - t;) —
a(g - to) for any ti, — to. Let (g,2) € O, from the definition of the omega limit set,
there exists a sequence ¢, — oo such that go - t, — ¢, u(tn, go, o) — x. Let

a(g) == nILH;O w(tn, go, To) = .
Then
a(g -to) = nlil{:o u(tn, go - to, u(to, go, o))
= lim u(tn + to, g0, .%‘0)
n—oo

= lim U’(thgO : tnvu(tnagOa 'IO))
n—oo

= U(to,g,.’ﬂ),
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and for any k € N,

klirgo a(g-ty) = lim lm u(t,,go - tk, u(tk, go, o))

k—o0 n—oo

= lim lim w(tk, go - tn, u(tn, go, o))

k—o0 n—oo

= lim wu(tg,g,x)
k—o0

= U(to,g,.’b) = a‘(g ' tO)'
The proof is complete. O

From [6, Proposition 6.1], we have the following result .

Proposition 3.10. Suppose that O1 <c Oz. If Ao, = 0, there exist positive
constant ¢ and ¢ such that

¢ S ||uw(t,g,x2)|| § C, V(Q,Ig) € 027 t 2 0. (36)

Proposition 3.11. Assume that O1 <c Oz holds and Ao, = 0. Then there exists
a minimal subset O* of Y x X such that O1 < O* < Os.

Proof. As in Proposition [3.9] define Yy = {g € Y : (g,a(g)) € O2}. Let gy € Yo,
from the definition of Yy, we have (go,a(go)) € Oz. Since 01 K¢ Oa, for each
(g0, 21) € O1, we have 21 < a(go). Fixed 0 < a < 1, define
Yo = az1 + (1 — a)a(go).
Obviously, z1 < ya < a(go). The precompactness of the forward orbit {7 (¢, go, ¥a) :
t >4, § > 0} implies that its closure contains a minimal subset, denoted by O,
ie.,
O, C cls{(go - t,u(t, go,ya)) : t > 5}
The monotonicity of the skew-product semiflow implies O; < O, < O;3. In the
following, we prove that O, is required.
First we check O; < O,. For (g,2) € O,, there exist a sequence t,, — oo such
that
nlggo H(tnv 9o, ya) = (ga Z)
The concavity implies that

u(tnagmya) Z au(tnagO7x1) + (1 - a)u(tn7907 a(QO))

In addition, there exists a subsequence (assume the whole sequence), (g,z1) € Oy
and (g, z2) € Oy such that

T}LH;O H(tnag()axl) = (9721)7 nILHOIOH(tnvgma(gO)) = (9722)'

Hence, we have

z>az + (1 —a)z.
Since 07 <¢ O, 21 < 2z holds, from which we have z > z;, Definition tells
us 01 € O,.

In the following we prove Oy # O,. On the contrary, we assume that Oy =
O, with (go,a(go)) € Oz N O,. Thus, there exists a sequence t; — oo such
that lim,, o I(tx, 90, ¥a) = (90, a(go)). Proposition implies that there exist a
positive constant ¢ > 0 such that é < ||u,(, go, a(go))||, ¥t > 0. From the inequality
we deduce that for all k£ € N,

u(tr, 9o, a(go)) — w(tk, 9o, Ya) > uz(tr, go, a(go))(a(go) — Ya)
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= aug(tr, 9o, a(go))(algo) — 1)

It then follows from (3.5) and the monotonicity of the skew-product semiflow that
for e = (a(gog) — x1), we can find [ (which only depends on a(gg) and x1) such that

Ha(gO . tk) - u(tkag()aya)” >1> Oa Vk € N.

This contradicts that gg is a point of continuity of a(gg), which implies lim,,_,~,(go -
b, 0k, 60> a)) = (90, 0(go))- The proof is complete. 0

Theorem 3.12. If O; <¢ O, then Ao, < 0.

Proof. Proposition@implies that Ap, < 0, hence, it is sufficient to prove Ap, # 0.
On the contrary, we assume that Ao, = 0. It follows from Proposition that
there exists the subset O* of Y x X such that O; < O* < O,. Let gg € Yy, then
(g0,a(g0)) € O2 and there exist (go,z) € O* and (g, z1) € O1 such that

1 K z < algo).
Let e = a(go) — 1 > 0 in (3.3)) and define
v = inf{[la(g0) — 2l : (90, 2) € O7}.

It is easy to see that there exists (go,z) € O* such that v = |la(go) — x|l with
0 < v < 1, which implies that a(go) — =z < v(a(go) — z1); i-e.,

z > (1—7)algo) + ya1.

Since a(gp) > w1, the monotonicity and strong concavity of the skew-product
semiflow implies that

u(t, go, z) > (1 = y)u(t, 9o, algo)) + yu(t, go, ¥1)- (3.7)
In view of the property of the cone, there exists vg with 0 < 79 < 7 such that
u(t, go,x) > (1 = y0)algo - t) +voul(t, go, 1),
Hence, there exists (go,y) € O* such that
y = (1 —=0)algo) + ~oz1;

i.e., a(go) —y < 70(a(go) — 1) = 7Yoe, which implies that [la(go) — ylle < 70 < 7.
This contradicts the definition of ~. O

Theorem 3.13. If 01 <¢ Os, then Oy is the copy of the base Y, i.e., for each
g€eY, card(Oxa N7 t(g)) = 1.

Proof. Since Oy <¢ Oz, Theorem 312 tells us Ao, < 0, the remaining is concluded
by Theorem [3.5 O

Next, we introduce the main result of this article.

Theorem 3.14. If (A1) and (A2) hold, then for any (g,xz) € Y x X\ {0} either

(i) limy_ o ||u(t, g, )| = +o0, or
(i) there exists an equilibrium point set O* C'Y x int X T such that O(g,x) =
O* and limy_, o ||u(t, g,z) — u(t, g,2*)|| = 0, where (g,z*) = O* N7~ 1(g).
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Proof. On the contrary, we assume that (i) does not hold; i.e., the forward orbit
of the skew-product semiflow is bounded, From (A1) we know {II(¢,g,z)|t > 0}
is precompact. The eventually strong monotonicity implies that if (g,z) € ¥ x
(X+\ {0}), then O(g,z) =: O* C Y x int X*. It then follows from (A2) that
0(g,0) =: O° C Y x {0}. Hence, O° <¢ O*. Thus, Theorem implies that
Ao+ < 0. Furthermore, Theorem [3.13] and Corollary [3.6] show that O* is a copy of
the base Y and an equilibrium set, i.e., card(O* N7~ 1(g)) =1, forall g € Y.
Next we prove that lim; o ||u(t, g, 2) — u(t,g,2*)|] = 0. On the contrary, we
assume there exists a sequence t,, — oo and a positive constant € > 0 such that
lu(tn, g, ) — u(tn,g,2*)|| > € for all n > 1. Denote lim, o (¢, g,2) = (g,Z1)
and lim,, o I(t,, g,2%) = (g, Z2), where (g,2*) = O* N7~ 1(g). Since card(O* N

771(g)) = 1, we have 1 = Ty. Thus, 0 = |71 — Z2|| = limy—oo ||u(tn, g,2) —
u(tn, g,2%)|| > €, a contradiction holds. Hence, lim;_, ||u(t, g,2) — u(t,g,2*)|| =
0. O

Consider the almost periodic delay differential equation

y'(t) = flty(t),y(t 1)), VteR",

y(s) = ¢(5)7 Vs € [_150]’
where ¢ € C* := C([-1,0],R%), the function f = (f1, f2,..., fn) : RT X R* x R"
is almost periodic ( Let (X,d) be metric space, a function f € C(R, X) is said to
be almost periodic if for any € > 0, there exists [ = I(¢) > 0 such that every

interval of R of length [ contains at least one point of the set T'(e) = {r € R :

d(f(t+71), f(t)) < e, ¥t € R}). In addition, we propose the following properties:
(i) for each y,z € R™, ¢t € R and i # j, g’i/: (t,y,2) > 0; If T and J form a
partition of N = {1,2,...,n}, then there exist § > 0,7 € I and j € .J, such

that
| afi
dy;
(ii) for y,z € R", t € R and i,j5 € {1,2,...,n}, gfj (t,y,z) > 0. Furthermore,
There exists § > 0 such that '
|8fi
('9zj
(ili) there exists go € Y such that f
(a) is concave with respect to (y, 2), i.e., whenever y! < g2, 2! < 22
FEA 2 + (1 =N 2%) 2 A (6 2Y) + (L= N F(E (67, 2%)
for A € [0,1] and t € R™;
(b) is strongly concave with respect to (y,z2); i.e., whenever y! < 32,
2t < 22,
FEAY 2+ Q=N 2%) > Af(t (y'2h) + (L= N f(t (%, 2%));
for A € (0,1) and ¢ € [0,1];
(iv) f(-,0,0) =0.
We embed (3.8)) into the skew-product semiflow IT : RT x Y x C* — Y x C*

H(t’ga¢) = (Ut(g)au(tag7¢))v (39)

(3.8)

(t,y,2)| =6, Vy,zeR"teER;

(t,y, 2)| > 6;
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where for 6 € [_170]7 u(t7gv¢)(9) = y(t =+ aagad))a and Ut(g(57 5 )) = 9(57 Y ) t=
gt +s,-,-). y(t,g,) is the solution of the equation

yl(t) = g(ta y(t)v y(t - 1)), (310)
and for 6 € [-1,0] and g = (91,92,---,9n) €Y, y(0,9,6) = ¢(0), where

Y= Cls{ft|t207 ft(sa'?'):f(t+57'7')}7

the closure is defined in the topology of uniform convergence on compact set. From
the above we deduce that Y is compact metric space and (Y, o, R") is minimal. By
the standard theory of delay differential equations (refer to [2 4]), we know that
for all ¢ € Y and initial value ¢ € C, (3.8) admit a unique solution y(t, g, ¢), i.e.,

for 0 € [-1,0], y(0,g,9) = ¢(0). If y(t, g, ) is the unique solution of (3.8)) in the
existence interval of ¢, then u(t, g, @) exists for all ¢ > 0, and the forward orbit

{u(t,g,¢)|t > 1+ 4§} is precompact for 6 > 0.
Theorem 3.15. The skew-product semiflow (3.9)) is eventually strongly monotone

and satisfies concavity and strongly concavity, respectively; i.e., there exists gy € Y
such that
Au(t, g,v) + (1 — Nu(t, g,w) < ult,g, v+ (1 —Nw)
whenever w > v, t >0, A€[0,1] and g €Y, and
Au(t, go, v) + (1 — Nu(t, go, w) < u(t, go, Av + (1 — N)w)
whenever w > v, t > 1 and X € (0,1).
Proof. The eventually strong monotonicity can be obtained from [0 [7]. Let A €
(0,1) and Zy(t) = Ay(t, g,v) + (1 = Ny(t, g,w), so
!
Zg = )‘g(ta y(t7g,1}),’l)(t - 1)) + (1 - )‘)g(tvy<t7gaw)a ’LU(t - 1))? vt € [Oa 1]

By the monotonicity of the skew-product semiflow, if v < w, then y(t,g,v) <
y(t, g,w). It then follows from (iii)(a) that

Z1(t) < glt, Zy(#), Mot — 1) + (1 — Nw(t — 1)), V¢ € [0,1].

From (i), (ii) and comparison theorems for this kind of ordinary differential
equation (see [I]), we have

Ay(t, g,v) + (1= Ny(t, g,w) <yt g, w+ (1 —Nw), Vte[0,1]
An inductive argument shows that for each n € N,
My(t,g,v) + (1= Ny(t, g, w) <y(t,g, w+ (1 = Nw), Vte[n,n+1].
Hence,
Au(t, g,v) + (1 = Nu(t, g, w)) < ult,g, w+ (1 —-Nw), Vt=>0.

If v < w, the strong monotonicity implies y(¢, go, v) < y(t, go, w). From (iii)(b),
for each t € [1, 2],

2go (1) < go(t, 2g, (1), Aot — 1) + (1 = Nw(t — 1)).

Using a same process, comparison theorems provide Z,, (t) < y(t, go, Av+(1—Mw).
Hence,

Ay(t, go,v) + (1 — Ny(t, go, w)) < y(t, go, Av + (1 — Nw), Vt>0.
That is,
Au(tagOa ”U) + (1 - /\)u(t7907w)) < u(t7907 Av + (1 - )‘)w)v vt > 1.
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The proof is complete. O

Theorem 3.16. If (3.8) admits a bounded solution y(t, @), then there exists an
almost periodic solution y*(t), lim;—.o [|y(t,®) —y*(t)|| = 0 for ¢ € C* with ¢(0) >
0.

Proof. Theorem tells us that the skew-product semiflow (3.9) is eventually
strongly monotone and (strongly) concave. For any (g, ¢) € Y x C* with ¢(0) > 0,
we conclude O* := O(g,¢) C Y x int CT. It then follows from Theorem that

limy oo [|y(t, @) — y*(t)]| = 0, where (g,y*(t)) = O* N7~ 1(g). O
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