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SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC
SYSTEM ON RY

FANGFANG LIAO, XIANHUA TANG, JIAN ZHANG, DONGDONG QIN

ABSTRACT. This article concerns the elliptic system
—Au+V(z)u = Wy(z,u,v), xcRV,
—Av 4 V(z)v = Wy(z,u,v), xRN,
u,v € H? (RN),

where V and W are periodic in , and W (z, z) is super-linear in z = (u,v). We
use a new technique to show that the above system has a nontrivial solution
under concise super-quadratic conditions. These conditions show that the
existence of a nontrivial solution depends mainly on the behavior of W (z, u, v)
as |u +v| — 0 and |au + bv| — oo for some positive constants a, b.

1. INTRODUCTION
In this article, we study the elliptic system
—Au+V(z)u = W,(z,u,v), xcRY,
—Av+V(z)v = Wy(z,u,v), xRV, (1.1)
u,v € Hl(]RN),
where 2 := (u,v) € R, V:RY - Rand W : RY x R? - R.
Systems similar to have been considered recently; see for instance

@ and references therein.

For the superquadratic case, it always assumed that W satisfies the Ambrosetti-
Rabinowitz condition

(AR) there is a p > 2 such that
0<uW(x,2) <Weo(2,2)-2, VY(r,2) eRY xR? 2#0. (1.2)
We use the assumption that there exist ¢ > 0 and v € (2N/(N + 2),2) such that
W, (2, 2)]" <c[l +W.(z,2) 2], ¥Y(zr,z)eRY xR?, (1.3)
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or the super-quadratic condition

e W@ 2)

) P =00, uniformly in z € RV, (1.4)
z|—o0 V4

and a condition of the Ding-Lee type,

(DL) W(z, z) := iW.(%,2) -z —W(z,z) >0 for z # 0 and there exist ¢ > 0 and
k > max{1, N/2} such that

W, (z,2)|" < é|z|”W(x,z), for large |z|. (1.5)

Observe that conditions and W(z,z) > 0,Vz # 0 in (AR) or W(z,2) >
0,V z # 0 in (DL) play an important role for showing that any Palais-Smale se-
quence or Cerami sequence is bounded in the aforementioned works. However,
there are many functions that do not satisfy these conditions, for example,

W (z,u,v) = (u? +uv + v?) In(1 + u?),

or
Wz, u,v) = (u+ 2v)*Vu2 + v2.
In a recent paper Liao, Tang and Zhang [11] studied the existence of solutions
for system ([1.1)) under the following assumptions on V' and W:
(V1) V € C(RN,R), V() is 1-periodic in each of 21, z2, ..., 7y, and mingy V >
Bo > 0;
(W1) W € C(RN xR2,R*), W(x, 2) is 1-periodic in each of 21, x, . .., 2, contin-
uously differentiable on z € R? for every z € RY, and there exist constants
p € (2,2%) and Cy > 0 such that

W.(z,2)| < Co (L+]2[P7Y), V(z,z) € RY x R?;

W2) |W,(z,2)| = o(|z]), as |z| — 0, uniformly in 2 € RY;

( of y

(W3) l/i\r/rl|u+v‘_,oo % =00, a.e. z € RY;

(W4) W(z,z) > 0 for all (z,2) € RY x R2, and there exist cg, Ry > 0 and
k > max{1, N/2} such that

2
Wl 0,0) + Wo(o,w,0)] < Z0VB 402, o2 402 < B3
and

(W (z,u,v) + Wy (z,u,v)|" < ¢ (U2 + UQ)K/Q W

W(x,u,v), u®+v?> R2
Specifically, Liao, Tang and Zhang |11] established the following theorem.

Theorem 1.1 ( [11, Theoreml1.2]). Assume that (V1), (W1)-(W4) are satisfied.
Then (1.1) has a nontrivial solution.

As shown in [11], (W3) is different from usual superquadratic conditions (AR)
and , and is weaker than . Clearly, (W4) is significantly weaker than (DL).
By a variable substitution, instead of (W3) and (W4), the following more general
conditions were used:

(W3) there exist a,b > 0 such that
(W, u, v)|

o =00, ae. z e RY;
|au+bv|—o0 \au+bv|
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(W4") W(x,2z) > 0 for all (z,2) € RY x R2, and there exist c¢;, R, > 0 and
k > max{1, N/2} such that

2
bW (2, u, v) + aW, (2, u, v)| < %\/ u? +v2,  a*u® +b*? < R,

bW (@, u,v) + aWy(z,u,v)|* < ¢1 (a®u® + bZUZ)K/2 W(x, u,v),
a?u? + b%v? > R%.
Motivated by [11], we obtain a super-quadratic condition more concise than (W4’):
(W5) W(z,2) > 0 for all (z,2) € RY x R2, and there exist 6 € (0,1), ap > 0,
and x > max{1, N/2} such that

(bW (z, 2) + aWy(z, 2)|

2|
N (|bWu(x,z) |—|Z—aWU(x,z)|

> 05y min{a, b}

)H < agW(z, 2).

By introducing new techniques, under (W3’) and (W5), we obtain the linking struc-
ture and the boundedness of a Cerami sequence of the energy functional associated
with ((1.1). Specifically, we obtain the following theorem.

Theorem 1.2. Assume that(V1), (W1), (W2), (W3’), (W5) hold. Then has
a nontrivial solution.

Remark 1.3. Note that (W5) is weaker than (DL) and than (AR). Since

bW, + aW,| < Va2 + b2|W,(x, 2)|,
in view of (W2), it is clear that (DL) implies (W5). If W (x, z) satisfies (1.2)), then
there exist ¢1, R1 > 0 such that

Wz(x,z) "z ﬂW(%Z) > cl|z\”, |Z| > Ry, (16)

Wz, 2) > “T_sz(x,z) 250, VzeR2\{0}. (1.7)

Let k =v/(2 —v). Then £ > max{1, N/2}. Hence, it follows from (1.3, (1.6 and

(1.7) that
(W, (2, 2)|" < co|W,(z,2)|" " W,(x,2) - 2

< 03\z|(“_”)/(”_1)W(9€, z) (1.8)
= csl"W(,2), |2 = Ri.
This shows that (DL) holds, and so (W5) holds.

Before proceeding with the proof of Theorem we give a nonlinear example
to illustrate the assumptions.

Example 1.4. W(z,u,v) = h(z)(u + 2v)2Vu2 + v2, where h € C(RY, (0,0)) is
1-periodic in each of the variables x1,xo,...,2n. Then

— 1
W(z,u,v) = ih(x)(u +20)%Vu2 + 02, wu,veER.
Therefore all conditions (W1), (W2), (W3’), (W5) are satisfied with a = 1,b = 2

and k < 3. Note that W(x,u,v) = W(z,u,v) = 0 for v = —2v, v € R, thus W
does not satisfy (AR) and (DL).
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The rest of this article is organized as below. In Section 2, we provide a varia-
tional setting. The proofs of our main results are given in the last section.

2. VARIATIONAL SETTING

Under assumption (V1), we can define the Hilbert space

By ={ue H'(R"Y): /]RN(\VM2 + V(z)u?)dz < +o0}

equipped with the inner product
(u,v)g, = / [Vu- Vo + V(z)uv]dz, Yu,v € By,
RN

and the corresponding norm

1/2
fulley = ([ [9uP+ Viulas) " vue Ey. (2.1)
RN
By the Sobolev embedding theorem, there exists constant v, > 0 such that
lulls < vsllullz,, Yue H'(RY), 2<s <27, (2.2)
here and in the sequel, by || - ||s we denote the usual norm in space L*(RY).

Let F = FEy x Ey with the inner product
(21, 22) = ((u1, v1), (uz, v2)) = (ur, u2) By + (v1,02) By,
for z; = (us,v;) € E, i = 1,2, and the corresponding norm || - ||. Then there hold
21 = lullZy, + ol V2= (wv)€E (2.3)
and
2115 = /N(U2 +07)*2 de < 207272 (|3 + ||o]l?)
R

< 26707297 (|full, + 0ll5,) (2.4)
o s s/2

< 26720258 (lullz, + lvliE,)

- 2(372)/2%5”2”8’ Vs € [2,2%], z = (u,v) € E.

Now we define a functional ® on E by

O(z) = / (Vu - Vo + V(x)uv) de — W(z,u,v)dz, Vz=(u,v)€ E. (2.5)
RN RN
Consequently, under assumptions (V1), (V2), (W1), (W2), (W3), it is well known
that @ is C1(E,R), and

((2),¢) = / (V- Vi + Vo - Voo + V(@) (wp + vp)] da
RY (2.6)
_ /RN (W (z,u,v)p + Wy (z,u,v)¢] de,
for all z = (u,v), ( = (p,¥) € E. Let
B~ ={(u,—u):uc H'RY)}, ET ={(u,u):uec HRM)}.
For any z = (u,v) € E, set

Co(UIY () e
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It is obvious that 2 = 27 4+ 2%, 2~ and 2T are orthogonal with respect to the inner
products (+,+)z2 and (-,+). Thus we have E = E~ @ ET. By a simple calculation,
one can get that

3 (=17 = 1717) = [ (9 Vot Ve dr

Therefore, the functional ® defined in ([2.5)) can be rewritten in a standard way

O(z2) = % (1112 = 11=~117) - /RN W(z,z)dz, Vz=(u,v)€E. (2.8)
Moreover
(@'(2),2) = l7I1* = =7 |1 - /RN [We(,u,v)u + Wy (2, u, v)v] da, (2.9)

for all z = (u,v) € E.

3. PROOFS OF MAIN RESUTLS

To give the proofs of our results, we set
U(z) = W(z,z)dz, Vze€E. (3.1)
RN
Lemma 3.1. Suppose that (W1), (W2) are satisfied. Then ¥ is nonnegative, weakly
sequentially lower semi-continuous, and V' is weakly sequentially continuous.

Using the Sobolev’s imbedding theorem, one can easily check the above lemma,
so we omit the proof.

Lemma 3.2. Suppose that (V1), (W1), (W2), (W3’) are satisfied. Then there is a
p >0 such that k1 := inf ®(SF) >0, where S} = 0B, N E*.

The above lemma can be proved in standard way; we omit its proof.

Lemma 3.3. Suppose that (V1), (W1), (W2), (W3’) are satisfied. Let e = (eq, €p)
belong to Et with |le|| = 1. Then there is a constantr > 0 such that sup ®(9Q) < 0,
where

Q={C+se:(=(w,—w) € E~,s>0, |+ sel| <r}. (3.2)

Proof. By (W1) and (2.8), ®(z) < 0 for z € E~. Next, it is sufficient to show
that ®(z) — —o0 as z € E~ @ Re for ||z|| — oo. Arguing indirectly, assume
that for some sequence {(, + spe} C E~ @ Re with ||{, + sne| — oo, there is
M > 0 such that ®({, + spe) > —M for all n € N. Set §, = (wp, —wy), & =
(Cn + 3n€)/||Cn + snell = &, + tne, then ||§,, + trel| = 1. Passing to a subsequence,
we may assume that ¢, — t and &, — £ in E, then &, — £ a.e. on RV, & — ¢~
in E, & = (W, —W,) =& = (w,—w), and

M < D(Cpn + sne)

[Gn + snell® 7 [|Gn + snel?

3.3
2 1 ”57”2 / Wz, wy, + speo, —wy, + Speo) d (3:3)
_ W1 _ x.
2 27" RN [[Gn + snell?
If £ = 0, then it follows from ([3.3]) that
1, W(x,w, + sneqg, —wWy, + Spe t% M
ogf||gn\|2+/ ( 0 W F8nc0) gt M
2 RN ||<n+5ne|| 2 ||<n+5n€”
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which yields ||€,, || — 0, and so 1 = ||&,|| — 0, a contradiction.

If £ # 0, then
(a —b)w + (a+b)tey # 0. (3.4)
Arguing indirectly, assume that (a — b)w + (a + b)teg = 0, then a # b and
t? = nh_)rrolo 2
>l inf (T + )
> [lgm )

- / (Ve 4+ V()¢ ] do
RN

a 2 2
(e /RN 1Vel? + V(@)le]?] de
- 1?2/ (Vel? + V(@)|el?] dz = 2,

RN

which is a contradiction.
Let Q= {z € RY : (a — b)w(x) + (a + b)teo(x) # 0}. Then (3.4) shows that
|2] > 0. Since ||, + sne|| — oo, for any = € ), one has
|a(wn () + sneo(x)) + b(—wn(z) + sneo(x))]
= [I¢n + snelll(a — b)wn(z) + (a + b)tneo(z)| — oo

Let 1, = a(Wy, + theg) + b(—W;, + theg). It follows from (3.3), (3.4), (W3’) and
Fatou’s lemma that

t2 1 W n nt0, — Wn n
0 < limsup [77177”5;”27/ (-T,w + Sp€o, —Wn + 5 60) dx}
RN

21 W (x, wy, + $peo, —Wn + $neo)
= limsu [l_f —2_/ n tonmh Tnlon 2dyc}
THOOp 2 2 &l &y |a(wn + speo) + b(—wy, + sneq)|? 1]
1 w —
< — lim t% — liminf/ (@, Wn + Sn€0, ~tn + Sno) 5 |7)n|2 dx
n—00 n—oo Jpn |a(wy + snep) + b(—wy, + speo)|
2 _
S L _ / lim inf W(x7wn + Sn€o, —Wn + 8n60) > |77n|2 dz
2 RN n—00 \a(wn + Sneo) + b(_wn + Sneo)‘
= _OO,
a contradiction. O

Applying the generalized linking theorem [8}/10] and standard arguments, we can
prove the following lemma.

Lemma 3.4. Suppose that (V1), (W1), (W2), (W3) are satisfied. Then there exist
a constant ¢, € [ko,sup ®(Q)] and a sequence {zp} = {(un,vn)} C E satisfying

D(zn) = x, P (20) (1 + fl2nll) — O (3.5)
where @Q is defined by .

Lemma 3.5. Suppose that (V1), (W1), (W2), (W3’), (W5) are satisfied. Then any
sequence {zn} = {(un,v,)} C E satisfying (3.5)) is bounded in E.
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Proof. To prove the boundedness of {z,}, arguing by contradiction, suppose that
|lzn]] — oco. Let

_ Zn L e oy (auy + by, aun+bvn)
En = ||an = (‘Pnawn)y Zn = (Unavn) = ( 2% > % )
Fo_ A n L én _ aPn + bwn aPn + b"/)n
b= (Gn )= 0 = (g )

By (W1), , , , and , one obtains

2c. +o(1) = [lzF]1> = ||z, 1* - 2/ W (x,2,) dz < |51 = ||z, 1%, (3.6)
]RN
et+o(l)= | Wz, 2)dz, (3.7)
RN
and
2 2
A2 @ +b 9
201" = Wllaun + bvn |,
a4+ b 2 2 2 2
= e [l + 5o, +2ab/RN(Vuann+V(x)unvn)}
a? + 07, 2 2 2
- [a lunlZ + 62|l + 2ab(<1>(zn) + W(xmmvn)dxﬂ
10702 v v o
2 b2
> L lmin{a?, 82} zal? + 2ab(e. + o(1)],

which implies
lonl < LLE—TFY
Zn — mnils
va? 4+ b2 min{a, b}

a,b> 0. (3.8)

Note that

s a® + b?
”gn”2 = 1a2h2 llaspn + b7/JnH2EV

a? +v? )

< 4a2h2 (a”(pn”Ev +b||¢nHEv)
a? +v?

= 2a2h2 (GQHSDnHJQEV +b2||1/’nH12Ev) (3.9)
(a? + v?)?

< o Ulenlzy + 19alE,)

@+ o (@ +0%)?

= W”fn” = oz

which implies that {&,} is bounded. If § := limsup,, .. SUp, cgN fB(y 1 ]2 da =

0, then by Lions’s concentration compactness principle |18, Lemma 1.21], ap, +
by, — 0in L5(RY) for 2 < s < 2*. Set k' = k/(k — 1) and

(bW (2, Uy vp) + aWy (X, U, vy

EM

anz{xeRN:

< 06y min{a, b}}7
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then 2 < 2k’ < 2*. Hence, by (W1), (W2), (W3), it follows from (2.1, (2.3)), (3.8
and Holder inequality that

/ [bWo (2w, v3) + aWoy (2, up, vy )||aty, + bu, | de
Qn

< / |bWu<$,Un7’Un)+GWD(I,U7L,’U”)
Q’Vl

N |20

| |2n||atr, + bu,| dz

< 06y min{a, b}/ |2 || @ty + bvy| dz
Qn

1/2 1/2
< 68y min{a, b} (/ |2n|? dx) (/ |laty, + bu,|? dx) (3.10)
RN RN .

< #min{a, b}||zn||Haun + bun || By

= Omin{a, b}z, || —=|%x||

\/7

2abmin{a, b} 2ab R
LA L) S R—P
Vaz+b Va2 + b2 min{a, b}
2
=0 el

On the other hand, by (W5), (2.4)), (3.7), (3.8) and Hélder inequality, one obtains
that

/ (bW (2, U, v3) + aWy (2, U, vp)||atn, —|—bvn|
RM\Q, [EAl

_/ bW (2, un, vn) + Wy (2, Un, vn)|[€nllan + b¢n|
RN\Q,,

|2 ]

, 1/2r' , 1/2k'
X (/ €, [2 dx) (/ lan + by |2 dx) (3.11)
RN\Q,, RN\Q,,

—~ 1/k
< ([ colW(ez)do) 6o lagn + bz
RN\Q

< (e + 0(1)* [|€nll lan + bton 2w
< (cearg + 0(1)) /72002y €| [lapn + bl |w
= 0(1).
Combining (|3 with ( and using , and ( .7 we have

;aij_b; +o(1)
@) )
a? +b 120l
= ||73i|\2 /RN W (T, U, vp) + AWy (2, Un, vy)] (aty, + bvy) dz
= ||73i|\2 / Wy (x, Un, V) + aWy (2, Un, vp)] (aty, + bvy,) dz

n



EJDE-2015/127 SUPER-QUADRATIC CONDITIONS 9

L
122
4a%b?
= 9a2 + b2
This contradiction shows that § # 0.
If necessary going to a subsequence, we may assume the existence of k, € ZV
such that fBH\/ﬁ(kn) |€n)2da > ¢. Since 1€a]2 = %an + bip, |2, one can get

that

/ [OWy (2, Uy, vy) + aWy(x, up, vp)] (auy, + buy,) dz
RN\Q,,

+o(1). (3.12)

2a°b?
By yn(kn) a” +

Let us define @, () = @n (@ + kn), ¥n(z) = ¥n(x + k) so that

- ~ 2a2b?
/ lapn + by | dz > 271)25. (3.13)
Bl+\/ﬁ(0) a +

Now we define @y, (z) = un(x + ky), On(x) = vo(x + k), then @, = @y /|20l
Un = On/||zn||. Passing to a subsequence, we have a@,(z) + b, (z) — a@(x) +
bip(z) in By, agn(z) + bibu(z) — ap(x) + bp(x) in L (RN), 2 < s < 2* and
apn () + b (z) — a@(x) + bp(x) a.e. on RY. Obviously, ([3.13) implies that
ap(z) + bip(z) # 0. Since ||z,|| — o0, for ae. z € {y € RN : a@(y) + bip(y) # 0} :==
Q, we have

lim_adin (2) + b0 (2)] = T ||2 | la@n() + bihn ()] = +o0.

noo
By (W3), and Fatou’s lemma, we have
0= lim & +0(1) . D(z,)
TP A TP
= lim _%H&TII2 - %HQHQ - M/||(zi;n) dx}
< Jim L - Jle 1 - [ I o, b, ad]
— tim [l - [ SRS g ]

. . W(xv ﬂna ’En) ~ 72
=3- /leigf [m'“% + ] dw = —oo,
which is a contradiction. Thus {z,} is bounded in E. O

Proof of Theorem[I.3. Applying Lemmas and we deduce that there exists
a bounded sequence {z,} = {(un,v,)} C E satisfying (3.5). Thus there exists a
constant Cy > 0 such that ||z,|l2 < C3. By the Lion’s concentration compactness
principle ( [9] or [18, Lemma 1.21]), one can rule out the case of vanishing. So
nonvanishing occurs. Using a standard translation argument, we can obtain a

nontrivial solution of (1.1)). O
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