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GLOBAL EXISTENCE FOR SEAWATER INTRUSION MODELS:
COMPARISON BETWEEN SHARP INTERFACE AND

SHARP-DIFFUSE INTERFACE APPROACHES

CATHERINE CHOQUET, JI LI, CAROLE ROSIER

Abstract. We study seawater intrusion problems in confined and unconfined
aquifers. We compare from a mathematical point of view the sharp interface

approach with the sharp-diffuse interface approach. We demonstrate that, if

the diffuse interface allows to establish a more efficient and logical maximum
principle in the unconfined case, this advantage fails in the confined case.

Problems can be formulated as strongly coupled systems of partial differential

equations which include elliptic and parabolic equations (that can be degener-
ate), the degeneracy appearing only in the sharp interface case. Global in time

existence results of weak solutions are established under realistic assumptions
on the data.

1. Introduction

In coastal zones, which are densely populated areas, the intensive extraction of
freshwater yields to local water table depression causing sea intrusion problems.
In order to get an optimal exploitation of fresh water and also to control seawater
intrusion in coastal aquifers, we need to develop efficient and accurate models for
simulating the transport of salt water front in coastal aquifer. We refer to the
textbooks [4, 5, 7] for general information about seawater intrusion problems.

We distinguish two important cases: the case of free aquifer and the one of con-
fined aquifer. In each case, the aquifer is bounded by two layers with lower layer
always supposed to be impermeable. The upper surface is assumed to be imper-
meable in the confined case and permeable in the unconfined case (the interface
between the saturated and unsaturated zones is thus free).

The basis of the modeling is the mass conservation law for each species (fresh
and salt water) combined with the classical Darcy law for porous media. In the
present work we essentially have chosen to adopt the simplicity of a sharp inter-
face approach. This approach is based on the assumption that the two fluids are
immiscible. We assume that each fluid is confined to a well defined portion of the
flow domain with a smooth interface separating them called sharp interface. No
mass transfer occurs between the fresh and the salt area and capillary pressure’s
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type effects are neglected. This approximation is often reasonable (see e.g. [4] and
below). Of course, this type of model does not describe the behavior of the real
transition zone but gives information concerning the movement of the saltwater
front.

Following [10], we can mix this abrupt interface approach with a phase field
approach (here an Allen–Cahn type model in fluid-fluid context see e.g. [1, 2, 8, 12])
for re-including the existence of a diffuse interface between fresh and salt water
where mass exchanges occur. We thus combine the advantage of respecting the
physics of the problem and that of the computational efficiency. The same process
is applied to model the transition between the saturated and unsaturated zones in
unconfined aquifers.

From a theoretical point of view, in the unconfined case, two advantages resulting
from the addition of diffuse areas compared to the sharp interface approximation
are stated in [11]:
• If diffuse interfaces are both present, the system has a parabolic structure, so it

is not necessary to introduce viscous terms in a preliminary fixed point for treating
degeneracy as in the case of sharp interface approach.
• The main advantage is that we can now demonstrate a more efficient maximum

principle and logical from the point of view of physics, which can not be established
in the case of sharp interface approximation. (see for instance [13, 16, 19]).

However the latter is no longer valid in the confined case. Indeed, we need
to assume a freshwater thickness strictly positive in the interior of the aquifer to
ensure uniform estimation in the L2 space of the gradient of the freshwater hydraulic
head. This artificial condition is always necessary in the case of diffuse interface.
The maximum principle is then identical in both cases (sharp interface and sharp-
diffuse interface).

The outline of this article is as follows. Section 2 is devoted to models and
their derivation: we model the evolution of the depth h of the interface between
freshwater and saltwater and of the freshwater hydraulic head (in the confined case)
and of depths h and h1, the interface between the saturated and unsaturated zone
(in the unconfined case). The resulting models consist in a system of strongly and
nonlinearly coupled PDEs of parabolic type in the case of free aquifer and a system
of strongly and nonlinearly coupled PDEs of elliptic-parabolic type in the case of
confined aquifer. In section 3 all mathematical notations are stated and global in
time existence results are established in the two following cases: the confined case
with sharp-diffuse interface approach and the unconfined case with sharp interface
approach. The section 4 is devoted to the proof of the existence results: we apply
a Schauder fixed point strategy to a regularized and truncated system then we
establish uniform estimates allowing us to turn back to the original problem.

2. Modeling

Introducing specific index for the fresh (f) and salt (s) waters, we write the mass
conservation law for each species (fresh and salt water) combined with the classical
Darcy law for porous media. Hydraulic heads Φi, i = f, s are defined at elevation
z by

Φi =
Pi
ρig

+ z,



EJDE-2015/126 SEAWATER INTRUSION MODELS 3

where Pi denotes the pressure. The Darcy law relating together the effective velocity
qi of the flow and the hydraulic head Φi reads:

qi = −Ki∇(Φi), Ki =
κρig

µi
. (2.1)

Characteristics ρi and µi are respectively the density and the viscosity of the fluid,
κ is the permeability of the soil and g the gravitational acceleration constant. The
matrix Ki is the hydraulic conductivity. It expresses the ability of the ground to
conduct water, Ki is proportional to κ the permeability of the ground which only
depends on the characteristics of the porous medium and not on the fluid.

At this point, using (2.1), we derive from the mass conservation law for each
species (fresh and salt water) the following model:

Si∂tΦi +∇ · qi = Qi, qi = −Ki∇Φi, Ki = kgρi/µi.

The coefficient of water storage Si (i = f, s) characterizes the workable water
volume. It accounts for the rock and fluid compressibility. In general, this coefficient
is extremely small because of the weak compressibility of the fluid and of the rock.
In the present work, we choose to neglect it but we emphasize that, in the case of
free aquifer, Sf∂tΦf is of order of φ∂tΦf , with φ the porosity of the medium.
Let us now exploit Dupuit approximation which legitimates the upscaling of the 3D
problem to a 2D model by vertical averaging. We integrate the mass conservation
law between the interfaces depths h and h1 in the fresh layer and between h and
the lower topography h2 , in the salty zone. The averaged mass conservation laws
for the fresh and salt water thus read

SfBf∂tΦ̃f = ∇′ · (Bf K̃f∇′Φ̃f )− qf
∣∣
z=h1

· ∇(z − h1) + qf
∣∣
z=h
· ∇(z − h) +Bf Q̃f ,

(2.2)

SsBs∂tΦ̃s = ∇′ · (BsK̃s∇′Φ̃s) + qs
∣∣
z=h2

· ∇(z − h2)− qs
∣∣
z=h
· ∇(z − h) +BsQ̃s,

(2.3)

where ∇′ = (∂x1 , ∂x2). The coefficients Bf = h1 − h and Bs = h − h2 denote the
thickness of the fresh and salt water zones and Φ̃i, i = f, s, the vertically averaged
hydraulic heads

Φ̃f =
1
Bf

∫ h1

h

Φfdz and Φ̃s =
1
Bs

∫ h

h2

Φsdz.

The source terms Q̃i, i = f, s represent distributed surface supplies of fresh and salt
water into the aquifer. Besides sharp interface assumption implies the continuity
of the pressure at the interface between salt and fresh water, it follows that

(1 + α) Φ̃s = Φ̃f + αh, α =
ρs
ρf
− 1. (2.4)

Here the parameter α characterizes the densities contrast. Equation (2.4) allows us
to avoid Φ̃s in the final system.

Our aim is now to include in the model the continuity properties across interfaces
in view of expressing the four flux terms in (2.2)-(2.3). First, since the lower layer
is impermeable, there is no flux across the boundary z = h2:

qs|z=h2 · ∇(z − h2) = 0. (2.5)
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In the same way, in the case of confined aquifer, the upper layer is impermeable,
thus

qf |z=h1 · ∇(z − h1) = 0. (2.6)
At the interface between fresh and salt water, we present the two following ap-
proaches:
• Sharp interface approach. With the traditional sharp interface characterization,
there is no mass transfer across the interface between fresh and salt water, i.e. the
normal component of the effective velocity ~v is continue at the interface z = h,(qf |z=h

φ
− ~v
)
· ~n =

(qs|z=h
φ
− ~v
)
· ~n = 0,

where ~n denotes the normal unit vector to the interface. Thus we obtain

qf |z=h · ∇(z − h) = qs|z=h · ∇(z − h) = φ∂th (2.7)

• Sharp-diffuse interface between fresh and salt water. This approach includes
now existence of miscible zone, taking the form of diffuse interface of characteristic
thickness δ between fresh and salt water. Upscaling the 3D-dynamics of the diffuse
interface assumed ruled by a phase field model, we obtain the following continuity
equation instead of (2.7) (see [10] for more details about the derivation of this
equation):

qf |z=h · ∇(z − h) = qs|z=h · ∇(z − h) = φ(∂th− δ∆′h) (2.8)

The same approach for the capillary fringe in the unconfined case yields

qf |z=h1 · ∇(z − h1) = φ(∂th1 − δ∆′h1) (2.9)

Finally, the following assumptions are introduced for sake of simplicity in the no-
tation. The medium is assumed to be isotrope and the viscosity the same for the
salt and fresh water, then

K̃s = (1 + α)K̃f . (2.10)
We re-write models with some notational simplifications. The ‘primes’ are sup-
pressed in the differentiation operators in R2 and source terms are denoted without
‘tildes’. We also reverse the vertical axis thus changing h1 into −h1, h into −h, h2

into −h2, z into −z (bearing in mind that now Bs = h2 − h, Bf = h− h1).
In the case of confined aquifer, the well adapted unknowns are the interface

depth h and the freshwater hydraulic head Φf . We set αK̃f = K and Φ̃f = αf .
The final model then reads

−∇ · (K(h2 − h1)∇f) +∇ · (K(h2 − h)∇h) = BfQf +BsQs,

φ
∂h

∂t
+∇ · (K(h2 − h)∇f)−∇ · (K(h2 − h)∇h)− βδh∇ · (φ∇h) = −BsQs.

The coefficient β is equal to 0 in the case of sharp interface and to 1 in the case of
sharp-diffuse interface.

In the case of an unconfined aquifer, the unknowns are the interfaces depths
h and h1. Since quantities h and h1 are only meaningful inside the aquifer, we
introduce in the final model h+ = sup(0, h) and h+

1 = sup(0, h1). Neglecting the
storage coefficient Sf and introducing the characteristic function X0 on the interval
(0,+∞), the sharp-diffuse interface model reads

φX0(h1)∂th1 −∇ · (K̃fX0(h1)((h− h1) + (h2 − h))∇h1)

− β∇ · (δφK̃fX0(h1)∇h1)−∇ · (K̃fα(h2 − h)X0(h)∇h) = −BfQf −BsQs,
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φX0(h)∂th−∇ · (αK̃f (h2 − h)X0(h1)∇h)− β∇ · (δφX0(h)∇h)

−∇ · (K̃fX0(h1)(h2 − h)∇h1) = −BsQs.

Again the coefficient β is equal to 0 in the case of sharp interfaces and to 1 in the
case of sharp-diffuse interfaces.

In the previous two systems, the first equation models the conservation of total
mass of water, while the second is modeling the mass conservation of fresh water.
This is a 2D model, the third dimension being preserved by the upscaling process
via the depth information h and h1.

3. Mathematical setting and main results

We consider a bounded and open domain Ω of R2 describing the projection of
the aquifer on the horizontal plane. The boundary of Ω, assumed C1, is denoted
by Γ. The time interval of interest is (0, T ), T being any nonnegative real number,
and we set ΩT = (0, T )× Ω.

3.1. Some auxiliary results. For any n ∈ N∗ and any p ∈ (1,+∞), let Wn,p(Ω)
be the usual Sobolev space, with the norm ‖φ‖Wn,p(Ω) =

∑
α∈N2,α≤n ‖∂αφ‖Lp(Ω).

For the sake of brevity we shall write H1(Ω) = W 1,2(Ω) and

V = H1
0 (Ω), E = H1

0 (Ω) ∩ L∞(Ω), H = L2(Ω).

The embeddings V ⊂ H = H ′ ⊂ V ′ are dense and compact. For any T > 0, let
W (0, T ) denote the space

W (0, T ) :=
{
ω ∈ L2(0, T ;V ), ∂tω ∈ L2(0, T ;V ′)

}
endowed with the Hilbertian norm ‖ω‖W (0,T ) =

(
‖ω‖2L2(0,T ;V )+‖∂tω‖2L2(0,T ;V ′)

)1/2.
The following embeddings are continuous [15, prop. 2.1 and thm 3.1, chapter 1]

W (0, T ) ⊂ C([0, T ]; [V, V ′]1/2) = C([0, T ];H)

while the embedding

W (0, T ) ⊂ L2(0, T ;H) (3.1)

is compact (Aubin’s Lemma, see [18]). The following result by Mignot [14] is used
in the sequel.

Lemma 3.1. Let f : R→ R be a continuous and nondecreasing function such that
lim sup|λ|→+∞ |f(λ)/λ| < +∞. Let ω ∈ L2(0, T ;H) be such that ∂tω ∈ L2(0, T ;V ′)
and f(ω) ∈ L2(0, T ;V ). Then

〈∂tω, f(ω)〉V ′,V =
d

dt

∫
Ω

(∫ ω(·,y)

0

f(r) dr
)
dy in D′(0, T ).

Hence for all 0 ≤ t1 < t2 ≤ T ,∫ t2

t1

< ∂tω, f(ω)〉V ′,V dt =
∫

Ω

(∫ ω(t2,y)

ω(t1,y)

f(r) dr
)
dy.

3.2. Main results.
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3.2.1. Case of confined aquifer. We focus here on models in confined case. We aim
giving existence results of physically admissible weak solutions for these models
completed by initial and boundary conditions. We consider that the confined aquifer
is bounded by two layers, the lower surface corresponds to z = h1 and the upper
surface z = h2. Quantity h2 − h1 is the thickness of the groundwater, we assume
that depths h1, h2 are constant, such that h2 > δ1 > 0 and without lost of generality
we can set h1 = 0. We introduce functions Ts and Tf defined by

Ts(u) = h2 − u ∀u ∈ (δ1, h2) and Tf (u) =

{
u u ∈ (δ1, h2)
0 u ≤ δ1

Functions Ts and Tf are extended continuously and constantly outside (δ1, h2) for
Ts and for u ≥ h2 for Tf . Ts(h) represents the thickness of the salt water zone, the
previous extension of Ts for h ≤ δ1 enables us to ensure a thickness of freshwater
zone always ≥ δ1 in the aquifer. We also emphasize that the function Tf only acts
on the source term Qf for avoiding the pumping when the thickness of freshwater
zone is smaller than δ1. Then we consider the following set of equations in ΩT :

φ∂th−∇ ·
(
KTs(h)∇h

)
−∇ ·

(
βδφ∇h

)
+∇ ·

(
KTs(h)∇f

)
= −QsTs(h), (3.2)

−∇ ·
(
h2K∇f

)
+∇ ·

(
KTs(h)∇h

)
= QfTf (h) +QsTs(h). (3.3)

This system is complemented with the boundary and initial conditions:

h = hD, f = fD in Γ× (0, T ), (3.4)

h(0, x) = h0(x), in Ω, (3.5)

with the compatibility conditions

h0(x) = hD(0, x), x ∈ Γ.

Let us now detail the mathematical assumptions. We begin with the characteris-
tics of the porous structure. We assume the existence of two positive real numbers
K− and K+ such that the hydraulic conductivity tensor is a bounded elliptic and
uniformly positive definite tensor:

0 < K−|ξ|2 ≤
∑

i,j=1,2

Ki,j(x)ξiξj ≤ K+|ξ|2 <∞ x ∈ Ω, ξ ∈ R2, ξ 6= 0.

We assume that porosity is constant in the aquifer. Indeed, in the field envisaged
here, the effects due to variations in φ are negligible compared with those due to
density contrasts. From a mathematical point of view, these assumptions do not
change the complexity of the analysis but rather avoid complicated computations.

The source terms Qf and Qs are given functions in L2(0, T ;H) such that Qs ≤ 0.
Notice for instance that pumping of freshwater corresponds to assumption Qf ≤ 0
a.e. in Ω × (0, T ). Functions hD and fD belong to the space

(
L2(0, T ;H1(Ω)) ∩

H1(0, T ; (H1(Ω))′)
)
× L2(0, T ;H1(Ω)) while function h0 is in H1(Ω). Finally, we

assume that the boundary and initial data satisfy conditions on the hierarchy of
interfaces depths:

0 < δ1 ≤ hD ≤ h2 a.e. in Γ× (0, T ), 0 < δ1 ≤ h0 ≤ h2 a.e. in Ω.

We state and prove the following existence result.
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Theorem 3.2. Assume a low spatial heterogeneity for the hydraulic conductivity
tensor:

K− ≤ K+ ≤
3
2
K−.

Then for any T > 0, problem (3.2)-(3.5) admits a weak solution (h, f) satisfying

(h− hD, f − fD) ∈W (0, T )× L2(0, T ;H1
0 (Ω)).

Furthermore the following maximum principle holds

0 < δ1 ≤ h(t, x) ≤ h2 for a.e. x ∈ Ω and for any t ∈ (0, T ).

Theorem 3.2 is proven in [16] in the degenerated case β = 0. The main difficulty
is the handling of the degeneracy since the classical Aubin’s Lemma can not be
applied. Furthermore, we need to assume the thickness of freshwater zone ≥ δ1 > 0
inside the aquifer to ensure an uniform estimate in L2 space of the gradient of fresh
water hydraulic head f .

With the additional diffuse interface (corresponding to the case β = 1), the
system has a parabolic structure, it is thus no longer necessary to introduce viscous
terms in a preliminary fixed point step for avoiding degeneracy . But we still need
to impose a freshwater thickness strictly positive inside the aquifer to prove an
uniform estimate of the gradient of f since the presence of the diffuse interface
does not allow us to get this estimate. We can then establish the same maximum
principle for the sharp interface approximation than for that of the diffuse interface.

3.2.2. Case of unconfined aquifer. We focus now on the unconfined case. K̃f is now
denoted by K and we set α = 1. We assume that depth h2 is constant, h2 > 0. We
distinguish the two approaches as follows :
• β = 0. We define functions Ts and Tf by

Ts(u) =

{
h2 − u u ∈ (0, h2)
0 u ≤ 0 .

Tf (u) = u, ∀u ∈ (δ1, h2).

Function Ts is extended continuously and constantly for u ≥ h2 and Tf is ex-
tended continuously and constantly outside (δ1, h2). This condition on Tf imposes
a thickness of freshwater always ≥ δ1 inside the aquifer.
• β = 1. We define functions Ts and Tf by

Ts(u) = h2 − u, Tf (u) = u, for u ∈ (0, h2)

and Ts and Tf are extended continuously and constant outside (0, h2).
Then we consider the following set of equations in ΩT ,

φ∂th−∇ ·
(
KTs(h)∇h

)
−∇ ·

(
βδφ∇h

)
−∇ ·

(
KTs(h)X0(h1)∇h1

)
= −QsTs(h),

(3.6)

φ∂th1 −∇ ·
(
K
(
Tf (h− h1) + Ts(h)

)
∇h1

)
−∇ ·

(
βδφ∇h1

)
−∇ ·

(
KTs(h)X0(h1)∇h

)
= −X0(h1)

(
QfTf (h− h1) +QsTs(h)

)
.

(3.7)

Notice that we do not use h+ = sup(0, h) and h+
1 = sup(0, h1) in functions Ts

and Tf because a maximum principle will ensure that these supremums are useless.
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Likewise, we have canceled the terms X0(h) (resp. X0(h1)) in front of ∂th and
∇h (resp. ∂th1). System (3.7) is completed by the following boundary and initial
conditions:

h = hD, h1 = h1,D in Γ× (0, T ), (3.8)

h(0, x) = h0(x), h1(0, x) = h1,0(x) in Ω, (3.9)

with the compatibility conditions

h0(x) = hD(0, x), h1,0(x) = h1,D(0, x), x ∈ Γ.

We make the same mathematical assumptions than above for the porosity and
the hydraulic conductivity tensor K but we do not make any assumptions on the
sign of the source terms Qf and Qs. Functions hD and h1,D belong to the space
L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′) while functions h0 and h1,0 are in H1(Ω).
Finally, we assume that the boundary and initial data satisfy physically realistic
conditions on the hierarchy of interfaces depths:

0 ≤ h1,D ≤ hD ≤ h2 a.e. in Γ× (0, T ), 0 ≤ h1,0 ≤ h0 ≤ h2 a.e. in Ω.

Now we state and prove the following existence result.

Theorem 3.3. Assume a spatial heterogeneity for the hydraulic conductivity ten-
sor:

K+ ≤ 2
√
γK−, 0 < γ <

8
9
.

Then for any T > 0, problem (3.6)-(3.9) admits a weak solution (h, h1) satisfying

(h− hD, h1 − h1,D) ∈
(
L2(0, T ;H1

0 (Ω))× L2(0, T ;H1
0 (Ω)) ∩H1(0, T ; (H1

0 (Ω))′)2

Furthermore the following maximum principle holds,
• If β = 0, 0 ≤ h1(t, x) and 0 ≤ h(t, x) ≤ h2 a.e. x ∈ Ω and for any
t ∈ (0, T ).
• If β = 1, 0 ≤ h1(t, x) ≤ h(t, x) ≤ h2 a.e. x ∈ Ω and for any t ∈ (0, T ).

Theorem 3.3 is proven in [11] in the non degenerated case β = 1, with condition
K− ≤ K+ ≤ 3

2K− on the spatial heterogeneity for the hydraulic conductivity. We
aim to give an existence result of weak solutions for this model when β = 0. We
introduce a viscous term depending on a parameter ε in the preliminary fixed point
step for avoiding degeneracy. We again suppose the thickness of freshwater zone
≥ δ1 > 0 inside the aquifer to ensure an uniform estimate in L2 of the gradient
of h1. But, since ε is expected to tend to zero, we only can establish a weaker
maximum principle without hierarchy between h1 and h .

Remark 3.4. We can prove Theorem 3.2 without any restrictions on the sign of
the source terms Qf and Qs, but in this case, we have to impose assumptions on
additional leakage terms qLf and qLs like in [11].

Depths h1 and h2 are assumed to be constant for sake of simplicity but the proof
extends directly to hi ∈ L∞(Ω), i = 1, 2.

Next section is devoted to proofs of Theorem 3.2 for β = 1 and of Theorem
3.3 for β = 0. Let us sketch our strategy. First step consists in using a Schauder
fixed point theorem for proving an existence result for an auxiliary regularized
and truncated problem. More precisely, in the unconfined case, we regularize the
equations by adding a viscous term and we also regularize the step function X0 with
a parameter ε > 0. Furthermore we introduce a weight based on the velocity of
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the fresh front in the two equations. We show that the regularized solution satisfies
the maximum principles announced in Theorem 3.2 and in Theorem 3.3. We then
prove that we have sufficient control on the velocity of the fresh front to ignore the
latter weight. We finally show sufficient uniform estimates to let the regularization
ε tends to zero.

4. Proofs

4.1. Proof of Theorem 3.2.
Step 1: Existence for the truncated system. Let M be a positive constant to be
determine later. For x ∈ R∗+, we set

LM (x) = min
(

1,
M

x

)
.

Such a truncation LM was originally introduced in [17]. It allows to use the following
point in the estimates hereafter.

For any (g, g1) ∈ (L2(0, T ;H1(Ω)))2, setting

d(g, g1) = −Ts(g)LM
(
‖∇g1‖L2(ΩT )2

)
∇g1,

we have

‖d(g, g1)‖L2(0,T ;H) = ‖Ts(g)LM
(
‖∇g1‖L2(ΩT )2

)
∇g1‖L2(ΩT )2 ≤Mh2.

Now, we denote LM
(
‖∇g1‖L2(ΩT )2

)
by LM

(
‖∇g1‖L2

)
. The variational formulation

of the problem under consideration involves the two following integral equations:∫ T

0

φ〈∂th,w〉V,V ′ +
∫

ΩT

δφ∇h · ∇w

+
∫

ΩT

Ts(h)
(
K∇h · ∇w − LM (‖∇f‖L2(ΩT )2)K∇f · ∇w) dx dt

+
∫

ΩT

QsTs(h
)
w dxdt = 0 ,

(4.1)

∫
ΩT

h2K∇f · ∇w dxdt−
∫

ΩT

Ts(h)K∇h · ∇w dxdt

−
∫

ΩT

(QsTs(h) +QfTf (h))w dxdt = 0.
(4.2)

For the fixed point strategy, we define the application

F : L2(0, T ;H1(Ω))× L2(0, T ;H1(Ω))→ L2(0, T ;H1(Ω))× L2(0, T ;H1(Ω))

(h̄, f̄)→ F(h̄, f̄) = (F1(h̄, f̄) = h,F2(h̄, f̄) = f),

where the pair (h,f) is a solution of next variational problem: for all w ∈ V ,∫ T

0

φ〈∂th,w〉V,V ′ +
∫

ΩT

δφ∇h · ∇w +
∫

ΩT

Ts(h̄)
(
K∇h · ∇w

− LM (‖∇f̄‖L2)K∇f̄ · ∇w
)
dx dt+

∫
ΩT

QsTs(h̄
)
w dxdt = 0 ,

(4.3)

∫
ΩT

h2K∇f · ∇w dxdt−
∫

ΩT

Ts(h̄)K∇h · ∇w dxdt

−
∫

ΩT

(QsTs(h̄) +QfTf (h̄))w dxdt = 0.
(4.4)
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Indeed we know from classical parabolic theory (see e.g. [15]) that the linear vari-
ational system (4.3)-(4.4) admits an unique solution. The end of the present sub-
section is devoted to the proof a fixed point property for application F .
Continuity of F1. Let (h̄n, f̄n) be a sequence of functions of L2(0, T ;H1(Ω)) ×
L2(0, T ;H1(Ω)) and (h̄, f̄) be a function of L2(0, T ;H1(Ω))×L2(0, T ;H1(Ω)) such
that

(h̄n, f̄n)→ (h̄, f̄) in L2(0, T ;H1(Ω))× L2(0, T ;H1(Ω)).
We set hn = F1(h̄n, f̄n) and h = F1(h̄, f̄). We aim showing that hn → h in
L2(0, T ;H1(Ω)).

For all n ∈ N, hn satisfies (4.3). Choosing w = hn − hD in the n-dependent
counterpart of (4.3) yields∫ T

0

φ〈∂t(hn − hD), hn − hD〉V ′,V dt+
∫

ΩT

(δφ+KTs(h̄n))∇hn · ∇hn dx dt

=
∫

ΩT

(
Ts(h̄n)LM (‖∇f̄n‖L2)K∇f̄n · ∇(hn − hD)

)
dx dt ,∫

ΩT

−QsTs(h̄n)(hn − hD) dx dt−
∫ T

0

〈∂thD, hn − hD〉V ′,V dt

+
∫

ΩT

(δφ+K Ts(h̄n))∇hn · ∇hD dx dt

Function hn−hD belongs to L2(0, T ;V )∩H1(0, T ;V ′) and then to C(0, T ;L2(Ω)).
Thus, thanks moreover to Lemma 3.1, we write∫ T

0

φ〈∂t(hn − hD), (hn − hD)〉V ′,V dt =
φ

2
‖hn(·, T )− hD‖2H −

φ

2
‖h0 − hD|t=0‖2H .

Also ∫
ΩT

(
δφ+KTs(h̄n)

)
∇hn · ∇hn dx dt ≥ δφ‖∇hn‖2L2(0,T ;H).

Then applying Cauchy-Schwarz and Young inequalities, for all ε1 > 0 we obtain∣∣∣ ∫
ΩT

(
δφ+KTs(h̄n)

)
∇hn · ∇hD dx dt

∣∣∣
≤ (δφ+K+h2)‖∇hn‖L2(0,T ;H)‖∇hD‖L2(0,T ;H)

≤ ε1

2
‖∇hn‖2L2(0,T ;H) +

(δφ+K+h2)2

2ε1
‖∇hD‖2L2(0,T ;H),∣∣∣− ∫

ΩT

KTs(h̄n)LM
(
‖∇f̄n‖L2

)
∇f̄n · ∇hn dx dt

∣∣∣
≤ K+‖d(h̄n, f̄n)‖L2(0,T ;H)‖∇hn‖L2(0,T ;H)

≤MK+h2‖∇hn‖L2(0,T ;H)

≤
K2

+M
2

2ε1
h2

2 +
ε1

2
‖∇hn‖2L2(0,T ;H).

Since it depends on hD, the next term is simply estimated by∣∣∣ ∫
ΩT

KTs(h̄n)LM
(
‖∇f̄n‖L2

)
∇f̄n · ∇hD dx dt

∣∣∣
≤ K+‖d(h̄n, f̄n)‖L2(0,T ;H)‖hD‖L2(0,T ;H1)
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≤MK+h2‖hD‖L2(0,T ;H1).

Finally we have∣∣∣− ∫ T

0

φ〈∂thD, (hn − hD)〉V ′,V dt
∣∣∣

≤ φ

δ
‖∂thD‖2L2(0,T ;(H1(Ω))′) +

δφ

2
‖hn‖2L2(0,T ;V ) +

δ φ

2
‖hD‖2L2(0,T ;V ),

and∣∣∣− ∫
ΩT

QsTs(h̄n)(hn − hD) dx dt
∣∣∣ ≤ ‖Qs‖2L2(0,T ;H)

2φ
h2

2 +
φ

2
‖hn − hD‖2L2(0,T ;H).

Summing up all these estimates, after simplifications, we obtain

φ

2
‖hn(·, T )− hD‖2H + (

δφ

2
− ε1)‖∇hn‖2L2(0,T ;H)

≤ φ

2
‖h0 − hD|t=0‖2H +

φ

2

∫ T

0

‖hn − hD‖2H dt+
φδ

2
‖hD‖2L2(0,T ;V )

+
( ‖Qs‖2L2(ΩT )

2φ
+
K2

+M
2

2ε1

)
h2

2 +
(δφ+K+h2)2

2ε1
‖hD‖2L2(0,T ;V )

+
φ

δ
‖∂thD‖2L2(0,T ;(H1(Ω))′) +MK+h2‖hD‖L2(0,T ;H1).

(4.5)

We choose ε1 such that δφ/2 − ε1 ≥ ε0 > 0 for some ε0 > 0. Relation (4.5)
with Gronwall lemma enables to conclude that there exists real numbers AM =
AM (φ, δ,K, h0, hD, h2, Qs,M, T ) and BM = BM (φ, δ,K, h0, hD, h2, Qs,M, T ) de-
pending only on the data of the problem such that

‖hn‖L∞(0,T ;H) ≤ AM , ‖hn‖L2(0,T ;H1) ≤ BM . (4.6)

Hence sequence (hn)n is uniformly bounded in L2(0, T ;H1(Ω))∩L∞(0, T ;H). No-
tice that the estimate in L∞(0, T ;H) is justified by the fact that we could make
the same computations replacing T by any τ ≤ T in the time integration. In the
sequel, we set

CM = max(AM , BM ).

Now we prove that (∂t(hn − hD))n is bounded in L2(0, T ;V ′).

‖∂t(hn − hD)‖L2(0,T ;V ′)

= sup
‖w‖L2(0,T ;V )≤1

∣∣∣ ∫ T

0

〈∂t(hn − hD), w〉V ′,V dt
∣∣∣

= sup
‖w‖L2(0,T ;V )≤1

∣∣∣ ∫ T

0

−〈∂thD, w〉V ′,V dt−
1
φ

(∫
ΩT

(
δφ+KTs(h̄n)

)
∇hn · ∇w dxdt

+
∫

ΩT

KTs(h̄n)LM
(
‖∇f̄n‖L2

)
∇f̄n · ∇w dxdt−

∫
ΩT

QsTs(h̄n)w dxdt
)∣∣∣.

Since∣∣∣ ∫
ΩT

(
δφ+KTs(h̄n)

)
∇hn.∇w dxdt

∣∣∣ ≤ (δφ+K+h2

)
‖hn‖L2(0,T ;H1(Ω))‖w‖L2(0,T ;V ),
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and since hn is uniformly bounded in L2(0, T ;H1(Ω)), we write∣∣∣ ∫
ΩT

(
δφ+KTs(h̄n)

)
∇hn · ∇w dxdt

∣∣∣ ≤ (δφ+K+h2

)
CM‖w‖L2(0,T ;V ). (4.7)

Furthermore,∣∣∣ ∫
ΩT

Ts(h̄n)LM
(
‖∇f̄n‖L2

)
∇f̄n · ∇w dxdt

∣∣∣ ≤Mh2‖w‖L2(0,T ;V ), (4.8)∣∣∣ ∫
ΩT

QsTs(h̄n)w dxdt
∣∣∣ ≤ ‖Qs‖L2(ΩT )h2‖w‖L2(0,T ;V ). (4.9)

Summing up (4.7)–(4.9), we conclude that

‖∂thn‖L2(0,T ;V ′) ≤
1
φ

(
‖∂thD‖2L2(0,T ;(H1(Ω))′) + δφCM

+ h2(K+CM +M + ‖Qs‖L2(ΩT ))
)

:= DM .

(4.10)

We have proved that
(
hn
)
n

is uniformly bounded in L2(0, T ;H1(Ω))∩H1(0, T ;V ′).
Using Aubin’s lemma, we extract a subsequence, not relabeled for convenience,
(hn)n, converging strongly in L2(ΩT ) and weakly in the space L2(0, T ;H1(Ω)) ∩
H1(0, T ;V ′) to some limit denoted by `. Using in particular the strong convergence
in L2(ΩT ) and thus the convergence a.e. in ΩT , we check that ` is a solution of
(4.3). The solution of (4.3) being unique, we actually have ` = h.

It remains to prove that (hn)n actually tends to h strongly in L2(0, T ;H1(Ω)).
Subtracting the weak formulation (4.3) to its n-dependent counterpart for the test
function w = hn − h, we obtain∫ T

0

φ〈∂t(hn − h), hn − h〉V ′,V dt

+
∫

ΩT

(
δφ+KTs(h̄n)

)
∇(hn − h) · ∇(hn − h) dx dt

−
∫

ΩT

K
(
Ts(h̄n)− Ts(h̄)

)
∇(hn − h) · ∇h dx dt

+
∫

ΩT

K
(
Ts(h̄n)LM

(
‖∇f̄n‖L2

)
∇f̄n − Ts(h̄)LM

(
‖∇f̄‖L2

)
∇f̄
)
· ∇(hn − h) dx dt

+
∫

ΩT

Qs
(
Ts(h̄n)− Ts(h̄)

)
(hn − h) dx dt = 0.

(4.11)
Using assumption (h̄n, f̄n) → (h̄, f̄) in L2(0, T ;H1(Ω)) × L2(0, T ;H1(Ω)) and the
above results of convergence for hn, the limit as n→∞ in (4.11) reduces to

lim
n→∞

(∫
ΩT

(
δφ+KTs(h̄n)

)
∇(hn − h) · ∇(hn − h) dx dt

)
= 0.

Due to the positiveness of K, we infer from the latter relation that

lim
n→∞

(∫
ΩT

δφ|∇(hn − h)|2 dx dt+
∫

ΩT

K−Ts(h̄n)|∇(hn − h)|2 dx dt
)
≤ 0.

Hence ∇hn → ∇h strongly in L2(0, T ;H). Continuity of F1 for the strong topology
of L2(0, T ;H1(Ω)) is proved.
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Continuity of F2. Likewise, we prove the continuity of F2 by setting fn = F2(h̄n, f̄n)
and f = F2(h̄, f̄) and showing that fn → f in L2(0, T ;H1(Ω)). The key estimates
are obtained using the same type of arguments than in the proof of the continuity
of F1. We thus do not detail the computations. Let us only emphasize that we
can now use the estimate (4.6) previously derived for hn, thus the dependence with
regard to CM in the estimate

‖fn‖L2(0,T ;H1) ≤ EM = FM
(
φ, δ,K, fD, h2, Qs, Qf ,M,CM , T

)
. (4.12)

Conclusion. F is continuous in (L2(0, T ;H1(Ω)))2 because its two components F1

and F2 are. Furthermore, let A ∈ R∗+ be the real number defined by

A = max(CM , DM , EM ),

and W be the nonempty (strongly) closed convex bounded set in (L2(0, T ;H1(Ω)))2

defined by

W =
{

(g, g1) ∈
(
L2(0, T ;H1(Ω)) ∩H1(0, T ;V ′)

)2; (g(0), g1(0)) = (h0, f0),

(g|Γ, g1||Γ) = (hD, fD); ‖(g, g1)‖(L2(0,T ;H1(Ω))∩H1(0,T ;V ′))×L2(0,T ;H1(Ω)) ≤ A
}
.

We have shown that F(W ) ⊂ W . It follows from Schauder theorem [20, cor. 9.7]
that there exists (h, f) ∈W such that F(h, f) = (h, f). This fixed point for F is a
weak solution of truncated problem (4.1)-(4.2).

Step 2: Maximum Principles. We are going to prove that for almost every x ∈ Ω
and for all t ∈ (0, T ),

δ1 ≤ h(t, x) ≤ h2.

First we show that h(t, x) ≤ h2 a.e. x ∈ Ω and for all t ∈ (0, T ). We set

hm =
(
h− h2

)+ = sup(0, h− h2) ∈ L2(0, T ;V ).

It satisfies ∇hm = χ{h>h2}∇h and hm(t, x) 6= 0 if and only if h(t, x) > h2,
where χ denotes the characteristic function. Let τ ∈ (0, T ). Taking w(t, x) =
hm(t, x)χ(0,τ)(t) in (4.1) yields∫ τ

0

φ〈∂th, hmχ(0,τ)〉V ′,V dt+
∫ τ

0

∫
Ω

δφ∇h · ∇hm +
∫ τ

0

∫
Ω

KTs(h)∇h · ∇hm dx dt

+
∫ τ

0

∫
Ω

KTs(h)LM
(
‖∇f‖L2

)
∇f · ∇hm dx dt+

∫ τ

0

∫
Ω

QsTs(h)hm dx dt = 0;

(4.13)
that is, ∫ τ

0

φ〈∂th, hm〉V ′,V dt+
∫ τ

0

∫
Ω

δφχ{h>h2}|∇h|
2 dx dt

+
∫ τ

0

∫
Ω

KTs(h)χ{h>h2}|∇h|
2 dx dt

+
∫ τ

0

∫
Ω

KTs(h)LM
(
‖∇f‖L2

)
∇f · ∇hm(x, t) dx dt

+
∫ τ

0

∫
Ω

QsTs(h)hm(x, t) dx dt = 0.

(4.14)
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To evaluate the first term in the left-hand side of (4.14), we apply Lemma 1 with
function f defined by f(λ) = λ− h2, λ ∈ R. We write∫ τ

0

φ〈∂th, hm〉V ′,V dt =
φ

2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx =

φ

2

∫
Ω

h2
m(τ, x) dx,

since hm(0, ·) =
(
h0(·) − h2(·)

)+ = 0. Moreover Ts(h)χ{h>h2} = 0 by definition
of Ts, the three last terms in the left-hand side of (4.14) are null. Hence (4.14)
becomes

φ

2

∫
Ω

h2
m(τ, x) dx ≤ −

∫ τ

0

∫
Ω

δφχ{h>h2}|∇h|
2 dx dt ≤ 0.

Then hm = 0 a.e. in ΩT .
Now we claim that δ1 ≤ h(t, x) a.e. x ∈ Ω and for all t ∈ (0, T ). We set

hm =
(
h− δ1

)− ∈ L2(0, T ;V ).

Let τ ∈ (0, T ). We recall that hm(0, ·) = 0 a.e. in Ω thanks to the maxi-
mum principle satisfied by the initial data h0. Moreover, ∇(h − δ1) · ∇hm =
χ{δ1−h>0}|∇(h− δ1)|2. Thus, taking w(t, x) = hm(x, t)χ(0,τ)(t) in (4.1) and

w(t, x) =
h2 − δ1
h2

LM (‖∇f‖L2)hm(x, t)χ(0,τ)(t)

in (4.2) and adding the two equations gives∫ τ

0

φ〈∂th, hm(x, t)〉V ′,V dt+
∫

Ωτ

(δφ+KTs(h))∇h · ∇hm dx dt

−
∫

ΩτK

Ts(h)LM (‖∇f‖L2)∇f · ∇hmdx dt

+
∫

ΩT

(h2 − δ1)LM (‖∇f‖L2)K∇f · ∇hm dx dt

−
∫

Ωτ

Ts(h)
h2 − δ1
h2

LM (‖∇f‖L2)K∇h · ∇hm dx dt

+
∫

Ωτ

(
QsTs(h)

(
1− h2 − δ1

h2
LM (‖∇f‖L2)

)
hm

−QfTf (h)
h2 − δ1
h2

LM (‖∇f‖L2)hm
)
dx dt = 0.

By definition of Ts(h), Ts(h)χ{h<δ1} = h2− δ1, we can simplify the above equation
as follows

φ

2

∫
Ω

h2
m(τ, x)dx+

∫
Ωτ

χ{h<δ1}δφ∇h · ∇h dx dt

+
∫

Ωτ

QfTf (h)χ{h<δ1}(δ1 − h)
h2 − δ1
h2

LM (‖∇f‖L2) dx dt

+
∫

Ωτ

(h2 − δ1)
(
1− h2 − δ1

h2
LM (‖∇f‖L2)

)
χ{h<δ1}K∇h · ∇h dx dt

+
∫

Ωτ

χ{h<δ1}(h− δ1)Qs(h2 − δ1)
(
1− h2 − δ1

h2
LM (‖∇f‖L2)

)
dx dt = 0.

We first note that (
1− h2 − δ1

h2
LM (‖∇f‖L2)

)
≥ 0.
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Moreover, since Tf (h)χ{h<δ1} = 0 by definition of Tf and Qs ≤ 0, the previous
equation leads to

1
2

∫
Ω

h2
m(τ, x)dx ≤ 0

and then hm = 0 a.e. in ΩT .
Step 3: Elimination of the auxiliary function LM . We now claim that there exist
a real number B > 0, not depending on M , such that any weak solution (h, f) ∈W
of problem (4.1)-(4.2) satisfies

‖∇h‖L2(0,T ;H) ≤ B and ‖∇f‖L2(0,T ;H) ≤ B. (4.15)

Taking w = h− hD (resp. w = f − fD) in (4.1) (resp. (4.2)) leads to∫ T

0

φ〈∂th, h− hD〉V ′,V dt+
∫

ΩT

(δ φ+ Ts(h)K)∇h · ∇(h− hD) dx dt

=
∫

ΩT

(
Ts(h)LM (‖∇f‖L2)))K∇f · ∇(h− hD)−QsTs(h)(h− hD)

)
dx dt

and ∫
ΩT

h2K∇f · ∇(f − fD) dxdt−
∫

ΩT

Ts(h)K∇h · ∇(f − fD) dx dt

=
∫

ΩT

(QsTs(h)(f − fD) +QfTf (h)(f − fD)) dx dt.

Summing up the previous equations yields

φ

2

∫
Ω

[(h− hD)2(T, x)− (h− hD)2(0, x)]dx+
∫

ΩT

δ φ|∇h|2 dx dt

+
∫

ΩT

K−Ts(h)|∇(h− f)|2 dx dt+
∫

ΩT

K−(h2 − Ts(h))|∇f |2 dx dt

+
∫

ΩT

K−Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt

≤ −
∫ T

0

φ〈∂thD, h− hD〉V ′,V dt

+
∫

ΩT

Ts(h)(1− LM (‖∇f‖L2))K∇h · ∇(h− f) dx dt

+
∫

ΩT

δφ∇h · ∇hD dx dt+
∫

ΩT

Ts(h)K∇(h− f) · ∇hD dx dt

+
∫

ΩT

Ts(h)(1− LM (‖∇f‖L2))K∇f · ∇hD dx dt

−
∫

ΩT

(Ts(h)− h2)K∇f · ∇fD dx dt

−
∫

ΩT

Ts(h)K∇(h− f) · ∇fD dx dt+
∫

ΩT

Ts(h)K∇h · ∇fD dx dt

+
∫

ΩT

QsTs(h)[(f − h) + (hD − fD)] dx dt+
∫

ΩT

Qfh(f − fD) dx dt

:= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10.
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Using the Cauchy-Schwarz and Young inequalities, we obtain

|I1| ≤ φ‖∂thD‖L2(0,T,V ′)‖h− hD‖L2(0,T,V )

≤ φ‖∂thD‖L2(0,T,V ′)(‖∇h‖L2(0,T ;L2(Ω)) + ‖∇hD‖L2(0,T ;L2(Ω)))

≤ δφ

6
‖∇h‖2L2(0,T ;L2(Ω)) +

3φ
2δ
‖∂thD‖2L2(0,T,V ′) +

φ

2
‖∂thD‖2L2(0,T,V ′)

+
φ

2
‖∇hD‖2L2(0,T,V ′),

|I2| ≤ K+

(∫
ΩT

Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt
)1/2

×
(∫

ΩT

Ts(h)|∇(h− f)|2 dx dt
)1/2

≤ K+

2

(∫
ΩT

Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt
)

+
K+

2

(∫
ΩT

Ts(h)|∇(h− f)|2 dx dt
)
,

|I3| ≤ φ δ
(∫

ΩT

|∇h|2 dx dt
)1/2(∫

ΩT

|∇hD|2 dx dt
)1/2

≤ δφ

6

∫
ΩT

|∇h|2 dx dt+
3δφ
2

∫
ΩT

|∇hD|2 dx dt,

|I4| ≤ K+

(∫
ΩT

Ts(h)|∇(h− f)|2 dx dt
)1/2(∫

ΩT

h2|∇hD|2 dx dt
)1/2

≤ K−
12

∫
ΩT

Ts(h)|∇(h− f)|2 dx dt+
6K2

+h2

2K−

∫
ΩT

|∇hD|2 dx dt,

|I5| ≤ K+

√
h2

((∫
ΩT

Ts(h)|∇(h− f)|2 dx dt
)1/2

+
(∫

ΩT

Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt
)1/2)

(
∫

ΩT

|∇hD|2 dx dt)1/2

≤ K−
12

∫
ΩT

Ts(h)|∇(h− f)|2 dx dt

+
K−
12

∫
ΩT

Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt+
6h2K

2
+

K−

∫
ΩT

|∇hD|2 dx dt,

|I6| ≤ K+

√
h2

(∫
ΩT

(h2 − Ts(h))|∇f |2 dx dt
)1/2(∫

ΩT

|∇fD|2 dx dt
)1/2

≤ K−
6

∫
ΩT

(h2 − Ts(h))|∇f |2 dx dt+
3h2K

2
+

2K−

∫
ΩT

|∇fD|2 dx dt,

|I7| ≤ K+

√
h2

(∫
ΩT

Ts(h)|∇(h− f)|2 dx dt
)1/2(∫

ΩT

|∇fD|2 dx dt
)1/2

≤ K−
12

∫
ΩT

Ts(h)|∇(h− f)|2 dx dt+
6h2K

2
+

2K−

∫
ΩT

|∇fD|2 dx dt,
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|I8| ≤ K+h2(
∫

ΩT

|∇h|2 dx dt)1/2
(∫

ΩT

|∇fD|2 dx dt
)1/2

≤ δ φ

6

∫
ΩT

|∇h|2 dx dt+
3h2

2K
2
+

2δ φ

∫
ΩT

|∇fD|2 dx dt,

|I9| ≤ h2‖Qs‖L2(0,T ;H)(‖h− hD‖L2(0,T ;H) + ‖f − fD‖L2(0,T ;H))

≤ h2‖Qs‖L2(0,T ;H)(‖h− hD‖L2(0,T ;H) + Cp‖∇(f − fD)‖L2(0,T ;H))

≤ φ

2

∫
ΩT

(h− hD)2 dx dt+
h2

2

2φ
‖Qs‖2L2(0,T ;H)

+
δ1K−

6

∫
ΩT

|∇f |2 dx dt+
3C2

ph
2
2

2δ1K−
‖Qs‖L2(0,T ;H)

+ h2‖Qs‖L2(0,T ;H)Cp‖∇fD‖L2(0,T ;H),

|I10| ≤ h2‖Qs‖L2(0,T ;H)‖f − fD‖L2(0,T ;H)

≤ δ1K−
6

∫
ΩT

|∇f |2 dx dt+
3C2

ph
2
2

2δ1K−
‖Qs‖L2(0,T ;H)

+ h2‖Qs‖L2(0,T ;H)Cp‖∇fD‖L2(0,T ;H).

Since δ1 ≤ h ≤ h2 a.e. in ΩT , it follows that Ts(h)− h2 = h ≥ δ1 and then

φ

2

∫
ΩT

(h− hD)2(τ, x)dx+
δφ

2

∫
ΩT

|∇h|2 dx dt+
K−δ1

2

∫
ΩT

|∇f |2 dx dt

+
∫

ΩT

(3K− − 2K+)
4

Ts(h)|∇(h− f)|2 dx dt

+
∫

ΩT

11K− − 6K+

12
Ts(h)(1− LM (‖∇f‖L2))|∇h|2 dx dt

≤ φ

2

∫
ΩT

(h− hD)2 dx dt+ C(h2, δ, δ1, h0, hD, fD, Qf , Qs)

Now we apply the Gronwall lemma and we deduce that there exists a real number
B, that does not depend on M , such that

‖h‖L∞(0,T ;H)∩L2(0,T ;H1(Ω)) ≤ B and ‖f‖L2(0,T ;H1(Ω)) ≤ B.

In particular, ‖∇f‖L2(ΩT )2 ≤ B and this estimate does not depend on the choice
of the real number M that defines function LM . Hence if we choose M = B, any
weak solution of the system

φ∂th−∇ · (δ φ∇h)−∇ ·
(
KTs(h)∇h

)
+∇ ·

(
KTs(h)LB(‖∇f‖L2)∇f

)
= −QsTs(h),

−∇ ·
(
Kh2∇f

)
+∇ ·

(
KTs(h)∇h

)
= QfTf (h− h1) +QsTs(h)

in ΩT , with the initial and boundary conditions h = hD and f = fD on Γ, h(0, x) =
h0 a.e. in Ω, satisfies LB

(
‖∇f‖L2

)
= 1. Then the term LB

(
‖∇f‖L2

)
= 1 may be

dropped. The proof of Theorem 3.2 is complete.
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4.2. Proof of Theorem 3.3. Let ε > 0 and let M be a positive constant to be
determined later. For x ∈ R∗+, we set

LM (x) = min
(

1,
M

x

)
.

Such a truncation LM allows again to use the following point in the estimates
hereafter. For any (g, g1) ∈ (L2(0, T ;H1(Ω)))2, setting

d(g, g1) = −Ts(g)LM
(
‖∇g1‖L2(ΩT )

)
∇g1,

we have

‖d(g, g1)‖L2(0,T ;H) = ‖Ts(g)LM
(
‖∇g1‖L2(ΩT )

)
∇g1‖H ≤Mh2.

We also define a regularized step function for X0 by

X0(h1) =

{
0 if h1 ≤ 0
1 if h1 > 0 ,

X ε0 (h1) =

{
0 if h1 ≤ 0
h1/(h2

1 + ε)1/2 if h1 > 0.

Then 0 ≤ X ε0 ≤ 1 and X ε0 → X0 as ε→ 0. Introducing the regularization X ε0 of X0,
we replace system (3.7) by the system

φ∂th
ε −∇ · (ε∇hε)−∇ ·

(
KTs(hε)∇hε

)
−∇ ·

(
KTs(hε)X ε0 (hε1)LM

(
‖∇hε1‖L2

)
∇hε1

)
= −QsTs(hε),

φ∂th
ε
1 −∇ · (ε∇hε1)−∇ ·

(
K
(
Tf (hε − hε1) + Ts(hε)

)
∇hε1

)
−∇ ·

(
KTs(hε)X ε0 (hε1)∇hε

)
= −QfTf (hε − hε1)X ε0 (hε1)−QsTs(hε)X ε0 (hε1).

The proof is outlined as follows: In the first step, using Schauder theorem, we prove
that for every T > 0 and every ε > 0, the above regularized system completed by
the initial and boundary conditions

hε = hD, hε1 = h1,D in Γ× (0, T ),

hε(0, x) = h0(x), hε1(0, x) = h1,0(x) a.e. in Ω,

has a solution (hε − hD, h
ε
1 − h1,D) ∈ W (0, T ) × W (0, T ). We observe that the

sequence (hε − hD, hε1 − h1,D) is uniformly bounded in (L2(0, T ;V ))2 and we show
the maximum principle 0 ≤ hε1(t, x) and 0 ≤ hε(t, x) ≤ h2 a.e. in ΩT for every ε > 0
Finally we prove that any (weak) limit (h, h1) in (L2(0, T ;H1(Ω))∩H1(0, T ;V ′))2

of the sequence (hε, hε1) is a solution of the original problem.
Step 1: Existence for the regularized system. We now omit ε for the sake of
simplicity in the notation. Then the weak formulation of the latter problem reads:
for any w ∈ V ,∫ T

0

φ〈∂th,w〉V ′,V dt+
∫

ΩT

ε∇h · ∇w dxdt

+
∫

ΩT

KTs(h)∇h · ∇w dxdt+
∫

ΩT

KTs(h)X ε0 (h1)LM
(
‖∇h1‖L2

)
∇h1 · ∇w dxdt

+
∫

ΩT

QsTs(h)w dxdt = 0,

(4.16)
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0

φ〈∂th1, w〉V ′,V dt+
∫

ΩT

ε∇h1 · ∇w dxdt

+
∫

ΩT

K
(
Ts(h) + Tf (h− h1)

)
∇h1 · ∇w dxdt+

∫
ΩT

KX ε0 (h1)Ts(h)∇h · ∇w dxdt

+
∫

ΩT

(
QfTf (h− h1) +QsTs(h)

)
X ε0 (hε1)w dxdt = 0.

(4.17)

For the fixed point strategy, we define the application F by

F : L2(0, T ;H1(Ω))× L2(0, T ;H1(Ω))→ L2(0, T ;H1(Ω))× L2(0, T ;H1(Ω))

(h̄, h̄1) 7−→ F(h̄, h̄1) =
(
F1(h̄, h̄1) = h,F2(h̄, h̄1) = h1

)
,

where (h, h1) is the solution of∫ T

0

φ〈∂th,w〉V ′,V dt+
∫

ΩT

ε∇h · ∇w dxdt+
∫

ΩT

KTs(h̄)∇h · ∇w dxdt

+
∫

ΩT

KTs(h̄)LM
(
‖∇h̄1‖L2

)
X ε0 (h̄1)∇h̄1 · ∇w dxdt+

∫
ΩT

QsTs(h̄)w dxdt

= 0 ∀w ∈ V,

(4.18)

∫ T

0

φ〈∂th1, w〉V ′,V dt+
∫

ΩT

ε∇h1 · ∇w dxdt

+
∫

ΩT

K
(
Ts(h̄) + Tf (h̄− h̄1)

)
∇h1 · ∇w dxdt+

∫
ΩT

KTs(h̄)X ε0 (h̄1)∇h · ∇w dxdt

+
∫

ΩT

(
QfTf (h̄− h̄1) +QsTs(h̄)

)
X ε0 (h̄1)w dxdt = 0 ∀w ∈ V.

(4.19)

Indeed we know from classical parabolic theory (see e.g. [15]) that the linear vari-
ational system (4.18)-(4.19) admits an unique solution. It remains to prove a fixed
point property for application F .

Since the proofs of the continuity of F1 and F2 are very similar to the previous
ones, we do not reproduce here the computations. We also emphasize that this
step is proven in [11] by considering that the parameter ε plays the same role
as δ, the thickness of the diffuse interface, of course the estimates depend on ε,
but it is sufficient for this step. We can thus conclude that F is continuous in
(L2(0, T ;H1(Ω)))2 because its two components F1 and F2 are. Furthermore, there
exist a real number A ∈ R∗+ (depending on the data and on the parameter ε) and a
non empty (strongly) closed convex bounded set W in (L2(0, T ;H1(Ω)))2 defined
by

W =
{

(g, g1) ∈
(
L2(0, T ;H1(Ω)) ∩H1(0, T ;V ′)

)2; (g(0), g1(0)) = (h0, h1,0),

(g|Γ, g1|Γ) = (hD, h1,D); ‖(g, g1)‖(L2(0,T ;H1(Ω))∩H1(0,T ;V ′)))2 ≤ A
}
.

such that F(W ) ⊂ W . It follows from Schauder theorem [20, cor. 9.7] that there
exists (h, h1) ∈ W such that F(h, h1) = (h, h1). This fixed point for F is a weak
solution of problem (4.16)-(4.17).



20 C. CHOQUET, J. LI, C. ROSIER EJDE-2015/126

Step 2: Maximum Principles. We aim at proving that for almost all x ∈ Ω and
for all t ∈ (0, T ), 0 ≤ h1(t, x) and 0 ≤ h(t, x) ≤ h2.

First we show that h(t, x) ≤ h2 a.e. x ∈ Ω and all t ∈ (0, T ). We set

hm =
(
h− h2

)+ = sup(0, h− h2) ∈ L2(0, T ;V ).

It satisfies ∇hm = χ{h>h2}∇h and hm(t, x) 6= 0 if and only if h(t, x) > h2,
where χ denotes the characteristic function. Let τ ∈ (0, T ). Taking w(t, x) =
hm(t, x)χ(0,τ)(t) in (4.16) yields∫ τ

0

φ〈∂th, hm〉V ′,V dt+
∫ τ

0

∫
Ω

εχ{h>h2}|∇h|
2 dx dt

+
∫ τ

0

∫
Ω

K−Ts(h)χ{h>h2}|∇h|
2 dx dt

+
∫ τ

0

∫
Ω

X ε0 (hε1)χ{h>h2}KTs(h)LM
(
‖∇h1‖L2

)
∇h1 · ∇h(x, t) dx dt

+
∫ τ

0

∫
Ω

QsTs(h)hm(x, t) dx dt ≤ 0.

(4.20)

Lemma 1 applied to (4.20), gives∫ τ

0

φ〈∂th, hm〉V ′,V dt =
φ

2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx =

φ

2

∫
Ω

h2
m(τ, x) dx,

taking into account hm(0, ·) =
(
h0(·) − h2(·)

)+ = 0. Since Ts(h)χ{h>h2} = 0 by
definition of Ts, the three last terms of (4.20) are null. Hence (4.20) becomes

φ

2

∫
Ω

h2
m(τ, x) dx ≤ −

∫ τ

0

∫
Ω

εχ{h>h2}|∇h|
2 dx dt ≤ 0.

Then hm = 0 a.e. in ΩT .
Now we claim that 0 ≤ h(t, x) a.e. x ∈ Ω and all t ∈ (0, T ). We set

hm =
(
− h
)+ ∈ L2(0, T ;V ) since hD(·, ·) ≥ 0.

Let τ ∈ (0, T ). We recall that hm(0, ·) = 0 a.e. in Ω thanks to the maximum
principle satisfied by the initial data h0. Moreover, ∇hm = −χ{h<0}∇h. Thus,
taking w(t, x) = hm(x, t)χ(0,τ)(t) in (4.16) yields∫ τ

0

φ〈∂th, hm〉V ′,V dt−
∫ τ

0

∫
Ω

εχ{h<0}|∇h|2 dx dt

=
∫ τ

0

∫
Ω

Ts(h)χ{h<0}K∇h · ∇h dx dt

+
∫ τ

0

∫
Ω

X ε0 (h1)χ{h<0}KTs(h)LM
(
‖∇h1‖L2

)
∇h1 · ∇h(x, t) dx dt

−
∫ τ

0

∫
Ω

QsTs(h)hm(x, t) dx dt.

(4.21)

Applying Lemma 1 to the first term of (4.21) and taking into account hm(0, ·) =(
− h0)+ = 0, gives∫ τ

0

φ〈∂th, hm〉V ′,V dt =
−φ
2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx = −φ

2

∫
Ω

h2
m(τ, x) dx.
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Since Ts(h)χ{h<0} = 0 by definition of Ts, the three last terms in the left-hand side
of (4.21) are null. Hence (4.21) becomes

φ

2

∫
Ω

h2
m(τ, x) dx ≤ −

∫ τ

0

∫
Ω

εχ{h>h2}|∇h|
2 dx dt ≤ 0.

Then hm = 0 a.e. in ΩT .
We finally prove that 0 ≤ h1(t, x) a.e. x ∈ Ω and all t ∈ (0, T ). We set

hm =
(
− h1

)+ ∈ L2(0, T ;V ) since h1,D(·, ·) ≥ 0.

Let τ ∈ (0, T ). We recall that hm(0, ·) = 0 a.e. in Ω thanks to the maximum
principle satisfied by the initial data h1,0. Moreover, ∇hm = −χ{h1<0}∇h1. Thus,
taking w(t, x) = hm(x, t)χ(0,τ)(t) in (4.17) yields∫ τ

0

φ〈∂th1, hm〉V ′,V dt−
∫

Ωτ

χ{h1<0}(ε+ Ts(h) + Tf (h− h1))∇h1 · ∇h1 dx dt

−
∫

Ωτ

X ε0 (h1)Ts(h)χ{h1<0}∇h · ∇h1 dx dt

−
∫

Ωτ

(
QsTs(h) +QfTf (h− h1)

)
X ε0 (h1)χ{h1<0}h1 dx dt = 0.

(4.22)
Applying Lemma 1 to (4.22) and taking into account hm(0, ·) =

(
−h0)+ = 0, gives∫ τ

0

φ〈∂th1, hm〉V ′,V dt = −φ
2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx = −φ

2

∫
Ω

h2
m(τ, x) dx.

Since X ε0 (h1)χ{h1<0} = 0 by definition of X ε0 (·), the two last terms of (4.22) are
null. Hence (4.22) becomes (since Ts and Tf are nonnegative functions)

φ

2

∫
Ω

h2
m(τ, x) dx ≤ −

∫ τ

0

∫
Ω

εχ{h>h2}|∇h|
2 dx dt ≤ 0.

Then hm = 0 a.e. in ΩT .

Step 3: Elimination of the auxiliary function LM . We now claim that there
exist a real number B > 0, not depending on ε neither on M , such that any weak
solution (h, h1) ∈W of problem (4.16)-(4.17) satisfies

‖∇h‖L2(0,T ;H) ≤ B and ‖∇h1‖L2(0,T ;H) ≤ B. (4.23)

Taking w = h− hD (resp. w = h1 − h1,D) in (4.16) (resp. (4.17)) leads to∫ T

0

φ〈∂th, h− hD〉V ′,V dt+
∫

ΩT

ε∇h · ∇(h− hD) dx dt

+
∫

ΩT

KTs(h)∇h · ∇(h− hD) dx dt

= −
∫

ΩT

KTs(h)X ε0 (h1)LM
(
‖∇h1‖L2

)
∇h1 · ∇(h− hD) dx dt

−
∫

ΩT

QsTs(h)(h− hD) dx dt

(4.24)
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and ∫ T

0

φ〈∂th1, h1 − h1,D〉V ′,V dt+
∫

ΩT

ε∇h1 · ∇(h1 − h1,D) dx dt

+
∫

ΩT

K
(
Ts(h) + Tf (h− h1)

)
∇h1 · ∇(h1 − h1,D) dxdt

= −
∫

ΩT

KTs(h)X ε0 (h1)∇h · ∇(h1 − h1,D) dx dt

−
∫

ΩT

X ε0 (h1)
(
QfTf (h− h1) +QsTs(h)

)
(h1 − h1,D) dx dt.

(4.25)

Summing up relations (4.24) and (4.25), and using the decomposition

K∇h · ∇h+KX ε0 (h1)
(
LM
(
‖∇h1‖L2

)
+ 1
)
∇h1 · ∇h+K∇h1 · ∇h1

= K∇(h+ h1) · ∇(h+ h1) +K
(

1−X ε0 (h1)LM
(
‖∇h1‖L2

))
∇h1 · ∇h1

−K
(

1−X ε0 (h1)LM
(
‖∇h1‖L2

))
∇h1 · ∇(h+ h1),

(4.26)

we write∫ T

0

φ
(
〈∂t(h− hD), h− hD〉V ′,V dt+ 〈∂t(h1 − h1,D), h1 − h1,D〉V ′,V

)
dt︸ ︷︷ ︸

J1

+
∫

ΩT

ε
(
∇h · ∇h+∇h1 · ∇h1

)
dx dt︸ ︷︷ ︸

J2

+
∫

ΩT

KTs(h)∇(h+ h1) · ∇(h+ h1) dx dt︸ ︷︷ ︸
J3

+
∫

ΩT

K
((

1−X ε0 (h1)LM (‖∇h1‖L2)
)
Ts(h) + Tf (h− h1)

)
∇h1 · ∇h1 dx dt︸ ︷︷ ︸

J4

=
∫

ΩT

K
(
1−X ε0 (h1)LM (‖∇h1‖L2)

)
Ts(h)∇h1 · ∇(h+ h1) dx dt︸ ︷︷ ︸

J5

+
∫

ΩT

(
ε+KTs(h)

)
∇h · ∇hD dx dt︸ ︷︷ ︸

J6

+
∫

ΩT

(
ε+KTs(h) +KTf (h− h1)

)
∇h1 · ∇h1,D dx dt︸ ︷︷ ︸

J7

+
∫

ΩT

KTs(h)LM (‖∇h1‖L2)X ε0 (h1)∇h1 · ∇hD dx dt︸ ︷︷ ︸
J8

+
∫

ΩT

KTs(h)X ε0 (h1)∇h · ∇h1,D dx dt︸ ︷︷ ︸
J9
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−
∫

ΩT

(
QsTs(h)(h− hD) + X ε0 (h1)

(
QfTf (h− h1) +QsTs(h)

)
(h1 − h1,D)

)
dx dt︸ ︷︷ ︸

J10

−
∫ T

0

φ
(
〈∂thD, h− hD〉V ′,V + 〈∂th1,D, h1 − h1,D〉V ′,V

)
dt︸ ︷︷ ︸

J11

.

We now estimate all the terms in the above expression. We recall that

|X ε0 (h1| ≤ 1, LM
(
‖∇h1‖L2

)
≤ 1, 0 ≤ Ts(h) ≤ h2, δ1 ≤ Tf (h− h1) ≤ h2.

Then, we note that

|J1| =
φ

2

∫
Ω

(
(h− hD)2(T, x)− (h0 − h0,D)2(x)

)
dx

+
φ

2

∫
Ω

(
(h1 − h1,D)2(T, x)− (h1,0 − h0,D)2(x)

)
dx,

|J2| =
∫

ΩT

ε|∇h|2 dx dt+
∫

ΩT

ε|∇h1|2 dx dt,

|J3| ≥
∫

ΩT

K−Ts(h)|∇(h+ h1)|2 dx dt,

|J4| ≥
∫

ΩT

K−

((
1−X ε0 (h1)LM (‖∇h1‖L2)

)
Ts(h) + δ1

)
|∇h1|2 dx dt.

Next, applying the Cauchy-Schwarz and Young inequalities, for some real γ > 0,
we obtain

|J5| ≤
∫

ΩT

Ts(h)
( 1

4γ

(
1−X ε0 (h1)LM

(
‖∇h1‖L2

))2

×
K2

+

K−
|∇h1|2 + γK−|∇(h+ h1)|2

)
dx dt,

|J6| ≤
ε

2

∫
ΩT

|∇h|2 dx dt+
ε

2

∫
ΩT

|∇hD|2 dx dt+
γK−
16

∫
ΩT

Ts(h)|∇(h+ h1)|2 dx dt

+
4h2K

2
+

γK−

∫
ΩT

|∇hD|2 dx dt+
δ1K−

12

∫
ΩT

|∇h1|2 dx dt

+
3h2

2K
2
+

K−δ1

∫
ΩT

|∇hD|2 dx dt,

|J7| ≤
ε

2

∫
ΩT

|∇h1|2 dx dt+
δ1K−

6

∫
ΩT

|∇h1|2 dx dt

+
∫

ΩT

( ε
2

+
3h2

2K
2
+

δ1K−

)
|∇h1,D|2 dx dt

|J8| ≤
δ1K−

12

∫
ΩT

|∇h1|2 dx dt+
6K2

+h
2
2

2 δ1K−

∫
ΩT

|∇hD|2 dx dt,

|J9| ≤
δ1K−

12

∫
ΩT

|∇h1|2 dx dt+
γK−
16

∫
ΩT

Ts(h)|∇(h+ h1)|2 dx dt

+
K2

+

K−

(3h2
2

δ1
+

4h2

γ

) ∫
ΩT

|∇h1,D|2 dx dt,
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|J10| ≤
∫

ΩT

Ts(h)|Qs(h− hD)| dx dt+
∫

ΩT

Tf (h− h1)|Qf (h1 − h1,D)| dx dt

+
∫

ΩT

Ts(h)|Qs(h1 − h1,D)| dx dt

≤
3‖Qs‖2L2(0,T ;H) + 2‖Qf‖2L2(0,T ;H)

2φ
h2

2 +
φ

2

∫
ΩT

|h− hD|2 dx dt

+
φ

2

∫
ΩT

|h1 − h1,D|2 dx dt,

|J11| ≤
φ

2

∫
ΩT

|h− hD|2 dx dt+
δ1K−

24

∫
ΩT

|∇(h1 − h1,D)|2 dx dt

+
φ

2
‖∂thD‖2L2(0,T ;H) +

12φ2

δ1K−
‖∂th1,D‖2L2(0,T ;V ′)

≤ φ

2

∫
ΩT

|h− hD|2 dx dt+
δ1K−

12

∫
ΩT

|∇h1|2 dx dt

+
δ1K−

12

∫
ΩT

|∇h1,D|2 dx dt+
φ

2
‖∂thD‖2L2(0,T ;H) +

12φ2

δ1K−
‖∂th1,D‖2L2(0,T ;V ′).

Summing up all these estimates, we obtain

φ

∫
Ω

(h− hD)2(T, x) dx+ φ

∫
Ω

(h1 − h1,D)2(T, x) dx+
∫

ΩT

ε
(
|∇h|2 + |∇h1|2

)
dx dt

+ 2
∫

ΩT

((
K− −

1K2
+

4γK−

)(
1−X ε0 (h1)LM (‖∇h1‖L2)

)
Ts(h)

)
|∇h1|2 dx dt

+ 2
∫

ΩT

δ1K−
2
|∇h1|2 dx dt+ 2

∫
ΩT

K−(1− 9γ
8

)Ts(h)|∇(h+ h1)|2 dx dt

≤ φ
∫

ΩT

|h− hD|2 dx dt+ φ

∫
ΩT

|h1 − h1,D|2 dx dt+ C,

(4.27)
where C = C(u0, v0, hD, h1,D, h2, Qs, Qf ). We now aim at applying the Gronwall

lemma in (4.27). By the hypotheses on K− and K+,
(
K− −

1K2
+

4γK−

)
≥ 0 and taking

γ such that 0 < γ < 8/9, we obtain that(
K− −

1K2
+

4γK−

)
≥ 0

is always true because 0 ≤ 1−X ε0 (h1)LM (x) ≤ 1 and K+ ≤ 2
√
γK−.

Now we apply the Gronwall lemma and we deduce that there exists a real number
B, that does not depend on ε nor on M , such that

‖h‖L∞(0,T ;H)∩L2(0,T ;(H1(Ω))′) ≤ B, ‖Ψ(h)‖L2(0,T ;H1(Ω)) ≤ B,
‖h1‖L∞(0,T ;H)∩L2(0,T ;H1(Ω)) ≤ B,

(4.28)

where we set

Ψ(x) =
∫ x

0

(h2 − t)1/2dt =
2
3
(
h

3/2
2 − (h2 − x)3/2

)
.

In particular, ‖∇h1‖L2(0,T ;H) ≤ B and this estimate does not depend on the choice
of the real number M that defines function LM . Then the term LB

(
‖∇h1‖L2

)
= 1

may be dropped.
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Remark on the Maximum Principle. Even if we establish step 3, we can not
prove that h1(t, x) + δ1 ≤ h(t, x) a.e. x ∈ Ω and ∀t ∈ (0, T ). We set

hm =
(
δ1 + h1 − h

)+ ∈ L2(0, T ;V ) since h1,D(·, ·) + δ1 ≤ hD(·, ·).

Likewise, we recall that hm(0, ·) = 0 a.e. in Ω thanks to the maximum principle
satisfied by the initial data h0 and h1,0. Moreover, ∇hm = χ{h<δ1+h1}∇(h1 − h).
Let τ ∈ (0, T ), thus, taking w(t, x) = hm(x, t)χ(0,τ)(t) in (4.17)–(4.16) yields∫ τ

0

φ〈∂t(h1 − h), hm〉V ′,V dt+
∫

Ωτ

χ{h<δ1+h1}(ε+ Ts(h))|∇(h1 − h)|2 dx dt

+
∫

Ωτ

Tf (h− h1))∇h · ∇hm dx dt

+
∫

Ωτ

X ε0 (h1)Ts(h)
(
∇h · ∇hm − LM

(
‖∇h1‖L2)∇h1 · ∇hm

)
dx dt

−
∫

Ωτ

QfTf (h− h1)X ε0 (h1)hm dx dt = 0.

Applying Lemma 1 to (4.22) and taking into account hm(0, ·) = 0, gives∫ τ

0

φ〈∂th1, hm〉V ′,V dt =
φ

2

∫
Ω

(
h2
m(τ, x)− h2

m(0, x)
)
dx =

φ

2

∫
Ω

h2
m(τ, x) dx.

Moreover, LM
(
‖∇h1‖L2) = 1, then the above equation becomes

φ

2

∫
Ω

h2
m(τ, x) dx+

∫
Ωτ

χ{h<δ1+h1}

(
ε+ Ts(h)(1−X ε0 (h1))

)
|∇(h1 − h)|2 dx dt

+
∫

Ωτ

Tf (h− h1))∇h · ∇hm dx dt−
∫

Ωτ

QfTf (h− h1)X ε0 (h1)hm dx dt = 0.

(4.29)
Since Tf (h − h1)χ{h<δ1+h1} = δ1 > 0 by definition of Tf , if we assume Qf ≤ 0
hence (4.22) becomes

φ

2

∫
Ω

h2
m(τ, x) dx+

∫
Ωτ

δ1∇h · ∇hm dx dt

≤ −
∫ τ

0

∫
Ω

χ{h<δ1+h1}

(
ε+ Ts(h)(1−X ε0 (h1))

)
|∇(h1 − h)|2 dx dt ≤ 0.

and because of the term
∫

Ωτ
δ1∇h·∇hm dx dt, we can no more conclude that hm = 0

a.e. on ΩT .

Step 4: Existence for the initial system. We now proceed to the last step
in the proof of Theorem 3.3, namely we let ε → 0. We infer from the above
estimates that (hε1 − h1,D)ε is uniformly bounded in W (0, T ). We deduce thanks
to the compactness result of Aubin that (hε1 − h1,D)ε is sequentially compact in
L2(0, T ;H).

Concerning the sequence {hε − hD}ε, we proceed as in the case of the confined
aquifer when β = 0. We first observe that Ψ is a strictly decreasing function of class
C1 on [0, h2] and Ψ−1 is continue on (0, 2

3h
3/2
2 ). Using the time translate estimates

(see e. g. [3]), we deduce that {Ψ(hε)}ε is sequentially compact in L2(ΩT ). Namely,
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(4.28) yields the following time translate estimate in L2 norm of sequence {hε}ε∫ T

ξ

〈(hε(t, .)− hε(t− ξ, .),Ψ(hε(t, x))−Ψ(hε(t− ξ, .))〉V ′,V dt

≤
(∫ T

ξ

‖hε(t, ·)− hε(t− ξ, ·)‖2V ′ dt
)1/2(∫ T

ξ

‖Ψ(hε(t, ·))−Ψ(hε(t− ξ, ·)‖2V dt
)1/2

≤ C
(∫ T

ξ

‖hε(t, ·)− hε(t− ξ, ·)‖2V ′ dt
)1/2

thanks to (4.28).

However, we know that for all ξ ∈ (0, T ) (see [5])

1
ξ2

∫ T

ξ

‖hε(t, ·)− hε(t− ξ, ·)‖2V ′ dt ≤
∫ T

ξ

‖∂thε‖2(H1(Ω))′ dt ≤ C,

Finally we obtain∫ T

ξ

〈(hε(t, .)− hε(t− ξ, .),Ψ(hε(t, x))−Ψ(hε(t− ξ, .))〉V ′,V dt ≤ Cξ, ∀ξ ∈ (0, T ).

Thanks to the regularity of Ψ , we deduce∫ T

ξ

(
Ψ(hε(t, ·))−Ψ(hε(t− ξ, ·)),Ψ(hε(t, ·))−Ψ(hε(t− ξ, ·))

)
L2(Ω)

dt ≤ Cξ,

for all ξ ∈ (0, T ). Therefore, as in [[9], Lemma 2.6], we deduce that {Ψ(hε)}ε
converges strongly in L2(ΩT ).

Up to the extraction of a subsequence, not relabeled for convenience, we claim
that there exists functions h and h1 such that (h− hD, h1 − h1,D) ∈W (0, T )2 and

hε → h in L2(0, T ;H) and a.e. in Ω× (0, T ),

Ψ(hε) ⇀ Ψ(h) weakly in L2(0, T ;H1(Ω)),

∂th
ε ⇀ ∂th weakly in L2(0, T ;V ′),

hε1 → h1 in L2(0, T ;H) and a.e. in Ω× (0, T ),

hε1 ⇀ h1 weakly in L2(0, T ;H1(Ω)),

∂th
ε
1 ⇀ ∂th1 weakly in L2(0, T ;V ′).

Letting ε → 0 in the weak formulation of the regularized problem and using
Lebesgue Theorem (thanks to the uniform estimates 4.28), we obtain at once (3.6)-
(3.7). The boundary and initial condition (3.4)-(3.9) holds true since the map
i ∈ W (0, T ) 7→ i(0) ∈ H is continuous. Furthermore (h, h1) satisfies a maximum
principle which is not consistent with physical reality because we lost the informa-
tion between h1 and h:

0 ≤ h1(x, t) and 0 ≤ h(x, t) ≤ h2, ∀t ∈ (0, T ), a.e. x ∈ Ω.

The proof of Theorem 3.3 is complete.
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