
Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 120, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

A COMPARISON PRINCIPLE FOR SINGULAR PARABOLIC
EQUATIONS IN THE HEISENBERG GROUP

PABLO OCHOA

Abstract. In this work, we prove a comparison principle for singular par-
abolic equations with boundary conditions in the context of the Heisenberg

group. In particular, this result applies to interesting equations, such as the

parabolic infinite Laplacian, the mean curvature flow equation and more gen-
eral homogeneous diffusions.

1. Introduction

The notion of viscosity solution was firstly introduced by Crandall and Lions [8]
in the context of scalar nonlinear first order equations. This concept was related
to some previous work by Evans [12]. In general terms, the definition of viscosity
solutions for parabolic problems may be motivated as follows: consider a C2-regular
function u : Ω × (0, T ) → R, where Ω ⊂ Rn is an open set and T > 0 is given.
Suppose that u solves the differential inequality

ut(z) + F (z, u(z),∇u(z),∇2u(z)) ≤ 0 (1.1)

for all z = (t, p) ∈ Ω× (0, T ). Here, F : [0, T ]×Ω×R×Rn×Sn(R)→ R is a given
function, which is assumed to be degenerate elliptic:

F (t, p, r, η,X ) ≤ F (t, p, r, η,Y) whenever Y ≤ X ,

so that
ut(z) + F (z, u(z),∇u(z),∇2u(z)) = 0 (1.2)

is a parabolic equation. Suppose now that ϕ is a smooth function defined in Ω ×
(0, T ) so that the difference u − ϕ attains a maximum at a point ẑ ∈ Ω × (0, T ).
Then, it follows that

ut(ẑ) = ϕt(ẑ), ∇u(ẑ) = ∇ϕ(ẑ), ∇2u(ẑ) ≤ ∇2ϕ(ẑ).

From the degenerate ellipticity of F , we derive

ϕt(ẑ) + F (ẑ, u(ẑ),∇ϕ(ẑ),∇2ϕ(ẑ))

≤ ut(ẑ) + F (ẑ, u(ẑ),∇u(ẑ),∇2u(ẑ)) ≤ 0.
(1.3)
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Observe that the extremes of these inequalities do not depend on the derivative
of u. Hence, this suggests to define an arbitrary function u to be a generalized or
weak subsolution of (1.1) in Ω× (0, T ) if for each ẑ ∈ Ω× (0, T ), a test function ϕ
that touches u from above at ẑ always satisfies

ϕt(ẑ) + F (ẑ, ϕ(ẑ),∇ϕ(ẑ),∇2ϕ(ẑ)) ≤ 0.

The notion of viscosity supersolution is defined analogously. Finally, a viscosity
solution of (1.2) is a subsolution and a supersolution. The primary virtues of
this theory are that it allows merely continuous functions to be solutions of fully
nonlinear equations of second order, that it provides very general existence and
uniqueness theorems and that it yields precise formulations of general boundary
conditions. Moreover, it has a great flexibility in passing to limits in various settings.
For a more complete treatment of viscosity solutions in the Euclidean framework
see [1, 2, 8, 9, 11] and the references therein. For extension of the definition to
singular equations, see for instance the book [15].

In this work, we are concerned with the development of a comparison principle
for a large class of boundary value problems, in the Heisenberg group H, of the
form

ut + F (t, p, u,∇Hu, (∇2
Hu)∗) = 0, in (0, T )× Ω (E)

u(t, p) = g(t, p) p ∈ ∂Ω, t ∈ [0, T ) (BC)

u(0, p) = h(p) p ∈ Ω (IC)

(1.4)

Here Ω ⊂ H is open and bounded, and F = F (t, p, r, η,X ) is assumed to be possibly
singular at η = 0 (extra assumptions on F will be provided in Section 3.1). See
Section 2 for definitions of the horizontal gradient ∇Hu and the symmetrized Hes-
sian matrix (∇2

Hu)∗ in H. A general comparison principle for parabolic equations
in the Heisenberg group for everywhere continuous F was introduced in [3]. (See
[11] for the related result in the Euclidean context). With respect to singular para-
bolic equations, we can quote the particular case of the horizontal mean curvature
flow equation treated in [13], for which a comparison principle for axisymmetric
surfaces was proven. (See also [15, 7] for the Euclidean treatment of singular par-
abolic equations). In this work, we prove that under some extra assumptions on
F , a comparison principle for the boundary value problem (1.4) holds for solutions
u which are symmetric with respect to some class of surfaces p3 = G(p1, p2) (see
(4.1)) in the sense that

u(t, p1, p2, p3) = u(t, p̂1, p̂2, p3) whenever G(p1, p2) = G(p̂1, p̂2).

We would like to point out that some of the arguments used in our proof of the
comparison principle are similar to those from the works [13, 3] and the seminal
paper [11], adapted to our framework and generality.

The organization of the paper is as follows. In Section 2, we provide a brief in-
troduction to the Heisenberg group. In the next Section 3, we discuss the parabolic
boundary problem we intend to study, the notions of viscosity solutions and we
provide the main assumptions to prove the comparison principle, which is formu-
lated and proven in Section 4. We close the paper with Section 5, where we give
examples of applications.
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2. Preliminaries on the Heisenberg group

In this section, we introduce the definition of the Heisenberg group H together
with its differential and metric structures. The notion of parabolic jet on H and
its characterization in terms of smooth functions are also explained.

2.1. The symmetric three dimensional Heisenberg group. We consider the
first order Heisenberg group H = (R3, ·), where · is the group operation defined by

p · q =
(
p1 + q1, p2 + q2, p3 + q3 +

1
2

(p1q2 − p2q1)
)
,

for all p = (p1, p2, p3), q = (q1, q2, q3) ∈ R3. The group H is a Lie group with Lie
algebra h generated by the basis

X1 =
∂

∂p1
− p2

2
∂

∂p3

X2 =
∂

∂p2
+
p1

2
∂

∂p3

X3 =
∂

∂p3
,

(2.1)

where p = (p1, p2, p3) ∈ R3. Observe that the following Heisenberg uncertainty
principle holds:

[X1, X2] = X3.

The exponential mapping takes the vector p1X1 + p2X2 + p3X3 in the Lie algebra
h to the point p in the Lie group H. This allows us to identify vectors in h with
points in H.

On the Heisenberg group, an important role is played by the distribution Hh
generated by the linearly independent vector fields X1 and X2, called the horizontal
distribution. Thus, this space at p, denoted byHhp , is a two dimensional linear space
generated by the vectors X1(p) and X2(p). As [X1, X2] = X3 /∈ Hh, the horizontal
distribution is not involutive, and hence, by Frobenius theorem, it is not integrable;
that is, there is no surface locally tangent to Hh.

2.2. Carnot-Carathéodory distance. A curve c(s) = (c1(s), c2(s), c3(s)) is hor-
izontal if c′(s) ∈ Hhc(s). Moreover, by Chow’s theorem any two points p and q in H
can be joined by a smooth horizontal curve. Hence, the set

Sp,q = {c : c(0) = p, c(1) = q, c is horizontal} 6= ∅.

The length of a horizontal curve c is given by

l(c) =
∫ 1

0

√
g(c′(s), c′(s))ds,

where g is the subRiemannian metric. The Carnot-Carathéodory distance is defined
as dC : R3 × R3 → [0,∞),

dC(p, q) = inf{l(c) : c ∈ Sp,q}.

One may verify that dC satisfies the distance axioms and that it is complete. This
metric induces a homogeneous norm on H, denoted | · |, by

|p| = dC(0, p),
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and we have the estimate

|p| ∼ ‖(p1, p2)‖E + |p3|1/2. (2.2)

Here, ‖ · ‖E stands for the Euclidean norm in Rn. This estimate leads to define the
left-invariant Heisenberg gauge | · |H that is compatible to the Carnot-Carathéodory
distance, and is defined as follows:

|p|H =
[
(p2

1 + p2
2)2 + 16p2

3

]1/4
.

For the rest of this article, we shall consider all topological notions with respect to
the metric space (H, dC). Also, for any p ∈ H and δ > 0, we write

BH(p, δ) =
{
q ∈ H : |q−1 · p| < δ

}
,

to denote the ball in the Heisenberg group with center at p and radius δ.

2.3. Analysis on H. The left translation Lp : H → H is defined by

Lp(q) = p · q.

Observe that Lp is an affine map. Indeed:

Lp(q) =

p1

p2

p3

+

 1 0 0
0 1 0

−p2/2 p1/2 1

q1

q2

q3

 ,

and the determinant of the matrix on the right-hand side is 1. It follows then that
the left-invariant Haar measure of H is the Lebesgue measure L of R3 (which is in
fact also right invariant).

For a smooth function u : H → R the horizontal gradient ∇H of u at a point p
is the projection of the gradient of u at p onto the horizontal space Hhp ,

∇Hu = (X1u)X1 + (X2u)X2.

The symmetrized horizontal second derivative matrix, denoted by (∇2
Hu)∗ is given

by

(∇2
Hu)∗ =

(
X2

1u
1
2 (X1X2u+X2X1u)

1
2 (X1X2u+X2X1u) X2

2u

)
.

With this notation and the estimate (2.2), the Taylor expansion for a smooth u
around p0 reads as

u(p0) = u(p) + 〈∇u(p0), p−1
0 · p〉+

1
2
〈(∇2

Hu(p0))∗p−1
0 cdotp, p−1

0 · p〉+ o(|p−1
0 · p|2

For more about the Heisenberg group, the interested reader is referred to [3, 6, 16, 5],
and the references therein.

2.4. Parabolic subelliptic jets. We start by defining the parabolic superjets of
a function u at a point (t0, p0) ∈ (0,∞) ×H, denoted by P 2,+u(t0, p0), as the set
of all triples (τ, η,X ) ∈ R× R3 × S2(R) that satisfies

u(t, p) ≤ u(t0, p0)+ τ(t− t0)+ 〈η, p−1
0 ·p〉+

1
2
〈Xh, h〉+o(|t− t0|+ |p−1

0 ·p|2H), (2.3)

as (t, p)→ (t0, p0). Here, h denotes the horizontal projection of p−1
0 · p. We define

the parabolic subject P 2,−u(t0, p0) by

P 2,−u(t0, p0) = −P 2,+(−u)(t0, p0).
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As in the subelliptic case (see [10] for the Euclidean case, [3] for the subelliptic
case), it was shown in [4] that

P 2,+u(t0, p0) =
{

(ϕt(t0, p0),∇ϕ(t0, p0), (∇2
Hϕ(t0, p0))∗) : ϕ ∈ Au(t0, p0)

}
,

where

Au(t0, p0) = {ϕ ∈ C2(H× (0, T )) : u− ϕ has a strict local maximum at (t0, p0)}.
Similarly, one has

P 2,−u(t0, p0) =
{

(ϕt(t0, p0),∇ϕ(t0, p0), (∇2
Hϕ(t0, p0))∗) : ϕ ∈ Bu(t0, p0)

}
,

where

Bu(t0, p0) = {ϕ ∈ C2(H× (0, T )) : u− ϕ has a strict local minimum at (t0, p0)}.
We also define the closure of second order superjets and subjets.

Definition 2.1. The closure of the second order superjet of an upper-semicontin-
uous function u at a point (t0, p0), denoted by P

2,+
u(t0, p0), is defined as the set

of (τ, η,X ) ∈ R×R3×S2(R), such that there exist sequences of points (tn, pn) and
(τn, ηn,Xn) ∈ P 2,+u(tn, pn) such that

(tn, pn, u(tn, pn), τn, ηn,Xn)→ (t0, p0, u(t0, p0), τ, η,X ), as n→∞.
Similarly, the closure of the second order subjet of a lower-semicontinuous function
u at a point (t0, p0), denoted by P

2,−
u(t0, p0), is defined as the set of (τ, η,X ) ∈

R×R3×S2(R), such that there exist sequences of points (tn, pn) and (τn, ηn,Xn) ∈
P 2,−u(tn, pn) such that

(tn, pn, u(tn, pn), τn, ηn,Xn)→ (t0, p0, u(t0, p0), τ, η,X ), as n→∞.

3. General setting

3.1. The parabolic problem under study and the notions of viscosity so-
lutions. Let Ω be an open and bounded domain in H. We consider the following
class of problems:

ut + F (t, p, u,∇Hu, (∇2
Hu)∗) = 0, in (0, T )× Ω (E)

u(t, p) = g(t, p) p ∈ ∂Ω, t ∈ [0, T ) (BC)

u(0, p) = h(p) p ∈ Ω (IC)

(3.1)

Here g ∈ C([0, T )× Ω), h ∈ C(Ω) and F : [0, T ]× Ω× R× (R2 \ {0})× S2(R)→ R
is assumed to satisfy the following properties:

(1) F is continuous in [0, T ]×Ω×R×(R2\{0})×S2(R), and there is a modulus
of continuity ω so that

|F (t, p, r, η,X )− F (s, q, r, η,X )| ≤ ω
(
|t− s|+ dC(p, q)

)
, (3.2)

for all r ∈ R, η ∈ R2 \ {0} and all X ∈ S2(R). (Observe that the modulus
ω is the same for all r, η and X .)

(2) F is proper, that is,

(r,X )→ F (t, p, r, η,X )

is increasing in r ∈ R and decreasing in X ∈ S2(R).
(3) F∗(t, p, r, 0,O) = F ∗(t, p, r, 0,O) = 0 for all t, p, r ∈ [0, T ]× Ω× R. F∗ and

F ∗ are locally bounded in the set [0, T ]× Ω× R× R2 × S2(R).
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(4) F (t, p, r, ηε,Yε) − F (t, p, r, ηε,Xε) ≤ o(1), uniformly in t, p, r, and ηε uni-
formly bounded, and all Xε,Yε ∈ S2(R) so that

Xε − Yε ≤ o(1)I,

where I is the identity matrix.

Remark 3.1. We may replace assumptions (1) and (4) by the following stronger
assumption: there exist constants K,L > 0 such that

F (t, p, r, η,Y)− F (s, q, r′, β,X ) ≤ K
(
dC(p, q) + |s− t|+ |r − r′|+ |β − η|

)
+ Lσ,

for all p, q ∈ Ω, s, t ∈ [0, T ], r, r′ ∈ R, η, β ∈ R2 \ {0} and all X ,Y ∈ S2(R) so that

X ≤ Y + σI.

Next, we introduce the definition of viscosity solution to the singular parabolic
equation (E) in the context of the Heisenberg group.

Definition 3.2. An upper (respectively, lower) semicontinuous function u : (0, T )×
Ω→ R∪ {±∞} is a viscosity subsolution (resp. supersolution) in (0, T )×Ω to (E)
if for all (t0, p0) ∈ (0, T ) × Ω and all smooth ϕ ∈ Au(t0, p0) (resp. ϕ ∈ Bu(t0, p0))
there holds

ϕt(t0, p0) + F∗(t0, p0, u(t0, p0),∇Hϕ(t0, p0), (∇2
Hϕ(t0, p0))∗) ≤ 0.

(resp. ϕt(t0, p0) + F ∗(t0, p0, u(t0, p0),∇Hϕ(t0, p0), (∇2
Hϕ(t0, p0))∗) ≥ 0.)

A continuous function u is a viscosity solution if it is a viscosity subsolution and a
viscosity supersolution.

It is also possible to deal with the singularity of F at η = 0 ∈ R2 by restricting
the set of test functions to the set

A0 = {ϕ ∈ C∞((0,∞)×H) : ∇Hϕ(t, p) = 0 implies (∇2
Hϕ(t, p))∗ = 0}.

This is the content of Definition 3.3. Another way is to use parabolic jets as
in Definition 3.4 below. We shall see in Lemma 3.5 that these definitions are
equivalent.

Definition 3.3. An upper (respectively, lower) semicontinuous function u : (0, T )×
Ω→ R ∪ {±∞} is a subsolution (resp. supersolution) to (E) if:

(i) u <∞ (resp. u > −∞) in (0, T )× Ω;
(ii) For any smooth function ϕ and (t0, p0) ∈ (0, T )×Ω such that ϕ ∈ Au(t0, p0)

(resp. ϕ ∈ Bu(t0, p0)), the function ϕ satisfies

ϕt + F (t0, p0, u(t0, p0),∇Hϕ, (∇2
Hϕ)∗) ≤ 0, at (t0, p0),

(resp. ϕt + F (t0, p0, u(t0, p0),∇Hϕ, (∇2
Hϕ)∗) ≥ 0, at (t0, p0).)

if ∇Hϕ(t0, p0) 6= 0, and ϕt(t0, p0) ≤ 0 (respectively ϕt(t0, p0) ≥ 0.) when
∇Hϕ(t0, p0) = 0 and (∇2

Hϕ(t0, p0))∗ = 0.

Definition 3.4. An upper (respectively, lower) semicontinuous function u : (0, T )×
Ω→ R ∪ {±∞} is a subsolution (resp. supersolution) to (E) if:

(i) u <∞ (resp. u > −∞) in (0, T )× Ω;
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(ii) For any (t0, p0) ∈ (0, T ) × Ω and any (τ, η,X ) ∈ P
2,+
u(t0, p0) (resp.

(τ, η,X ) ∈ P 2,−
u(t0, p0)), we have

τ + F∗(t0, p0, u(t0, p0), η,X ) ≤ 0

(resp. τ + F ∗(t0, p0, u(t0, p0), η,X ) ≥ 0.

It is straightforward to check that Definition 3.2 and Definition 3.4 are equivalent.
Moreover Definition 3.2 implies Definition 3.3. Hence, it is remains to prove the
converse. This is the content of the next result, which is [13, Proposition 3.1].

Lemma 3.5. An upper-semicontinuous function u is a subsolution to (E) in the
sense of Definition 3.2 if and only if it is a subsolution in the sense of Definition
3.3. A similar statement holds for supersolutions.

Proof. The proof is the same as that of [13, Proposition 3.1]. We just mention how
to treat with the dependence of F on t, p and r, which is not the case considered in
[13]. First of all, it is clear that Definition 3.2 implies Definition 3.3. To prove the
converse, assume that u is a subsolution according to Definition 3.3. Let (t̂, p̂) ∈
(0, T )× Ω and let ϕ a smooth function such that

max
(0,T )×Ω

(u− ϕ) = (u− ϕ)(t̂, p̂).

As in [13], we let

Φτ (t, p, q) = u(t, p)− τ |q−1 · p|4 − ϕ(t, p).

Then Φ(t, p, q) = lim sup∗τ→∞Φτ (t, p, q) = −∞ when p 6= q, and Φ(t, p, p) =
lim sup∗τ→∞Φτ (t, p, p) = u(t, p) − ϕ(t, p). By the convergence of maximum points
[15, Lemma 2.2.5]), there exists a sequence (tτ , pτ , qτ ) converging to (t̂, p̂, p̂) such
that Φτ attains a maximum at (tτ , pτ , qτ ). Moreover

lim
τ→∞

Φτ (tτ , pτ , qτ ) = Φ(t̂, p̂, p̂). (3.3)

Hence, since ϕ(tτ , pτ ) → ϕ(t̂, p̂) as τ → ∞, we derive from (3.3) and the upper
semicontinuity of u that

u(t̂, p̂) = lim inf
τ→∞

(
u(tτ , pτ )− τ |(qτ )−1 · pτ |4

)
≤ lim inf

τ→∞
u(tτ , pτ )

≤ lim sup
τ→∞

u(tτ , pτ ) ≤ u(t̂, p̂).

(3.4)

Concluding that
lim
τ→∞

u(tτ , pτ ) = u(t̂, p̂). (3.5)

With (3.5) in mind, we may proceed with the proof as in [13]. �

Finally, we proceed as in [11, 4] and we introduce the definition of viscosity
solution to the problem (3.1).

Definition 3.6. A subsolution u(t, p) to problem (3.1) is a viscosity subsolution
to (E), u(t, p) ≤ g(t, p) on ∂Ω, t ∈ [0, T ), and u(0, p) ≤ h(p) in Ω. Supersolutions
and solutions are defined in an analogous manner.
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4. Comparison principle

Let G : R2 → R be a smooth function verifying that there is no point (p1, p2) ∈
R2 \ {0} such that

p1
∂G

∂p1
(p1, p2) + p2

∂G

∂p2
(p1, p2) = 0. (4.1)

In particular, observe that the Euclidean gradient (∂G/∂p1(p1, p2), ∂G/∂p2(p1, p2))
is not zero for all (p1, p2) 6= (0, 0). We are interested in a comparison principle for
the problem (3.1) in the case of sub or supersolutions u which are symmetric with
respect to the surface p3 = G(p1, p2):

u(t, p1, p2, p3) = u(t, p̂1, p̂2, p3), when G(p1, p2) = G(p̂1, p̂2).

This is the content of our main result.

Theorem 4.1. Let u and v be respectively an upper semicontinuous subsolution
and a lower semicontinuous supersolution to (3.1). Assume that either u or v are
symmetric with respect to the surface p3 = G(p1, p2). Then:

u ≤ v in [0, T )× Ω.

Proof. Let us assume that u is symmetric with respect to the surface p3 = G(p1, p2).
To obtain a contradiction, we assume that there exists a point (t, p) ∈ (0, T ) × Ω
so that

(u− v)(t, p) > 0.

Then, we are able to find a positive number δ > 0 satisfying

u(t, p)− v(t, p)− δ

T − t
> 0.

Let (t̂, p̂) ∈ [0, T )× Ω so that

M = u(t̂, p̂)− v(t̂, p̂)− δ

T − t̂
= max

[0,T )×Ω

(
u(t, p)− v(t, p)− δ

T − t

)
> 0. (4.2)

As usual in the proof of comparison principles, we double the variables and proceed
with the penalizing process defining the function Mτ by

Mτ (t, p, s, q) = u(t, p)− v(s, q)− τg2(p, q)− τ

2
(t− s)2 − δ

T − t
,

where g(p, q) = |p · q−1|4H. This is the same penalizing process as in [13]. We
take maximizers (tτ , pτ , sτ , qτ ) ∈ ([0, T ) × Ω)2 of Mτ . In view of (4.2) and the
boundedness from above of the functions u and −v, the points tτ lie in a compact
subset of [0, T ) for τ large. Moreover, the inequality

Mτ (tτ , pτ , sτ , qτ ) ≥Mτ (t̂, p̂, t̂, p̂) (4.3)

implies that
|pτ · (qτ )−1|H → 0 and |tτ − sτ | → 0, (4.4)

as τ →∞. This fact, together with the compactness of the set Ω yield the existence
of a point (t0, p0) ∈ [0, T )×Ω such that pτ , qτ → p0 and tτ , sτ → t0. It also follows
from (4.3) and the above convergences, that

0 ≤ lim sup
τ→∞

(
τg2(pτ , qτ ) +

τ

2
(tτ − sτ )2

)
≤ 0.
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Concluding that

τg2(pτ , qτ ) +
τ

2
(tτ − sτ )2 → 0 as τ →∞.

In addition, the fact u(0, p) ≤ v(0, p) implies that t0 6= 0. Indeed, if t0 = 0, then

0 < M = Mτ (t̂, p̂, t̂, p̂) ≤ lim
τ→∞

Mτ (tτ , pτ , sτ , qτ ) = u(0, p0)− v(0, p0)− δ

T
≤ 0

which is a contradiction. Hence, t0 ∈ (0, T ). On the other hand, we also need to
check that p0 ∈ Ω. Observe that

M ≤ lim
τ→∞

Mτ (tτ , pτ , sτ , qτ ) = u(t0, p0)− v(t0, p0)− δ

T − t0
. (4.5)

Hence, If p0 ∈ ∂Ω, the property u(t, p) ≤ v(t, p) on [0, T )× ∂Ω says that the right-
hand side above is negative, which contradicts that M > 0. Therefore, p0 should
be an interior point. Thus, we may apply the parabolic Euclidean Crandall-Ishii
lemma [11, Theorem 8.3]) to the functions

(t, p)→ u(t, p)− v(sτ , qτ )− τg2(p, qτ )− τ

2
(t− sτ )2 − δ

T − t
and

(s, q)→ u(tτ , pτ )− v(s, q)− τg2(pτ , q)− τ

2
(tτ − s)2 − δ

T − tτ
which have, respectively, a maximum at the points (tτ , pτ ) and (sτ , qτ ). To do so, we
need to check [11, Condition 8.5], namely, that there is an r > 0 such that for every
M > 0 there is a C such that for all (b, β,X) ∈ P 2,+

Euclu(t, p): if |u(p, t)|+|β|+‖X‖ ≤
M and |t − tτ | + ‖p − pτ‖E < r hold, then b ≤ C, with an analogous statement
for −v. Indeed, if this is not true, for all r > 0, there is an M > 0 such that
for all C there is (b, β,X) ∈ P 2,+

Euclu(p, t) so that |u(t, p)| + |β| + ‖X‖ ≤ M and
|t− tτ |+ ‖p− pτ‖E < r but b > C. This would imply that(

b, (DLpβ,DLpXDLTp )2×2

)
∈ P 2,+u(t, p)

which contradicts the fact that u is a subsolution for large C in view of the local
boundedness of the function F∗. A similar argument applies to −v. Hence, we may
apply [11, Theorem 8.3] to obtain matrices Xτ , Y τ ∈ S3(R) such that( δ

(T − tτ )2
+ τ(tτ − sτ ), τ∇pg2(pτ , qτ ), Xτ

)
∈ P 2,+

Euclu(tτ , pτ ) (4.6)(
τ(tτ − sτ ),−τ∇qg2(pτ , qτ ), Y τ

)
∈ P 2,−

Euclv(sτ , qτ ),

with the property that(
Xτ 0
0 −Y τ

)
≤ τ

[
∇2
p,qg

2(pτ , qτ ) + (∇2
p,qg

2(pτ , qτ ))2
]
. (4.7)

It is also clear that( δ

(T − tτ )2
+ τ(tτ − sτ ), τDLpτ∇pg2(pτ , qτ ), (DLpτXτDLTpτ )2×2

)
∈ P 2,+

u(tτ , pτ )

(4.8)
and (

τ(tτ − sτ ),−τDLqτ∇qg2(pτ , qτ ), (DLqτY τDLTqτ
)
∈ P 2,−

v(sτ , qτ ).
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As in [3] and [13], let

wpτ = (DLpτ )T (w1, w2, 0)T =
(
w1, w2,

1
2

(pτ1w2 − pτ2w1)
)
,

wqτ = (DLqτ )T (w1, w2, 0)T =
(
w1, w2,

1
2

(qτ1w2 − qτ2w1)
)
.

Then, defining the matrices X τ ,Yτ ∈ S2(R) as

X τ = (DLpτXτDLTpτ )2×2,

Yτ = (DLpτY τDLTpτ )2×2,

we deduce from (4.7) that

〈X τw,w〉 − 〈Yτw,w〉
= 〈Xτwpτ , wpτ 〉 − 〈Y τwqτ , wqτ 〉

≤ τ
〈[
∇2
p,qg

2(pτ , qτ ) + (∇2
p,qg

2(pτ , qτ ))2
]
(wpτ ⊕ wqτ ), wpτ ⊕ wqτ

〉
= o(1),

(4.9)

locally uniformly in ‖w‖.
Because of the singularity of F at η = 0, we have to consider two cases. Firstly,

assume that
ητ = τ∇pHg

2(pτ , qτ ) = −τ∇qHg
2(pτ , qτ ) 6= 0

for all large τ . Using that u is a subsolution and v is a supersolution to equation
(E), we obtain

δ

(T − tτ )2
+ τ(tτ − sτ ) + F (tτ , pτ , u(tτ , pτ ), ητ ,X τ ) ≤ 0, (4.10)

τ(tτ − sτ ) + F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ ) ≥ 0, (4.11)

Subtracting (4.11) from (4.10), we have

δ

(T − tτ )2
+ F (tτ , pτ , u(tτ , pτ ), ητ ,X τ )− F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ ) ≤ 0. (4.12)

Whence

0 <
δ

(T − tτ )2
≤ F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ )− F (tτ , pτ , u(tτ , pτ ), ητ ,X τ ).

We now estimate the difference on the right-hand side. From assumption (1) on F ,
we obtain

F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ )− F (tτ , pτ , u(tτ , pτ ), ητ ,X τ )

≤ ω
(
|tτ − sτ |+ dC(pτ , qτ )

)
+ F (tτ , pτ , v(sτ , qτ ), ητ ,Yτ )

− F (tτ , pτ , u(tτ , pτ ), ητ ,X τ ).

(4.13)

By (4.5), we have
u(tτ , pτ )− v(sτ , qτ ) > 0,

for large enough τ . Hence, by assumption (2), (4.9) and assumption (4), the in-
equality (4.13) becomes

F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ )− F (tτ , pτ , u(tτ , pτ ), ητ ,X τ ) ≤ o(1) as τ →∞. (4.14)

Then we obtain the contradiction

0 <
δ

(T − t0)2
≤ o(1).
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Secondly, suppose that ητj = 0 for a subsequence τj →∞. One has to distinguish
two subcases:
Subcase 1: If g(pτj , qτj ) = 0, then reasoning as in [13], we obtain the contradiction

δ

(T − t0)2
≤ 0.

Subcase 2: Suppose g(pτj , qτj ) 6= 0, then it follows that ∇pHg(pτj , qτj ) = 0. We
first prove that pτj1 = p

τj
2 = 0. Assume to get a contradiction that (pτj1 )2+(pτj2 )2 6= 0.

Observe that the function p→ u(p, qτj , tτj )− τg2(p, qτj ) attains a maximum at pτj ,
which is an interior point of Ω for τj large enough. For all point p̂ = (p̂1, p̂2, p̂3) 6= 0
closed to pτj such that

p̂3 = G(p̂1, p̂2) = G(pτj1 , p
τj
2 ) = p

τj
3 ,

we have by the assumed symmetry of u that

u(p̂, tτj )− τg2(p̂, qτj ) ≤ u(pτj , tτ )− τg2(pτj , qτj )

which yields:
g(p̂, qτj ) ≥ g(pτj , qτj ).

The method of Lagrange multipliers says that there exists a constant λ ∈ R such
that

∂g

∂p1
(pτj , qτj ) = λ

∂G

∂p1
(pτj )

∂g

∂p2
(pτj , qτj ) = λ

∂G

∂p2
(pτj ).

(4.15)

From the assumption ητj = 0 and (4.15), we obtain

λ
∂G

∂p1
(pτj )− p

τj
2

2
∂g

∂p3
(pτj , qτj ) = 0

λ
∂G

∂p2
(pτj ) +

p
τj
1

2
∂g

∂p3
(pτj , qτj ) = 0.

(4.16)

If λ 6= 0, then

p
τj
1

∂G

∂p1
(pτj ) =

p
τj
1 p

τj
2

2λ
∂g

∂p3
(pτj , qτj )

p
τj
2

∂G

∂p2
(pτj ) = −p

τj
1 p

τj
2

2λ
∂g

∂p3
(pτj , qτj ).

(4.17)

Adding these equations gives a contradiction to (4.1). Hence, λ = 0. Thus, equa-
tions (4.15) and (4.16) take the form

0 =
∂g

∂p1
(pτj , qτj ) = 4

[
(pτj1 − q

τj
1 )2 + (pτj2 − q

τj
2 )2

]
(pτj1 − q

τj
1 )

0 =
∂g

∂p2
(pτj , qτj ) = 4

[
(pτj1 − q

τj
1 )2 + (pτj2 − q

τj
2 )2

]
(pτj2 − q

τj
2 )

0 =
∂g

∂p3
(pτj , qτj ) = 2

(
p
τj
3 − q

τj
3 +

1
2
p
τj
2 q

τj
1 +

1
2
p
τj
1 q

τj
2

)
,

(4.18)

which yields pτj = qτj , contradicting the assumption g(pτj , qτj ) 6= 0.
Therefore, the claim is proved. As in [13], it also follows that qτj1 = q

τj
2 which

implies
(∇p,2H g2)∗(pτj , qτj ) = (∇q,2H g2)∗(pτj , qτj ) = 0.
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An application of Definition 3.3, gives the contradiction:
δ

(T − tτj )2
+ τj(tτj − sτj ) ≤ 0

and
τj(tτj − sτj ) ≥ 0.

Hence, the proof is complete. �

Remark 4.2. Another way of proving Theorem 4.1 is the following: for each δ > 0,
the function

ũ = u− δ

T − t
is also a subsolution. Indeed, if ϕ is a smooth function touching ũ from above at
some point (t0, p0) ∈ (0, T )× Ω such that

max
(0,T )×Ω

(ũ− ϕ) = (ũ− ϕ)(t0, p0)

then it clear that
max

(0,T )×Ω
(u− ϕ̃) = (u− ϕ̃)(t0, p0),

where

ϕ̃(t, p) = ϕ(t, p) +
δ

T − t
.

Observe that ∇Hϕ̃ = ∇Hϕ and (∇Hϕ̃)∗ = (∇Hϕ)∗. Hence, if ∇Hϕ 6= 0, we have
by Definition 3.3 and assumption (2) on F that

ϕt + F (t, p, ũ,∇Hϕ, (∇2
Hϕ)∗) ≤ ϕ̃t + F (t, p, u,∇Hϕ̃, (∇2

Hϕ̃)∗)− δ

(T − t)2

≤ − δ

(T − t)2
< 0.

(4.19)

If ∇Hϕ = 0 and (∇2
Hϕ)∗ = 0, then by Definition 3.3,

ϕt = ϕ̃t −
δ

(T − t)2
≤ − δ

(T − t)2
< 0. (4.20)

Therefore, without loss of generality, we may assume that the subsolution u satisfies

ut + F (t, p, u,∇Hu, (∇2
Hu)∗) ≤ − δ

T 2
< 0,

in the sense of viscosity subsolution; that is, u is a subsolution of

ut + F (t, p, u,∇Hu, (∇2
Hu)∗) ≤ 0

where

F (t, p, r, η,X ) = F (t, p, r, η,X ) +
δ

T 2
.

Also we may assume that the subsolution u satisfies

lim
t→T

u(t, p) = −∞, uniformly in Ω. (4.21)

Then we take the limit δ → 0 to obtain the desired result for any subsolution u.
Proceeding as above, we assume u(t̄, p̄)−v(t̄, p̄) > 0 for some point (t̄, p̄) ∈ Ω×[0, T ).
The function Mτ is redefined as follows

Mτ (t, p, s, q) = u(t, p)− v(s, q)− τg2(p, q)− τ

2
(t− s)2.
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As above, we derive

pτ , qτ → p0, tτ , sτ → t0, as τ →∞.

Observe that by assumption (4.21) on u, the points tτ lie in a compact subset of
[0, T ). Moreover, (p0, t0) ∈ Ω × (0, T ), and we may apply the parabolic Crandall-
Ishii lemma as before. Recall that the term δ/(T − tτ )2 does not appear now in the
expressions (4.6) and (4.8). The proof proceed as above, getting the contradictions:

0 <
δ

T 2
≤ F (sτ , qτ , v(sτ , qτ ), ητ ,Yτ )− F (tτ , pτ , u(tτ , pτ ), ητ ,X τ ) ≤ o(1),

when ητ 6= 0 for all large τ , and
δ

T 2
≤ 0

in the two subcases of the case ητj 6= 0 for a subsequence τj →∞.

5. Examples

5.1. Parabolic infinite Laplacian. We consider the following parabolic equation
in the Heisenberg group H:

ut −∆N
∞,Hu = 0, in H× (0, T ). (5.1)

Here, the operator −∆N
∞,H denotes the normalized ∞-Laplacian in the Heisenberg

group, and it is defined, for all u such that ∇Hu 6= 0, as follows:

−∆N
∞,Hu = − 1

|∇Hu|2
〈
(∇2
Hu)∗∇Hu;∇Hu

〉
= − 1
|∇Hu|2

2∑
i,j=1

XiuXjuXiXju.

(5.2)

For a vector η ∈ R2 \ {0}, and X ∈ S2(R), we introduce the function

F∞(η,X ) = −
2∑

i,j=1

ηiηj
|η|2
Xij . (5.3)

Hence, equation (5.1) can be written whenever ∇Hu 6= 0 as

ut + F∞(∆Hu, (∆2
Hu)∗) = 0, in H× (0, T ). (5.4)

Moreover, observe that
F ∗∞(0, 0) = F∞,∗(0, 0) = 0,

and that, for all pairs (η,X ) ∈ (R2 \ {0})× S2(R),

F ∗∞(η,X ) = F∞,∗(η,X ) = F∞(η,X ).

Finally, it is clear that F also satisfies assumption (4) in Section 3.1. Therefore,
Theorem 4.1 tells us that there exists a unique symmetric viscosity solution to the
problem

ut −∆N
∞,Hu = 0, in Ω× (0, T )

u(t, p) = g(t, p) p ∈ ∂Ω, t ∈ [0, T )

u(0, p) = h(0, p) p ∈ Ω

(5.5)

for T > 0, g ∈ C([0, T )× Ω) and h ∈ C(Ω) given.
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5.2. Mean curvature flow equation. We consider now the following problem
involving the mean curvature flow equation:

ut − tr
[(
I − ∇Hu⊗∇Hu

|∇Hu|2
)

(∇2
Hu)∗

)]
= 0, in Ω× (0, T )

u(t, p) = u0(t, p) p ∈ ∂Ω, t ∈ [0, T )

u(0, p) = u0(0, p) p ∈ Ω

(5.6)

A derivation and interpretation of the problem (5.6) in the Euclidean setting may
be seen in [15] and [7], and in [6] and [14] for the analogue in the Heisenberg group.

Let F : R2 \ {0} × S2(R)→ R be given by

F (η,X ) = − tr
[(
I − η ⊗ η

|η|2
)
X
]
.

Observe that F satisfies all the assumptions (1)–(4) from Section 3.1. By Theorem
4.1, the boundary value problem (5.6) admits a unique viscosity solution which is
symmetric in the sense specified in Theorem 4.1.

5.3. Homogeneous diffusions in H. Consider the following one parameter fam-
ily of Cauchy problems in the Heisenberg group:

ut + Cp∆1
p,Hu = 0, in Ω× (0, T )

u(t, p) = u0(t, p) p ∈ ∂Ω, t ∈ [0, T )

u(0, p) = u0(0, p) p ∈ Ω

(5.7)

where
Cp =

p

p+ 1
,

and the 1-homogeneous p-Laplacian ∆1
p is defined, for 1 ≤ p ≤ ∞, by

∆1
p,Hu =

{(
1− 1

p

)
F1((∇2

Hu)∗) +
(

2
p − 1

)
F
(
∇Hu, (∇2

Hu)∗
)
, if 1 ≤ p ≤ 2

1
pF1((∇2

Hu)∗) +
(
1− 2

p

)
F∞(∇Hu, (∇2

Hu)∗), if p > 2.

Here F1 : S2(R)→ R is given by

F1(X ) = − trX .
Our result Theorem 4.1 indicates that the problem (5.7) has a unique symmetric
(with respect to a surface p3 = G(p1, p2)) viscosity solution.
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