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EXISTENCE OF INFINITELY MANY SIGN-CHANGING
SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL

EXPONENTIAL GROWTH

DENILSON S. PEREIRA

Abstract. In this work we prove the existence of infinitely many nonradial

solutions, that change sign, to the problem

−∆u = f(u) in B

u = 0 on ∂B,

where B is the unit ball in R2 and f is a continuous and odd function with

critical exponential growth.

1. Introduction

Let Ω ⊂ RN be a bounded domain with smooth boundary and f : R → R be a
C1 function with f(−t) = −f(t). Consider the problem

−∆u = f(u), in Ω,
Bu = 0, on ∂Ω,

(1.1)

when N ≥ 4, Bu = u and f(t) = |t|
4

N−2 + λt, Brézis-Niremberg [5] proved that
(1.1) admits a non-trivial positive solution, provided 0 < f ′(0) < λ1(Ω), where
λ1(Ω) is the first eigenvalue of (−∆, H1

0 (Ω)). Cerami-Solimini-Struwe [7] proved
that if N ≥ 6, problem (1.1) admits a solution with changes sign. Using this, they
also proved that when N ≥ 7 and Ω is a ball, (1.1) admits infinitely many radial
solution which change sign.

Comte and Knaap [8] obtained infinitely many non-radial solutions that change
sign for (1.1) on a ball with Neumann boundary condition Bu = ∂u

∂ν , for every
λ ∈ R. They obtained such solutions by cutting the unit ball into angular sectors.
This approach was used by Cao-Han [6], where the authors dealt with the scalar
problem (1.1) involving lower-order perturbation and by de Morais Filho et al. [11]
to obtain multiplicity results for a class of critical elliptic systems related to the
Brézis-Nirenberg problem with the Neumann boundary condition on a ball.

When N = 2, the notion of “critical growth” is not given by the Sobolev imbed-
ding, but by the Trudinger-Moser inequality (see [14, 12]), which claims that for
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any u ∈ H1
0 (Ω), ∫

Ω

eαu
2
dx < +∞, for every α > 0. (1.2)

Moreover, there exists a positive constant C = C(α, |Ω|) such that

sup
||u||

H1
0(Ω)≤1

∫
Ω

eαu
2
dx ≤ C, for all α ≤ 4π. (1.3)

Motivated by inequality in (1.3), we say that the nonlinearity f has critical
exponential growth if f behaves like eα0s

2
, as |s| → ∞, for some α0 > 0. More

precisely,

lim
|s|→∞

|f(s)|
eαs2

= 0, ∀α > α0 and lim
|s|→∞

|f(s)|
eαs2

= +∞, ∀α < α0.

In this case, Adimurthi [1] proved that (1.1) admits a positive solution, provided
that limt→∞ tf(t)eαt

2
= ∞. Using a more weaker condition (see [1, Remark 4.2]),

Adimurthi in [2] also proved the exitence of many solutions for the Dirichlet problem
with critical exponential growth for the N -Laplacian. Adimurthi-Yadava [4], proved
that (1.1) has a solution that changes sign and, when Ω is a ball in R2, (1.1) has
infinitely many radial solutions that change sign. Inspired in [8], this paper is
concerned with the existence of infinitely many non-radial sign changing solutions
for (1.1) when f has critical exponential growth and Ω is a ball in R2. Our main
result complements the studies made in [8, 11], because we consider the case where f
has critical exponential growth in R2. It is important to notice that in both studies
mentioned above was considered the Neumann boundary condition in order that
the Pohozaev identity (see [13]) ensures that the problem (1.1) with the Dirichlet
boundary condition, has no solutions for λ < 0 and N ≥ 3. Since the Pohozaev
identity is not available in dimension two, in our case we can use the Dirichlet
boundary condition.

Here we use the following assumptions
(F1) There is C > 0 such that

|f(s)| ≤ Ce4π|s|2 , for all s ∈ R;

(F2) lims→0 f(s)/s = 0;
(H1) There are s0 > 0 and M > 0 such that

0 < F (s) :=
∫ s

0

f(t)dt ≤M |f(s)| for all |s| ≥ s0.

(H2) 0 < F (s) ≤ 1
2f(s)s for all s ∈ R \ {0}.

(H3) lims→∞ sf(s)e−4πs2 = +∞
Our main result reads as follows.

Theorem 1.1. Let f be an odd and continuous function satisfying (F1)–(F2) and
(H1)–(H3). Then (1.1) has infinitely many sign-changing solutions.

2. Notation and auxiliary results

For each m ∈ N, we define

Am = {x = (x1, x2) ∈ B : cos
( π

2m
)
|x1| < sin

( π
2m
)
x2}.
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So A1 is a half-ball, A2 an angular sector of angle π/2, and A3 an angular sector
of angle π/4 and so on; see Figure 1.

@
@
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��Am

→
x1

↑x2

Figure 1. Angular sector Am.

Using the above notation, we consider the auxiliary Dirichlet problem

−∆u = f(u), in Am,

u = 0, on ∂Am.
(2.1)

We will use the Mountain Pass Theorem to obtain a positive solution of (2.1).
Using this solution together with an anti-symmetric principle, we construct a sign-
changing solution of problem (1.1).

According to Figueiredo, Miyagaki and Ruf [9], to obtain a positive solution of
(2.1) it is sufficient to assume that the limit in (H3) satisfies

(H3’) lims→+∞ sf(s)e−4πs2 ≥ β > 1
2πd2

m
, where dm is the radius of the largest

open ball contained in Am.
Hypothesis (H3) was initially considered in Adimurthi [1]. This hypothesis will
be fundamental to ensure not only the existence but also the multiplicity of sign-
changing solutions. As we will see bellow, assuming (H3) in place of (H3’), we have
the existence of positive solution of (2.1), for every m ∈ N. This is the content of
the next result.

Theorem 2.1. Under the assumptions (F1)–(F2) and (H1)–(H3), problem (2.1)
has a positive solution, for every m ∈ N.

3. Proof of Theorem 2.1

In what follows, for an open set Θ ⊂ R2 we denote Lq(Θ) and H1
0 (Θ) norms by

|u|q,Θ =
(∫

Θ

|u|q
)1/q

, ‖u‖Θ =
(∫

Θ

|∇u|2
)1/2

,

respectively. Since we are interested in positive solutions to (2.1), we assume that

f(s) = 0, for all s ≤ 0.

Associated with problem (2.1), we have the functional I : H1
0 (Am)→ R defined by

I(u) =
1
2

∫
Am

|∇u|2 −
∫
Am

F (u).

In our case, ∂Am is not of class C1. However, the functional I is well defined. In
fact, for each u ∈ H1

0 (Am), let us consider u∗ ∈ H1
0 (B) the zero extension of u in
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B defined by

u∗(x) =

{
u(x), if x ∈ Am,
0, if x ∈ B \Am.

Clearly,
‖u‖Am = ‖u∗‖B .

Then, from (F1) and the Trudinger-Moser inequality (1.2)∣∣ ∫
Am

F (u)
∣∣ =

∣∣ ∫
B

F (u∗)
∣∣ ≤ ∫

B

|F (u∗)| ≤ C
∫
B

e4π|u∗|2 <∞.

Moreover, using a standard argument we can prove that the functional I is of class
C1 with

I ′(u)v =
∫
Am

∇u∇v −
∫
Am

f(u)v, for all u, v ∈ H1
0 (Am).

Therefore, critical points of I are precisely the weak solutions of (2.1). The next
lemma ensures that the functional I has the mountain pass geometry.

Lemma 3.1. (a) There are r, ρ > 0 such that I(u) ≥ ρ > 0 for all ‖u‖Am = r.
(b) There is e ∈ H1

0 (Am) such that ‖e‖Am > r and I(e) < 0.

Proof. Using the definition of I and the growth of f , we obtain

I(u) ≥ 1
2

∫
Am

|∇u|2 − ε

2

∫
Am

|u|2 − C
∫
Am

|u|qeβ|u|
2
,

or equivalently,

I(u) ≥ 1
2

∫
B

|∇u∗|2 − ε

2

∫
B

|u∗|2 − C
∫
B

|u∗|qeβ|u
∗|2 .

By the Poincaré’s inequality,

I(u) ≥ 1
2

∫
B

|∇u∗|2 − ε

2λ1

∫
B

|∇u∗|2 − C
∫
B

|u∗|qeβ|u
∗|2 ,

where λ1 is the first eigenvalue of (−∆, H1
0 (B)). Fixing ε > 0 sufficiently small, we

have C1 := 1
2 −

ε
2λ1

> 0, from where it follows that

I(u) ≥ C1

∫
B

|∇u∗|2 − C
∫
B

|u∗|qeβ|u
∗|2 .

Notice that, from Trudinger-Moser inequality (1.3), eβ|u
∗|2 ∈ L2(B) and by contin-

uous embedding |u∗|q ∈ L2(B). Since H1
0 (B) ↪→ L2q(B) for all q ≥ 1, by Hölder’s

inequality ∫
B

|u∗|qeβ|u
∗|2 ≤

(∫
B

|u∗|2q
)1/2(

e2β|u∗|2
)1/2

≤ |u∗|q2q,B
(∫

B

e2β|u∗|2
)1/2

≤ C‖u∗‖qB
(∫

B

e2β|u∗|2
)1/2

.

We claim that for r > 0 small enough, we have

sup
‖u∗‖B=r

∫
B

e2β|u∗|2 <∞.
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In fact, note that ∫
B

e2β|u∗|2 =
∫
B

e
2β‖u∗‖2B(

|u∗|
‖u∗‖B

)2

.

Choosing r > 0 small enough such that α := 2βr2 < 4π and using the Trudinger-
Moser inequality (1.3),

sup
‖u∗‖B=r

∫
B

e2β|u∗|2 ≤ sup
‖v‖B≤1

∫
B

eα|v|
2
<∞.

Thus,
I(u) ≥ C1‖u∗‖2B − C2‖u∗‖qB .

Fixing q > 2, we derive

I(u) ≥ C1r
2 − C2r

q := ρ > 0,

for r = ‖u‖Am = ‖u∗‖B small enough, which shows that the item (a) holds.
To prove (b), first notice that

Claim 1. For each ε > 0, there exists sε > 0 such that

F (s) ≤ εf(s)s, for all x ∈ Am, |s| ≥ sε.

In fact, from hypothesis (H1)∣∣ F (s)
sf(s)

∣∣ ≤ M

|s|
, for all |s| ≥ s0.

For p > 2, claim 1 with ε = 1/p > 0, guarantees the existence of sε > 0 such that

pF (s) ≤ f(s)s, for all s ≥ sε,

which implies the existence of constants C1, C2 > 0 satisfying

F (s) ≥ C1|s|p − C2, for all s ≥ 0.

Thus, fixing ϕ ∈ C∞0 (Am) with ϕ ≥ 0 and ϕ 6= 0. For t ≥ 0, we have∫
Am

F (tϕ) ≥
∫
Am

(C1|tϕ|p − C2) ≥ C1|t|p
∫
Am

|ϕ| − C2|Am|,

from where it follows that ∫
Am

F (tϕ) ≥ C3|t|p − C4. (3.1)

From (3.1), if t ≥ 0,

I(tϕ) ≤ t2

2
‖ϕ‖2Am − C3|t|p + C4.

Since p > 2, I(tϕ)→ −∞ as t→ +∞. Fixing t0 large enough and let e = t0ϕ, we
obtain

‖e‖Am ≥ r and I(e) < 0.

�

The next lemma is crucial for proving that the energy functional I satisfies the
Palais-Smale condition and its proof can be found in [9].
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Lemma 3.2. Let Ω ⊂ RN be a bounded domain and (un) be a sequence of functions
in L1(Ω) such that un converging to u ∈ L1(Ω) in L1(Ω). Assume that f(un(x))
and f(u(x)) are also L1(Ω) functions. If∫

Ω

|f(un)un| ≤ C, for all n ∈ N,

then f(un) converges in L1(Ω) to f(u).

Lemma 3.3. The functional I satisfies the (PS)d condition, for all d ∈ (0, 1/2).

Proof. Let d < 1/2 and (un) be a (PS)d sequence for the functional I; i.e.,

I(un)→ d and I ′(un)→ 0, as n→ +∞.
For each n ∈ N, let us define εn = sup‖v‖Am≤1{|I ′(un)v|}, then

|I ′(un)v| ≤ εn‖v‖Am ,
for all v ∈ H1

0 (Am), where εn = on(1). Thus

1
2

∫
Am

|∇un|2 −
∫
Am

F (un) = d+ on(1), ∀n ∈ N, (3.2)∣∣∣ ∫
Am

∇un∇v −
∫
Am

f(un)v
∣∣∣ ≤ εn‖v‖Am , for all n ∈ N, v ∈ H1

0 (Am). (3.3)

From (3.2) and Claim 1, for any ε > 0, there is n0 ∈ N such that

1
2
‖un‖2Am =

1
2

∫
Am

|∇un|2 ≤ ε+ d+
∫
Am

F (un) ≤ Cε + ε

∫
Am

f(un)un,

for all n ≥ n0. Using (3.3) with v = un, we obtain(1
2
− ε
)
‖un‖2Am ≤ Cε + ε‖un‖Am , for all n ≥ n0.

Thus, the sequence (un) is bounded. Since H1
0 (Am) is a reflexive Banach space,

there exits u ∈ H1
0 (Am) such that, for some subsequence,

un ⇀ u in H1
0 (Am).

Furthermore, from compact embedding,

un → u in Lq(Am), q ≥ 1,

un(x)→ u(x) a.e. in Am.

On the other hand, using (3.3) with v = un, we obtain

−εn‖un‖Am ≤
∫
Am

|∇un|2 −
∫
Am

f(un)un,

which implies∫
Am

f(un)un ≤ ‖un‖2Am − εn‖un‖Am ≤ C, for all n ∈ N.

From Lemma 3.2, f(un)→ f(u) in L1(Am). Then, there is h ∈ L1(Am) such that

|f(un(x))| ≤ h(x), a.e. in Am,

and from (H1), |F (un)| ≤Mh(x), a.e. in Am. Furthermore,

F (un(x))→ F (u(x)) a.e. in Am.
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Consequently, by the Lebesgue’s dominated convergence,∫
Am

F (un)−
∫
Am

F (u) = on(1).

Thus, from (3.2),
1
2
‖un‖2Am −

∫
Am

F (u)− d = on(1),

which implies

lim
n→∞

‖un‖2Am = 2
(
d+

∫
Am

F (u)
)
. (3.4)

Using again (3.3) with v = un, we obtain∣∣∣‖un‖2Am − ∫
Am

f(un)un
∣∣∣ ≤ on(1),

from where we derive∣∣∣ ∫
Am

f(un)un − 2
(
d+

∫
Am

F (u)
)∣∣∣ ≤ ∣∣∣‖un‖2Am − ∫

Am

f(un)un
∣∣∣

+
∣∣∣‖un‖2Am − 2

(
d+

∫
Am

F (u)
)∣∣∣.

Then
lim
n→∞

∫
Am

f(un)un = 2
(
d+

∫
Am

F (u)
)
.

Furthermore, from (H2),

2
∫
Am

F (u) ≤ 2 lim
n→∞

∫
Am

F (un) ≤ lim
n→∞

∫
Am

f(un)un = 2d+ 2
∫
Am

F (u),

which implies that d ≥ 0.
Claim 2. For any v ∈ H1

0 (Am),∫
Am

∇u∇v =
∫
Am

f(u)v.

In fact, let us fix v ∈ H1
0 (Am) and notice that∣∣∣ ∫

Am

∇u∇v −
∫
Am

f(u)v
∣∣∣

≤
∣∣∣ ∫
Am

∇un∇v −
∫
Am

∇u∇v
∣∣∣+
∣∣∣ ∫
Am

f(un)v −
∫
Am

f(u)v
∣∣∣

+
∣∣∣ ∫
Am

∇un∇v −
∫
Am

f(un)v
∣∣∣.

Using Lemma 3.2, the weak convergence un ⇀ u in H1
0 (Am) and the estimate in

(3.3), we derive ∣∣∣ ∫
Am

∇u∇v −
∫
Am

f(u)v
∣∣∣ ≤ on(1) + ‖v‖Amon(1),

and the proof of Claim 2 is complete.
Note that from (H2) and Claim 2,

J(u) ≥ 1
2

∫
Am

|∇u|2 − 1
2

∫
Am

f(u)u = 0.
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Now, We split the proof into three cases:
Case 1. The level d = 0. By the lower semicontinuity of the norm,

‖u‖Am ≤ lim inf
n→∞

‖un‖Am ,

then
1
2
‖u‖2Am ≤

1
2
‖un‖2Am .

Using (3.4),

0 ≤ I(u) ≤ 1
2

lim inf ‖un‖2Am −
∫
Am

F (u),

which implies

0 ≤ I(u) ≤
∫
Am

F (u)−
∫
Am

F (u) = 0,

from where I(u) = 0, or equivalently,

‖u‖2Am = 2
∫
Am

F (u).

Using again (3.4), we derive

‖un‖2Am − ‖u‖
2
Am = on(1),

since H1
0 (Am) be a Hilbert space, un → u in H1

0 (Am). Therefore, I satisfies the
Palais-Smale at the level d = 0.
Case 2. The level d 6= 0 and the weak limit u ≡ 0. We will show that this can not
occur for a Palais-Smale sequence.
Claim 3. There are q > 1 and a constant C > 0 such that∫

Am

|f(un)|q < C, for all n ∈ N.

In fact, from (3.4), for each ε > 0,

‖un‖2Am ≤ 2d+ ε, for all n ≥ n0,

for some n0 ∈ N. Furthermore, from (F1),∫
Am

|f(un)|q ≤ C
∫
Am

e4πqu2
n = C

∫
B

e
4π‖u∗n‖

2
B( un
‖u∗n‖B

)2

.

By the Trudinger-Moser inequality (1.3), the last integral in the equality above is
bounded if 4πq‖u∗n‖2B < 4π and this occur if we take q > 1 sufficiently close to 1
and ε small enough, because d < 1/2, which proves the claim.

Then, using (3.3) with v = un, we obtain∣∣∣ ∫
Am

|∇un|2 −
∫
Am

f(un)un
∣∣∣ ≤ εn‖un‖Am ≤ εnC, for all n ∈ N.

Thus,

‖un‖2Am ≤ on(1) +
∫
Am

f(un)un, for all n ∈ N. (3.5)

Furthermore, from Hölder inequality, we can estimate the integral above as follows∫
Am

f(un)un ≤
(∫

Am

|f(un)|q
)1/q(∫

Am

|un|q
′
)1/q′

, for all n ∈ N,



EJDE-2015/119 EXISTENCE OF INFINITELY MANY SIGN-CHANGING SOLUTIONS 9

and since un → 0 in Lq
′
(Am),

∫
Am

f(un)un = on(1). Then, from (3.5),

‖un‖2Am → 0, as n→∞, (3.6)

which contradicts (3.4), because

‖un‖2Am → 2d 6= 0, as n→∞,

proving that d 6= 0 and u = 0 does not occur.
Case 3. The level d 6= 0 and the weak limit u 6= 0. Since

I(u) =
1
2
‖u‖2Am −

∫
Am

F (u) ≤ lim inf
n

(1
2
‖un‖2Am −

∫
Am

F (un)
)

= d,

we have I(u) ≤ d.
Claim 4. I(u) = d. Suppose by contradiction that I(u) < d, from definition of I,

‖u‖v2 < 2
(
d+

∫
Am

F (u)
)
. (3.7)

On the other hand, if we consider the functions

vn =
u∗n
‖u∗n‖B

, n ∈ N,

v = u∗
[
2
(
d+

∫
B

F (u∗)
)]−1/2

,

we have ‖vn‖B = 1 e ‖v‖B < 1. Furthermore, since∫
B

∇vn∇ϕ = ‖un‖−1
B

∫
Am

∇un∇ϕ

→
[
2
(
d+

∫
B

F (u∗)
)]−1/2

∫
B

∇u∇ϕ =
∫
B

∇v∇ϕ,

for every ϕ ∈ C∞0 (B), i.e.,∫
B

∇vn∇ϕ−
∫
B

∇v∇ϕ = on(1),

we have vn ⇀ v in H1
0 (B).

Claim 3.4. There are q > 1 and n0 ∈ N such that∫
Am

|f(un)|q < C, for all n ≥ n0.

To prove this claim, we need the following result due to Lions [10].

Proposition 3.5. Let (un) be a sequence in H1
0 (Ω) such that |∇un|2,Ω = 1 for all

n ∈ N. Furthermore, suppose that un ⇀ u in H1
0 (Ω) with |∇u|2,Ω < 1. If u 6= 0,

then for each 1 < p < 1
1−|∇u|22,Ω

, we have

sup
n∈N

∫
Ω

e4πpu2
n <∞.

From hypothesis (F1),∫
Am

|f(un)|q ≤ C
∫
Am

e4πqu2
n = C

∫
B

e4πq‖u∗n‖
2
Bv

2
n . (3.8)
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The last integral in the above expression is bounded. In fact, by Proposition 3.5,
it is suffices to prove that there are q, p > 1 and n0 ∈ N such that

q‖u∗n‖2B ≤ p <
1

1− ‖v‖2B
, for all n ≥ n0. (3.9)

To prove that (3.9) occur, notice that I(u) ≥ 0 and d < 1/2, which implies that

2 <
1

d− I(u)
,

from where it follows that

2
(
d+

∫
B

F (u∗)
)
<
d+

∫
B
F (u∗)

d− I(u)
=

1
1− ‖v‖2B

.

Thus, for q > 1 sufficiently close to 1,

2q
(
d+

∫
B

F (u)
)
<

1
1− ‖v‖2B

.

From (3.4), there are p > 1 and n0 ∈ N such that

q‖u∗n‖2B ≤ p <
1

1− ‖v‖2B
,

for all n ≥ n0 which implies that (3.9) occur. Therefore, Claim 3.4 holds.
Now, we will show that un → u in H1

0 (Am). First, notice that from Hölder
inequality and (3.4),∫

Am

f(un)(un − u) ≤
∫
Am

(|f(un)|q)1/q
(∫

Am

|un − u|q
′
)1/q′

≤ C|un − u|q′,Am ,

where 1/q + 1/q′ = 1. Since un → u in Lq
′
(Am),∫

Am

f(un)(un − u) = on(1). (3.10)

Using (3.3) with v = un − u and (3.10), we obtain 〈un − u, un〉 = on(1), and since
un ⇀ u in H1

0 (Am),

‖un − u‖2Am = 〈un − u, un〉 − 〈un − u, u〉 = on(1).

Then ‖un‖2Am → ‖u‖
2
Am

and this together with (3.4) contradicts (3.7). Which
proves that I(u) = d, i.e.,

‖u‖2Am = 2
(
d+

∫
Am

F (u)
)
.

Furthermore, from (3.4), ‖un‖Am → ‖u‖Am as n→∞. Therefore

un → u em H1
0 (Am).

�

From Lemma 3.1 and the Mountain pass Theorem without compactness condi-
tions (see [15]), there is a (PS)cm sequence (un) ⊂ H1

0 (Am) such that

I(un)→ cm textand I ′(un)→ 0,

where

cm = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),
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Γ = {γ ∈ C([0, 1], H1
0 (Am)) : γ(0) = 0 and I(γ(1)) < 0}.

To conclude the proof of existence of positive solution for (2.1), it remains to show
that cm ∈ (−∞, 1/2). For this, we introduce the following Moser’s functions (see
[12]):

wn(x) =
1√
2π


(ln(n))1/2, 0 ≤ |x| ≤ 1/n
ln(1/|x|)

(ln(n))1/2 , 1/n ≤ |x| ≤ 1

0, |x| ≥ 1

Let dm > 0 and xm ∈ Am such that Bdm(xm) ⊂ Am and define

wn(x) = wn

(x− xm
dm

)
,

we have wn ∈ H1
0 (Am), ‖wn‖Am = 1 and suppwn ⊂ Bdm(xm).

We claim that the exists n ∈ N such that maxt≥0 I(twn) < 1
2 . In fact, suppose

by contradiction that this is not the case. Then, there exist tn > 0 such that

max
t≥0

I(twn) = I(tnwn) ≥ 1
2
. (3.11)

It follows from (3.11) and (H1) that

t2n ≥ 1. (3.12)

Furthermore, d
dtI(twn) |t=tn = 0, i.e.,

t2n =
∫
Am

f(tnwn)tnwn, (3.13)

which implies that

t2n ≥
∫
Bdm/n(xm)

f(tnwn)tnwn. (3.14)

In what follows, we fix a positive constant βm satisfying

βm >
1

2πd2
m

. (3.15)

From (H3), there exists sm = sm(βm) > 0 such that

f(s)s ≥ βme4πs2 , for all s ≥ sm. (3.16)

Using (3.16) in (3.14) and the definition of wn in Bdm/n(0), we obtain

t2n ≥ βmπ
d2
m

n2
e2t2n ln(n) (3.17)

for n large enough, or equivalently,

t2n ≥ βmπd2
me

2 ln(n)(t2n−1), (3.18)

it implies that the sequence (tn) is bounded. Moreover, from (3.18) and (3.12),
t2n → 1 as n→∞. Now, let us define

Cn = {x ∈ Bdm(xm) : tnwn(x) ≥ sm}, Dn = Bdm(xm) \ Cn.

With the above notations and using (3.13),

t2n ≥
∫
Bdm/n(xm)

f(tnwn)tnwn =
∫
Cn

f(tnwn)tnwn +
∫
Dn

f(tnwn)tnwn
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and by (3.16),

t2n ≥
∫
Dn

f(tnwn)tnwn + βm

∫
Cn

e4πt2nw
2
n

or equivalently,

t2n ≥
∫
Dn

f(tnwn)tnwn + βm

∫
Bdm (xm)

e4πt2nw
2
n − βm

∫
Dn

e4πt2nw
2
n . (3.19)

Notice that

wn(x)→ 0 a.e. in Bdm(xm),

χDn(x)→ 1 a.e. in Bdm(xm),

e4πt2nw
2
nχDn ≤ e4πt2ns

2
m ∈ L1(Bdm(xm)).

Then, by Lebesgue’s dominated convergence

lim
n

∫
Dn

e4πt2nw
2
n = lim

n

∫
Bdm (xm)

e4πt2nw
2
nχDn =

∫
Bdm (xm)

1 = πd2
m. (3.20)

Furthermore,

f(tnwn)tnwnχDn ≤ Ctnwne4πt2nw
2
n ≤ Csme4πs2m ∈ L1(Bdm(xm)),

f(tnwn(x))tnwn(x)χDn(x)→ 0 a.e. in Bdm(xm).

Thus, using again Lebesgue’s dominated convergence,

lim
n

∫
Dn

f(tnwn)tnwn = 0 (3.21)

Passing to the limit n→∞ in (3.19) and using (3.20) and (3.21),

1 ≥ βm lim
n

∫
Bdm (xm)

e4πt2nw
2
n − βmπd2

m.

Since t2n ≥ 1, we obtain

1 ≥ βm lim
n

[ ∫
Bdm (xm)

e4πw2
n

]
− βmπd2

m. (3.22)

On the other hand, since∫
Bdm (xm)

e4πw2
n = d2

m

∫
B1(0)

e4πw2
n = d2

m

{ π
n2
e4π 1

2π ln(n) + 2π
∫ 1

1/n

e4π 1
2π

[ln(1/r)]2

ln(n) rdr
}
,

making a changing of variables s = ln(1/r)/ ln(n),∫
Bdm (xm)

e4πw2
n = πd2

m + 2πd2
m ln(n)

∫ 1

0

e2s2 ln(n)−2s ln(n),

and since

lim
n→∞

[
2 ln(n)

∫ 1

0

e2 ln(n)(s2−s)ds

]
= 2,

we have

lim
n→∞

∫
Bdm (xm)

e4πw2
n = πd2

m + 2πd2
m = 3πd2

m.

Using the last limit in (3.22), we obtain

1 ≥ 3βmπd2
m − βπd2

m = 2βπd2
m,
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from where we derive
βm ≤

1
2πd2

m

,

which contradicts the choice of βm in (3.15). Then,

max
t≥0

I(twn) <
1
2
,

proving that cm < 1/2, for any m ∈ N fixed arbitrarily.

4. Proof of Theorem 1.1

We shall use the following proposition.

Proposition 4.1. Let A be an angular sector contained on the positive half plane
of R2 such that one of its boundary lies in x1 axis, and denote such boundary of A
by B0 = {x = (x1, x2) ∈ A : x2 = 0}. Consider A′ the reflection A with respect to
x1 axis. Suppose that u is a solution of the problem

−∆u = f(u), in A,

u = 0, on B0,
(4.1)

where f is a real, continuous and odd function. Then, the function ũ such that
ũ = u in A and ũ is antisymmetric with respect to x1 axis,

ũ(x1, x2) =


u(x1, x2), in A

−u(x1,−x2), in A′

0, on B0

satisfies
−∆ũ = f(ũ) in A ∪A′.

Proof. Since u is a solution of (4.1), we have∫
A

∇u∇ϕ =
∫
A

f(u)ϕ, for all ϕ ∈ C∞c (A).

We want to prove that∫
A∪A′

∇ũ∇φ =
∫
A∪A′

f(ũ)φ, for all φ ∈ C∞0 (A ∪A′).

For any φ ∈ C∞0 (A ∪A′),∫
A∪A′

f(ũ)φ =
∫
A

f(u(x1, x2))φ(x1, x2) +
∫
A′
f(−u(x1,−x2))φ(x1, x2).

Since f is an odd function,∫
A∪A′

f(ũ)φ =
∫
A

f(u(x1, x2))φ(x1, x2) +
∫
A′
f(−u(x1,−x2))φ(x1, x2)

=
∫
A

f(u(x1, x2))φ(x1, x2)−
∫
A′
f(u(x1,−x2))φ(x1, x2)

=
∫
A

f(u(x1, x2))φ(x1, x2)−
∫
A

f(u(x1, x2))φ(x1,−x2).

Thus ∫
A∪A′

f(ũ)φ =
∫
A

f(u)ψ, (4.2)
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where ψ(x1, x2) = φ(x1, x2)− φ(x1,−x2). On the other hand,∫
A∪A′

∇ũ∇φ =
∫
A

∇u(x1, x2)∇φ(x1, x2)−
∫
A′
∇u(x1,−x2)∇φ(x1, x2)

=
∫
A

∇u(x1, x2)∇φ(x1, x2)−
∫
A

∇u(x1, x2)∇(φ(x1,−x2))

=
∫
A

∇u(x1, x2)∇(φ(x1, x2)− φ(x1,−x2)).

Then ∫
A∪A′

∇ũ∇φ =
∫
A

∇u∇ψ. (4.3)

The function ψ does not in general belong to C∞0 (A). Therefore, ψ can not be
used as a function test (in the definition of weak solution on H1(A)). On the other
hand, if we consider the sequence of functions (ηk) in C∞(R), defined by

ηk(t) = η(kt), t ∈ R, k ∈ N,

where η ∈ C∞(R) is a function such that

η(t) =

{
0, if t < 1/2,
1, if t > 1.

Then
ϕk(x1, x2) := ηk(x2)ψ(x1, x2) ∈ C∞0 (A),

which implies that ∫
A

∇u∇ϕk =
∫
A

f(u)ϕk, k ∈ N. (4.4)

From (4.2), (4.3) and (4.4), we can conclude the proof, in view of the following
limits ∫

A

∇u∇ϕk →
∫
A

∇u∇ψ, (4.5)∫
A

f(u)ϕk →
∫
A

f(u)ψ, (4.6)

as k →∞. To see that (4.5) occur, notice that∫
A

∇u∇ϕk =
∫
A

ηk∇u∇ψ +
∫
A

∂u

∂x2
kη′(kx2)ψ.

Clearly, ∫
A

ηk∇u∇ψ →
∫
A

∇u∇ψ, as k →∞.

Therefore, it remains to show that∫
A

∂u

∂x2
kη′(kx2)ψ → 0 as k →∞. (4.7)

In fact this occurs,∣∣ ∫
A

∂u

∂x2
kη′(kx2)ψ

∣∣ ≤ kMC

∫
0<x2<1/k

| ∂u
∂x2
|x2 ≤MC

∫
0<x2<1/k

| ∂u
∂x2
|,

where C = supt∈[0,1] |η′(t)| and M > 0 is such that

|ψ(x1, x2)| ≤M |x2|, for all (x1, x2) ∈ A ∪A′,
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and since ∫
0<x2<1/k

| ∂u
∂x2
| → 0, as k →∞,

the limit in (4.7) occur. The item (4.6) is an immediately consequence of the
Lebesgue’s dominated convergence.

Now, for each m ∈ N, we apply the Proposition 4.1 to the solution u of problem
(2.1). Let A′m be the reflection of Am in one of its sides. On Am ∪ A′m, wecan the
define the function ũ such that ũ = u on Am, and ũ is antisymmetric with respect
to the side of reflection. Now, let A′′m be the reflection of Am ∪ A′m in one of its
sides and ˜̃u the function defined on Am∪A′m∪A′′m such that ˜̃u = ũ on Am∪A′m and
˜̃u is antisymmetric with respect to the side of reflection. Repeating this procedure,
after finite steps, we finally obtain a function defined on the whole unit ball B,
denoted by um. Clearly, um satisfies the Dirichlet condition on the boundary ∂B.
That is, um is a sign-changing solution of problem (1.1). Since for every m ∈ N,
problem (2.1) admits a positive solution, we conclude that there exist infinitely
many sign-changing solutions, and the proof of Theorem 1.1 is complete. �

In Figure 2, we represent the signal of three solutions, corresponding to the
cases m = 1, m = 2, and m = 3, respectively. The blue color represents the regions
where the solutions are negative and the red color, the regions where the solutions
are positive.

Figure 2. Signal of solutions

We show in Figure 3 the profile of solution for the case m = 2.

Remark 4.2. It is possible to make a version of Theorem 1.1 with Neumann bound-
ary condition using the same arguments that we used here, but we have to work
with another version of Trudinger-Moser inequality in H1(Ω) due to Adimurthi-
Yadava [3], which says that if Ω is a bounded domain with smooth boundary, then
for any u ∈ H1(Ω), ∫

Ω

eαu
2
< +∞, for all α > 0. (4.8)

Furthermore, there exists a positive constant C = C(α, |Ω|) such that

sup
||u||H1(Ω)≤1

∫
Ω

eαu
2
≤ C, for all α ≤ 2π. (4.9)
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Figure 3. Case m = 2
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