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STRUCTURE OF THE SOLUTION SET TO DIFFERENTIAL
INCLUSIONS WITH IMPULSES AT VARIABLE TIMES

AGATA GRUDZKA, SEBASTIAN RUSZKOWSKI

Abstract. A topological structure of the solution set to differential inclu-

sions with impulses at variable times is investigated. In order to do that an

appropriate Banach space is defined. It is shown that the solution set is an
Rδ-set. Results are new also in the case of differential equations with impulses

at variable times.

1. Introduction

Impulsive differential equations and inclusions have a lot of applications in di-
verse fields. The moments of impulses can be chosen in various ways: randomly,
fixed beforehand, determined by the state of a system. The problems with fixed
time of impulses were recently investigated [6,7,9,10,12,17] and the results consid-
ering the structure of solution sets were summarised in [11].

The problems with impulses at variable times bring much more difficulties and up
to now there were only existence theorems [3,4,5]. Our results develop this research
area. We need to use sophisticated assumptions that would guarantee fixed amount
of impulses and then we need to deal with the estimations more carefully than in
case with fixed times of jumps. In the result we show that the solution set is an
Rδ-set. It is worth mentioning that this result is new also in the case of differential
equation with impulses at variable times that has no uniqueness of solutions and
therefor has a nontrivial solution set.

There are many motivations to study the structure of solution sets of differen-
tial equations and inclusions. One of them is considering the Poincaré translation
operator and discussing the problem of the existence of periodic solutions [16,8,14].

We have to have the space of functions which contains solutions of given problem
to study the structure of solution set. Obviously standard Banach space with the
supremum norm is insufficient to impulsive problem with the times of jumps that
depend on the state. B-topology on spaces of solutions of impulsive differential
inclusions is introduced in [1], however, it is only Hausdorff topology. We use this
concept to create Banach space that have the same topology on common functions,
and is sufficient to the considered problem.
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In Section 2 we describe the problem, introduce the suitable Banach space
CJm([0, a]) and recall useful theorems. In Section 3 we present the main results of
the paper. The main idea is included in Theorem 3.1 in which we show that the
solution set for the problem with exactly one jump is an Rδ-set. In the Theorem
3.2 we are using the result from previous Theorem proving by induction analogi-
cal statement for any fixed number of jumps. We also provide the reader with a
transparent example.

2. Preliminaries

We study the problem

ẏ(t) ∈ F (t, y(t)), for t ∈ [0, a], t 6= τj(y(t)), j = 1, . . . ,m,

y(0) = y0,

y(t+) = y(t) + Ij(y(t)), for t = τj(y(t)), j = 1, . . . ,m,

(2.1)

where F : [0, a] × RN ( RN , Ij : RN → RN , j = 1, . . . ,m, are given impulse
functions, τj ∈ C1(RN ,R) with 0 < τj(y) < a, and ty = {t|t = τk(y(t))}. The
hypersurface t− τj(y) = 0 is called the j-th pulse hypersurface and we denote it by
Σj . If for each j = 1, . . . ,m, τj is a different constant function, then impulses are
in the fixed times.

Our goal is to find the structure of the solution set of the previous problem, but
to do that we need a space of functions with m jumps. We introduce considering
space as CJm([0, a]) := C([0, a]) × (R × RN )m with following interpretation: the
element (ϕ, (lj , vj)mj=1), where lj ∈ [0, a] we will interpret as the function with m
jumps in the times jk defined as follows:

ϕ̂(t) :=


ϕ(t), 0 ≤ t ≤ lσ(1),

ϕ(t) +
j∑
i=1

vσ(i), lσ(j) < t ≤ lσ(j+1),

ϕ(t) +
m∑
i=1

vσ(i), lσ(m) < t ≤ a,

where σ is a permutation of {1, 2, . . . ,m} such that lσ(i) ≤ lσ(i+1).
There is a mutual correspondence between the functions on interval [0, a] with

m jumps and the sets {(ϕ, (lj , vj)mj=1) ∈ CJm([0, a]) : lj < lj+1}, with ζ 7→
(ζ̌, (lj , Ij(ζ̌(lj)))mj=1), where the function ζ̌ is ζ with reduced jumps, lj is j-th time
of jump and the function Ij is an impulse functions.

The space CJm([0, a]) with the norm

‖(ϕ, (lj , vj)mj=1)‖ := sup
t∈[0,a]

‖ϕ(t)‖+
m∑
j=1

(|lj |+ ‖vj‖)

is a Banach space.
We will find out that the wanted structure is Rδ-type. To show that we will use

the following well-known theorems:

Theorem 2.1 ( [15]). Let X be an absolute neighbourhood retract and A ⊂ X be
a compact nonempty subset. Then the following statements are equivalent:

(a) A is an Rδ-set,
(b) for every ε > 0 the set A is contractible in Oε(A) = {x ∈ X|dist(x,A) < ε},
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(c) A is an intersection of a decreasing sequence {An} of compact contractible
spaces,

(d) A is an intersection of a decreasing sequence {An} of closed contractible
spaces, such that β(An)→ 0, where β is the Hausdorff measure of noncom-
pactness.

A multimap F : X ( E, where E is real Banach space, is called upper hemi-
continuous (uhc) if for every functional p ∈ E∗ the function X3x 7→ σF (x)(p) :=
supy∈F (x)〈p, y〉 ∈ R ∪ {+∞} is upper semicontinuous (usc).

Theorem 2.2 (Convergence theorem [2]). Let E and E′ be Banach spaces, let the
space (T,Ω, µ) be a measurable space, and the multivalued map F : T × E ( E′

has closed and convex values and for a.e. t ∈ T the map F (t, ·) : E ( E′ is uhc.
Let (un : T → E) be a sequence of functions such that un → u in Lp(T,E) and let
sequence (wn) ⊂ Lp(T,E′), 1 ≤ p < ∞ be such that wn ⇀ w in Lp(T,E′). If for
a.e. t ∈ T and for arbitrary ε > 0, there exists N ∈ N such that

wn(t) ∈ cl convB(F (t, B(un(t), ε)), ε)

for n > N , then w(t) ∈ F (t, u(t)) for a.e. t ∈ T .

We recall Arzela- Ascoli Theorem:

Theorem 2.3. If the family F ⊂ C([a, b],RN ) of continuous functions is equicon-
tinuous and uniformly bounded, then there exists a subsequence that converges uni-
formly.

A piecewise absolutely continuous function y : [0, a] → RN is a solution of the
problem with impulses (2.1) if:

(a) y(0) = y0,
(b) there exists a function f ∈ L1([0, a],RN ) such that f(t) ∈ F (t, y(t)) for a.e.

t ∈ [0, a] and y(t) = y0 +
∑m
j=1 Ij(y(tj)) +

∫ t
0
f(s)ds, where tj = τj(y(tj)),

(c) the function y is left continuous at t = τj(y(t)) ∈ [0, a] and the limit y(t+)
exists and y(t+) = y(t) + Ij(y(t)) for t = τj(y(t)), j = 1, . . . ,m.

3. Structure of the solution set

We assume the following conditions on the multivalued perturbation F : [0, a]×
RN ( RN :

(F0) F has compact and convex values,
(F1) F (·, y) : [0, a]( RN has a measurable selection for every y ∈ RN ,
(F2) F is almost uniformly with respect to t H-usc, i.e. for every y ∈ RN and

ε > 0 there exists δ > 0 such that for a.e. t ∈ [0, a] and for all x ∈ RN if
‖y − x‖ < δ, then supϕ∈F (t,x) d(ϕ, F (t, y)) < ε,

(F3) F has a sublinear growth, i.e., there exists α ∈ L1([0, a]) such that

sup
ϕ∈F (t,y)

‖ϕ‖ ≤ α(t)(1 + ‖y‖) for a.e. t ∈ [0, a] and y ∈ RN .

Moreover, we assume the following hypotheses about impulse functions:

(H1) Ij ∈ C(RN ,RN ), j = 1, . . . ,m,
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(H2) τj ∈ C1(RN ,R), j = 1, . . . ,m,
for j = 1, . . . ,m− 1 we have:

0 < τj(y) < τj+1(y) < a,

τj(y + Ij(y)) ≤ τj(y) < τj+1(y + Ij(y)),

τm(y + Im(y)) ≤ τm(y),

and there exists a constant M ≥ 0 such that ‖τj ′(y)‖ ≤M for all y ∈ RN ,
j = 1, . . . ,m,

(H3) there exists a constant p > 0 such that for a.e. t ∈ [0, a]

sup
ϕ∈F (t,y)

τ ′j(y) · ϕ− 1 ≤ −p < 0 for all y ∈ RN , j = 1, . . . ,m.

Note that if τ ′j(y) = 0 for j = 1, . . . ,m, then the problem is reduced to a problem
with a fixed impulse time. Assumption (F2) and compact values of the multivalued
map F implies that F (t, ·) is usc.

Theorem 3.1. Let the assumptions (F0)–(F3) hold, and (H1)-(H3) hold for m = 1.
Then every solution of the problem (2.1), where m = 1, meets Σ1 exactly once and
the solution set S of this problem is an Rδ-set in the space CJ1([0, a]).

Proof. To simplify notation we write I and τ instead of I1 and τ1. We will proceed
in several steps.
Step 1. A Lipschitz selection and the uniqueness of jump. For each n let
{B(y, rn(y))}y∈RN be an open covering (open balls, such that rn(y) ≤ 1

n → 0) of
the space RN , such that for every x ∈ B(y, rn(y)) we have

sup
ϕ∈F (t,x)

d(ϕ, F (t, y)) <
1
n
. (3.1)

There exists locally finite open point-star refinement Un = {Un,s}s∈S of the cover
{B(y, rn(y))}y∈RN , i.e. for every y ∈ RN there exists xy,n ∈ RN such that
st(y,Un) ⊂ B(xy,n, rn(xy,n)).

We can choose it in a way that Un+1 is a refinement of the cover Un. Let {λs}s∈S
be a locally Lipschitz partition of unity subordinated to the cover Un i.e. for every
s ∈ S the function λs : [0, a] → RN satisfies the locally Lipschitz condition. For
every ys ∈ RN , s ∈ S let a function qs be a measurable selection of F (·, ys). We
define the function gn : [0, a]× RN → RN in the following way

gn(t, y) :=
∑
s∈S

λs(y) · qs(t).

The set S(y) := {s ∈ S|λs(y) 6= 0} is finite. If λs(y) > 0, so s ∈ S(y), then
y ∈ suppλs ⊂ Un,s ⊂ st(y,Un). There exists xy,n ∈ RN such that st(y,Un) ⊂
B(xy,n, rn(xy,n)). We know that ys ∈ st(y,Un). We obtain

gn(t, y) =
∑
s∈S

λs(y) · qs(t) ∈ cnvF (t, st(y,Un))

⊂ Gn(t, y) := cl convF (t, st(y,Un)).

Moreover,
Gn(t, y) ⊂ cl convF (t, B(xy,n, rn(xy,n))),
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so from the inequality (3.1) we have

Gn(t, y) ⊂ clO1/n(F (t, xy,n)). (3.2)

We have
F (t, y) ⊂ ∩n≥1Gn(t, y).

From usc (the map F has compact values) we obtain that for every y ∈ RN and
for every ε > 0 there exists δ > 0 such that

F (t, B(y, δ)) ⊂ Oε(F (t, y)).

We have

∩n≥1Gn(t, y) ⊂ ∩n≥1 clO1/n(F (t, xy,n))

⊂ ∩n≥1 clO1/n (F (t, B(y, 2rn(xy,n))))

⊂ ∩n≥1 clO 1
n+ε (F (t, y)) = F (t, y).

We obtain
F (t, y) = ∩n≥1Gn(t, y).

We have
Gn+1(t, y) ⊂ Gn(t, y).

Let the Nemitskĭi (substitution) operator PGn : CJ1([0, a])( L1(J,RN ) be defined
by

PGn(y) := {φ ∈ L1([0, a],RN )|φ(t) ∈ Gn(t, y(t)) for a.e. t ∈ [0, a]}.
Let Sn denote the set of solutions of the problem

ẏ(t) ∈ Gn(t, y(t)), for t ∈ [0, a], t 6= τ(y(t)),

y(0) = y0,

y(t+) = y(t) + I(y(t)), for t = τ(y(t)).

(3.3)

It is obvious that the sets Sn are nonempty, because the problem
ẏ(t) = gn(t, y(t)), for t ∈ [0, a], t 6= τ(y(t)),

y(0) = y0,

y(t+) = y(t) + I(y(t)), for t = τ(y(t)),

(3.4)

for every n ∈ N has exactly one solution.
Step 1a. We denote by tjyn the time of j-th jump for the function yn a nd if the
function yn has less that j jumps we take tjyn = a. Let yn be an arbitrary solution
of the system (3.3) for 0 ≤ t ≤ t2yn . For t ≤ t1yn we obtain the following form of the
solution

yn(t) = y0 +
∫ t

0

φn(s)ds,

where φn ∈ PGn(yn).
There exists selection fn (not necessarily measurable) of the multivalued map

F (·, xy,n(·)) such that for a.e. t we obtain ‖φn(t)− fn(t, xy,n(t))‖ ≤ 1
n . We have

‖φn(t)‖ ≤ 1
n

+ ‖fn(t, xy,n(t))‖.

From the assumption (F3) we obtain

‖fn(t, xy,n(t))‖ ≤ α(t)
(
1 + ‖xy,n(t)‖

)
≤ α(t)

(
1 + ‖y(t)‖+

1
n

)
.
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So

‖yn(t)‖ ≤ ‖y0‖+
∫ t

0

(
α(s)

(
1 + ‖yn(s)‖+

1
n

)
+

1
n

)
ds.

From Gronwall inequality, we have

sup
t∈[0,t1yn ]

‖yn(t)‖ ≤
(
‖y0‖+

∫ a

0

2α(s)ds+
a

n

)
e

R a
0 α(s)ds := K. (3.5)

By the continuity of I there exists a constant c > 0 such that ‖I(yn(t1yn))‖ ≤ c for
all n. Next for t1yn < t ≤ t2yn we obtain

‖yn(t)‖ ≤ ‖y0‖+ ‖I(yn(t1yn))‖+
∫ t

0

‖φn(s)‖ds

≤ ‖y0‖+ c+
∫ t

0

(
α(s)

(
1 +

1
n

+ ‖yn(s)‖
)

+
1
n

)
ds.

Again, from Gronwall inequality we obtain

sup
t∈[0,t2yn ]

‖yn(t)‖ ≤ Ce
R t
0 α(s)ds < Ce

R a
0 α(s)ds =: K̄, (3.6)

where C := ‖y0‖+ c+
∫ a

0
2α(s)ds+ a

n . If the solution yn does not have jumps, then
of course supt∈[0,a] ‖yn(t)‖ ≤ K.

Step 1b. Let ȳ be a fixed function with values in clB(0, K̄). Let φn ∈ Gn(t, ȳ(t)),
where t is such that (H3) is satisfied. We denote ȳ(t) =: y. From the assumptions
(H2) and (H3) for some v ∈ clB(0, 1) we obtain

τ ′(y) · φn − 1 =
(
τ ′(xy,n) + τ

′(y)− τ ′(xy,n)
)
· φn − 1

= τ ′(xy,n) ·
(
ϕ̄+

1
n
v
)
− 1 + (τ ′(y)− τ ′(xy,n)) · φn

= τ ′(xy,n) · ϕ̄− 1 +
1
n
τ ′(xy,n) · v + (τ ′(y)− τ ′(xy,n))− φn,

where ϕ̄ ∈ F (t, xy,n). Hence

τ ′(y) · φn − 1 ≤ −p+
‖τ ′(xy,n)‖

n
+ (τ ′(y)− τ ′(xy,n)) · φn

≤ −p+
M

n
+ ‖τ ′(y)− τ ′(xy,n)‖‖φn‖.

The function τ ′ is continuous on the compact set clB(0, K̄ + 1), therefore it is
uniformly continuous. Hence, for y ∈ clB(0, K̄), τ ′(y) − τ ′(xy,n) → 0 (we have
‖xy,n‖ ≤ K̄ + 1

n ). Moreover, the set {φn} is bounded (from the sublinear growth
of F ).

We have ‖τ ′(y) − τ ′(xy,n))‖ ‖φn‖ → 0. We take N0 ∈ N such that for every
n ≥ N0 we have −p + M

n + ‖τ ′(y)− τ ′(xy,n)‖ ‖φn‖ < −p
2 . There exists a constant

p′ > 0 such that
τ ′(y) · φn − 1 < −p′.

Step 1c. Let us fix yn, where n > N0, the solution of the problem (3.3). We define
the function wn : [0, a]→ R by

wn(t) := τ(yn(t))− t.
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The function wn has value 0 in any time, in which the function yn has a jump.
By the condition (H2) with m = 1, we obtain wn(0) = τ(y0) > 0 and wn(a) =
τ(yn(a))−a < a−a = 0. If wn(t) 6= 0 on [0, a], then there would not be any impulse
effect, therefore there would not be any jump time, so wn would be continuous,
which would contradict with the earlier inequalities. Hence every solution of the
problem (3.3) has at least one jump.

Suppose that 0 < t1yn < a is the first time in which the solution yn hits the
hypersurface Σ1. Then

wn(t1yn) = 0 and wn(t) > 0, for t ∈ [0, t1yn).

By assumption (H2) with m = 1 we obtain that

wn(t1yn
+

) = τ(yn(t1yn
+

))− t1yn = τ
(
yn(t1yn) + I(yn(t1yn))

)
− t1yn ≤ 0.

For a.e. t ≥ t1yn we have

w′n(t) = τ ′(yn(t)) · y′n(t)− 1 = τ ′(yn(t)) · φn(t)− 1 < −p′ < 0,

where φn ∈ PGn(yn). The function wn in [t1yn , a] is decreasing, hence yn hits the
hypersurface Σ1 exactly once and the time of this jump we denote tyn .

Step 2. Now we show that each sequence (yn), where yn ∈ Sn, has a convergent
subsequence to the solution ỹ of the problem (2.1).

There exists exactly one jump, so from the previous estimations we have

‖yn(t)‖ ≤ K̄.

Consequently, the values of solutions of the problem (2.1) are contained in a ball
clB(0, K̄), which is convex, so in particular we know that function gn|[0,a]×cl B(0,K̄)

has integrable Lipschitz constant Λ.
For t < t′ ≤ tyn we have

‖yn(t)− yn(t′)‖ = ‖
∫ t′

t

φn(s)ds‖

≤ 1
n
|t− t′|+

∫ t′

t

α(s)
(

1 +
1
n

+ ‖yn(s)‖
)
ds

≤ |t− t′|+ (2 +K)
∫ t′

t

α(s)ds,

(3.7)

and for tyn < t < t′ we have

‖yn(t)− yn(t′)‖ = ‖
∫ t′

t

φn(s)ds‖

≤ 1
n
|t− t′|+

∫ t′

t

α(s)
(

1 +
1
n

+ ‖yn(s)‖
)
ds

≤ |t− t′|+ (2 + K̄)
∫ t′

t

α(s)ds.

(3.8)

Step 2.a Let us consider convergence to the time t∗, where t∗ the limit of a con-
vergent subsequence (tynk ) of the sequence (tyn) (with yn ∈ Sn), which exists due
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to the compactness of [0, a]. For every ε > 0 there exists N0 such that for nk > N0

we have t∗ − ε < tynk . Note that

sup
t∈[0,t∗−ε−δ]

∫ t+δ

t

α(s)ds→ 0

with δ → 0.
From inequality (3.7) we obtain that for all ξ > 0 and 0 < t < t∗− ε there exists

δ > 0 such that for all nk > N0 and t < t′ < t+δ ≤ t∗−ε we have ‖ynk(t)−ynk(t′)‖ ≤
|t′− t|+(2+K)

∫ t′
t
α(s)ds < ξ. Therefore, the family {ynk}nk>N0 is equicontinuous

and by the inequality (3.5) uniformly bounded. By Arzela-Ascoli Theorem 2.3
(possibly going to the subsequences) we can assume that ynk → yε on [0, t∗ − ε],
where yε is continuous function. This can be done in such a way that for any
ε1, ε2 > 0 such that ε1 > ε2 functions yε1 , yε2 fulfil condition yε2 |[0,t∗−ε1] = yε1 . For
ε↘ 0 we obtain an extension of the function yε, i.e. the function y∗ : [0, t∗)→ RN ,
where ynk converges pointwise to y∗. Moreover

‖φnk(t)‖ ≤ α(t)
(

1 + ‖xynk ,nk(t)‖
)

+
1
nk
≤ α(t)(2 + K̄) + 1. (3.9)

We know that:

• φnk(t) ∈ cl convF (t, st(ynk(t),Unk)) ⊂ clO1/nk

(
F
(
t, B(ynk(t), 1

nk
)
))

, by
inclusion (3.2),
• ynk(t)→ yε(t) a.e. on [0, t∗ − ε],
• φnk ∈ L1([0, t∗ − ε],RN ),
• by estimation (3.9) and weak compactness of the closed ball we obtain
φnkl ⇀ φ on [0, t∗ − ε].

Thus by Theorem 2.2 we obtain φ(t) ∈ F (t, yε(t)) for a.e. t ∈ [0, t∗−ε]. By analogy,
we conclude that φ(t) ∈ F (t, y∗(t)) a.e. on [0, t∗). By weak convergence φnkl ⇀ φ

on [0, t∗ − ε], for Ψ(φn) :=
∫ t

0
φn(s)ds we have∫ t

0

φ(s)ds = Ψ(φ) = lim
k→∞

Ψ(φnk) = lim
k→∞

∫ t

0

φnk(s)ds

= lim
k→∞

ynk(t)− y0 = y∗(t)− y0.

For an increasing sequence (sn) convergent to t∗ with n < n′ we obtain

‖y∗(sn)− y∗(sn′)‖ = ‖
∫ sn′

sn

φ(s)ds‖ ≤
∫ t∗

sn

(α(s)(2 +K) + 1)ds.

We have convergence of the right hand side of the inequality to 0 with n → ∞,
consequently (y∗(sn)) is Cauchy sequence. It is convergent (RN is complete) and
we denote its limit y∗(sn) → y1. We define y∗(t∗) := y1 and we obtain continuous
extension y∗ on [0, t∗]. We will show, that τ(y∗(t∗))− t∗ = 0, which means that t∗
is time of jump for y∗.

Let ε > 0. The function α(s)(2 + K̄) + 1 is integrable, so we can choose tε < t∗
so that ∫ t∗

tε

2[α(s)(2 + K̄) + 1]ds <
ε

2
.
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There exists K0 ∈ N such that for k > K0 we have ‖y∗(tε)− ynk(tε)‖ < ε
2 . We can

estimate

‖ynk(tynk )− y∗(t∗)‖

≤ ‖ynk(tε) +
∫ tynk

tε

φnk(s)ds− y∗(tε)−
∫ t∗

tε

φ(s)ds‖

≤ ‖ynk(tε)− y∗(tε)‖+
∫ tynk

tε

‖φnk(s)‖ds+
∫ t∗

tε

‖φ(s)‖ds

≤ ‖ynk(tε)− y∗(tε)‖+
∫ tynk

tε

(
α(s)(2 + K̄) + 1

)
ds+

∫ t∗

tε

(
α(s)(2 + K̄) + 1

)
ds

≤ ε

2
+
∫ t∗

tε

2(α(s)(2 + K̄) + 1)ds ≤ ε.

For tynk > t∗ we obtain

‖y∗(t∗)− ynk(tynk )‖ ≤ ‖y∗(t∗)− y∗(t∗ − ε)‖+ ‖y∗(t∗ − ε)− ynk(t∗ − ε)‖
+ ‖ynk(t∗ − ε)− ynk(tynk )‖,

but it is easy to see that

‖ynk(t∗ − ε)− ynk(tynk )‖ = ‖
∫ tynk

t∗−ε
φnk(s)ds‖ ≤

∫ tynk

t∗−ε
‖φnk(s)‖ds

≤
∫ tynk

t∗−ε

(
α(s)(2 +K) + 1

)
ds

= (2 +K)
∫ tynk

t∗−ε
α(s)ds+ tynk − t∗ + ε,

so

‖y∗(t∗)− ynk(tynk )‖ ≤ ‖y∗(t∗)− y∗(t∗ − ε)‖+ ‖y∗(t∗ − ε)− ynk(t∗ − ε)‖

+ (2 +K)
∫ tynk

t∗−ε
α(s)ds+ tynk − t∗ + ε

→ ‖y∗(t∗)− y∗(t∗ − ε)‖+ (2 +K)
∫ t∗

t∗−ε
α(s)ds+ ε,

as k →∞. From the arbitrariness of ε and ε we obtain ‖y∗(t∗)− ynk(tynk )‖ → 0.
Summarising, we have that ynk(tynk )→ y∗(t∗). By the continuity of τ we obtain

τ(y∗(t∗))− t∗ = limnk→∞(τ(ynk(tynk ))− tynk ) = 0 which means that t∗ is the time
of jump for y∗.
Step 2.b We make a similar reasoning with the part of segment [0, a] after the jump.
Form inequalities (3.6) and (3.8) we conclude that the family {ynk} is equicontin-
uous and equibounded on [t∗ + ε, a]. Therefore, from Arzela-Ascoli 2.3 theorem
(passing to a subsequence if it is needed) we can assume that ynk → yε, where yε is
a continuous function and we extend it to a continuous function y∗ : (t∗, a] → RN
with ynk convergent pointwise to y∗. We know that:

• φnk(t) ∈ cl convF
(
t, st(ynk(t),Unk)

)
⊂ clO1/nk

(
F
(
t, B(ynk(t), 1

nk
)
))

.
• ynk(t)→ yε(t) a.e. on [t∗ + ε, a],
• φnk ∈ L1([t∗ + ε, a],RN ),
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• by estimation (3.9) and the weak compactness of closed ball we obtain
φnkl ⇀ φ on [t∗ + ε, a].

Again, by theorem 2.2 we obtain φ(t) ∈ F (t, yε(t)), for a.e. t ∈ [t∗ + ε, a], so we
obtain an information that φ(t) ∈ F (t, y∗(t)) a.e. on (t∗, a]. By weak convergence
φnkl ⇀ φ on [t∗ + ε, a] for Ψ(φn) :=

∫ a
t
φn(s)ds we have∫ a

t

φ(s)ds = Ψ(φ) = lim
k→∞

Ψ(φnk) = lim
k→∞

∫ a

t

φnk(s)ds

= lim
k→∞

ynk(a)− y∗(t) = y∗(a)− y∗(t).

For decreasing sequence (sn) convergent to t∗ we obtain for n < n′:

‖y∗(sn)− y∗(sn′)‖ = ‖
∫ sn

sn′

φ(s)ds‖ ≤
∫ sn

t∗

α(s)(1 + K̄)ds.

By analogy to Step 2a, we obtain that (y∗(sn)) is the Cauchy sequence, which is
convergent in Banach space, so y∗(sn)→ y2 for some y2 ∈ RN .

By continuity of I we have that I(ynk(tynk ))→ I(y∗(t∗)), therefore y2 = y∗(t∗)+
I(y∗(t∗)).

We can define a function ỹ : [0, a]→ RN by concatenation y∗ on [0, t∗] with the
function y∗ on (t∗, a]. Obviously, for t ≤ t∗ the function ỹ is the solution of the
problem (2.1). For t > t∗ we have

ỹ(t) = ỹ(t∗) + I(ỹ(t∗)) +
∫ t

t∗

φ(s)ds = y0 +
∫ t∗

0

φ(s)ds+ I(ỹ(t∗)) +
∫ t

t∗

φ(s)ds,

where φ ∈ PGn(ỹ), so ỹ is the solution of the problem (2.1) for all t ∈ [0, a], hence
ỹ ∈ S. The function ỹ is the limit of the sequence (ynk) in the space CJ1([0, a]).

Step 3. We show, for every n ∈ N, the contractibility of the set clSn. Fix n such
that we can define p′ (see Step 1.) and take ȳ ∈ cl Sn. We divide the interval [0, 1]
into two halves. Let r ∈ [0, 1

2 ]. We consider the problem

ẏ(t) = gn(t, y(t)), for t ∈ [a− 2r(a− tȳ), a], t 6= τ(y(t)),

y(t) = ȳ(t), for t ∈ [0, a− 2r(a− tȳ)],

y(t+) = y(t) + I(y(t)), for t = τ(y(t)).

(3.10)

In the previous problem we denote by gn selection of the map Gn. There exists
exactly one solution of this problem; we denote it by y2

ȳ,r. Then y2
ȳ,r ∈ cl Sn,

Next for r ∈ (1/2, 1] we consider the problem

ẏ(t) = gn(t, y(t)), for t ∈ [tȳ,r, a], t 6= τ(y(t)),

y(t) = ȳ(t), for t ∈ [0, tȳ,r],

y(t+) = y(t) + I(y(t)), for t = τ(y(t)).

(3.11)

where tȳ,r := tȳ − 2(r − 1
2 )tȳ. There exists exactly one solution of this problem,

denoted by y1
ȳ,r, which also belongs to cl Sn. Finally we consider the function

h : [0, 1]× clSn → clSn given by

h(r, ȳ) :=

{
y2
ȳ,r, r ∈ [0, 1

2 ],
y1
ȳ,r, r ∈ ( 1

2 , 1].
(3.12)
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Now, we show that the function h is continuous. Due to the continuous de-
pendence of solutions on initial conditions [13] we know that the function h is
continuous on [0, 1/2)× cl Sn and left continuous on {1/2} × cl Sn.

Let ((rk, ȳk))k be a sequence convergent to ( 1
2

+
, ȳ). We know that if tȳ < th(rk,ȳk)

then τ(h(rk, ȳk)(tȳ))− tȳ > 0 and we have

tȳ − τ(h(rk, ȳk)(tȳ)) =
∫ th(rk,ȳk)

tȳ

(τ(h(rk, ȳk)(·))− ·)′(θ)dθ < −p′(th(rk,ȳk) − tȳ),

so
th(rk,ȳk) < tȳ + (τ(h(rk, ȳk)(tȳ))− tȳ)/p′,

but for k such that tȳ ≤ th(rk,ȳk) one sees that∥∥ȳ(tȳk,rk) +
∫ tȳ

tȳk,rk
φ̄n(s)ds−

(
y1
ȳk,rk

(tȳk,rk) +
∫ tȳ

tȳk,rk
gn(s, y1

ȳk,rk
(s))ds

)∥∥
= ‖

∫ tȳ

tȳk,rk
φ̄n(s)− gn(s, x1

ȳk,rk
(s))ds‖

≤
∫ tȳ

tȳk,rk
‖φ̄n(s)‖+ ‖gn(s, y1

ȳk,rk
(s))‖ds

≤
∫ tȳ

tȳk,rk
2
(
α(s)(1 +K) +

1
n

)
ds.

Hence, if k →∞ we obtain h(rk, ȳk)(tȳ)→ ȳ(tȳ), so

τ(h(rk, ȳk)(tȳ))− tȳ → 0.

For every k we have

tȳk,rk < th(rk,ȳk) ≤ tȳ + 1tȳ<th(rk,ȳk)(τ(h(rk, ȳk)(tȳ))− tȳ)/p′

and
tȳk,rk → tȳ ← tȳ + 1tȳ<th(rk,ȳk)(τ(h(rk, ȳk)(tȳ))− tȳ)/p′,

therefore by the squeeze theorem

th(rk,ȳk) → tȳ. (3.13)

Let us fix k for a while. By 1 we denote the function

1t>t0(y(t)) =

{
y(t), for t > t0,

0, for t ≤ t0.
(3.14)

We define function %ȳk,rk : [0, a]→ RN

%ȳk,rk(t) := y1
ȳk,rk

(t)− 1t>t
y1
ȳk,rk

(I(y1
ȳk,rk

(ty1
ȳk,rk

)))

− (y2
ȳ,1/2(t)− 1t>tȳ (I(y2

ȳ,1/2(tȳ))),

which is function of differences between y1
ȳk,rk

, and y2
ȳ,1/2 with deleted changes

caused by jumps. It is easy to see that tȳ = ty2
ȳ,1/2

. For tȳk,rk ≤ t ≤ tȳ we obtain

‖%ȳk,rk(t)‖ ≤ ‖ȳ − ȳk‖+
∫ t

tȳk,rk
‖gn(s, y1

ȳk,rk
(s))− φ̄n(s)‖ds

≤ ‖ȳ − ȳk‖+
∫ t

tȳk,rk

(
‖φ̄n(s)‖+ ‖gn(s, y1

ȳk,rk
(s))‖

)
ds
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≤ ‖ȳ − ȳk‖+
∫ t

tȳk,rk
2
(
α(s)(1 + K̄) +

1
n

)
ds

=: zȳk,rk(t)

and for t > tȳ we have

‖%ȳk,rk(t)‖

≤ zȳk,rk(tȳ) +
∫ t

tȳ

‖gn(s, y1
ȳk,rk

(s))− gn(s, y2
ȳ,1/2(s))‖ds

≤ zȳk,rk(tȳ) +
∫ t

tȳ

Λ(s)‖y1
ȳk,rk

(s)− y2
ȳ,1/2(s)‖ds

= zȳk,rk(tȳ) +
∫ t

tȳ

Λ(s)‖y̌1
ȳk,rk

(s) + 1s>t
y1
ȳk,rk

I(y1
ȳk,rk

(ty1
ȳk,rk

))− y̌2
ȳ,1/2(s)

− I(y2
ȳ,1/2(tȳ))‖ds

≤ zȳk,rk(tȳ) +
∣∣∣ ∫ t

y1
ȳk,rk

tȳ

Λ(s)‖I(y2
ȳ,1/2(tȳ)‖ds

∣∣∣
+
∫ t

max{tȳ,ty1
ȳk,rk

}
Λ(s)‖I(y1

ȳk,rk
(ty1

ȳk,rk
))− I(y2

ȳ,1/2(tȳ))‖ds

+
∫ t

tȳ

Λ(s)‖y̌1
ȳk,rk

(s)− y̌2
ȳ,1/2(s)‖ds,

hence by the Gronwall inequality we obtain

‖%ȳk,rk(t)‖ ≤
(
zȳk,rk(tȳ) +

∣∣∣ ∫ t
y1
ȳk,rk

tȳ

Λ(s)‖I(y2
ȳ,1/2(tȳ))‖ds

∣∣∣
+
∫ t

max{tȳ,ty1
ȳk,rk

}
Λ(s)‖I(y1

ȳk,rk
(ty1

ȳk,rk
))− I(y2

ȳ,1/2(tȳ))‖ds
)

× exp
∫ t

tȳ

Λ(s)ds =: zȳk,rk(t).

By previous convergences and continuity of I, we obtain

‖I(h(rk, ȳk)(th(rk,ȳk)))− I(h(1/2, ȳ)(th(1/2,ȳ)))‖ → 0, (3.15)

sup
t∈[0,a]

‖%ȳk,rk(t)‖ ≤ zȳk,rk(a)→ 0. (3.16)

Summing up, by (3.16), (3.13) and (3.15), if (rk, ȳk) converges to ( 1
2

+
, ȳ), then

y1
ȳk,rk

converges to y2
ȳ, 12

in norm in the space CJ1([0, a]).
The function h, as continuous on [0, 1] × cl Sn, is a homotopy. By definition of

the function h we have h(0, ȳ) = ȳ and h(1, ȳ) = y1
ȳ,1, so cl Sn is a contractible set.

Step 4. We show that properties needed to theorem 2.1 are fulfilled. The sets
cl Sn are contractible in the power of Step 3.

If x ∈ ∩n∈N clSn, then x ∈ clSn for every n. Therefore, there exists sequence
(dn) ⊂ R+ converges to 0 such that B(x, dn) (in CJ1([0, a])) contains yn (yn ∈ Sn).
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Hence yn → x in the space CJ1([0, a]). Moreover, we know that subsequence ynk
converges to a solution of problem (2.1), where m = 1, so x ∈ S. We obtain

S ⊂ ∩n∈N Sn ⊂ ∩n∈N clSn ⊂ S,
so S = ∩n∈N clSn.

We will show that sup{d(z, S)|z ∈ Sn} →n→∞ 0. Assume that there exists ε > 0
and a sequence (yn) such that yn ∈ Sn and d(yn, S) ≥ ε. From the Step 3 we know
that this sequence has subsequence (ynk) such that ynk → ỹ ∈ S, so d(ynk , S)→ 0.
It is contrary to the choice of the sequence (yn), hence sup{d(z, S)|z ∈ Sn} → 0.
Therefore sup{d(z, S)|z ∈ clSn} → 0. We obtain Sn ⊂ S + B(0, pn), where pn :=
supz∈Sn d(z, S)→ 0 with n→∞.

The compactness of S implies

β(cl Sn) = β(Sn) ≤ β(S) + pn = pn,

so β(clSn)→ 0. Summing up, we can use theorem 2.1, which implies that the set
S is an Rδ-set. �

We will use this theorem to prove more general case.

Theorem 3.2. Let the assumptions (F0)–(F3), (H1)–(H3) hold. Then every so-
lution of the problem (2.1) for every j = 1, . . . ,m meets Σj exactly once and the
solution set S of this problem is an Rδ-set in the space CJm([0, a]).

Proof. We show that we can divide the interval [0, a] into m disjoint parts and any
of them will have exactly one jump effect. Then we will be able to use the reasoning
of theorem 3.1 on every such part, which will complete the proof.

By analogy to Step 1. in the proof of Theorem 3.1 we define a multivalued map
Gn : [0, a]× RN ( RN and consider the problem

ẏ(t) ∈ Gn(t, y(t)), for t ∈ [0, a], t 6= τj(y(t)), j = 1, . . . ,m,

y(0) = y0,

y(t+) = y(t) + Ij(y(t)), for t = τj(y(t)), j = 1, . . . ,m.

(3.17)

We denote by tjyn the time of j-th jump for the function yn : [0, a]→ RN . If the
function yn has less than j jumps we take tjyn := a. Let yn be an arbitrary solution
of the problem (3.17) for 0 ≤ t ≤ t2yn . By analogy to theorem 3.1 in Step 1a. we
show that there exists a constant K̄ such that

sup
t∈[0,t2yn ]

‖yn(t)‖ ≤ K̄.

Next we will proceed similarly to the proof of theorem 3.1 (Step 1b), we show that
there exists a constant p′ > 0 such that

τ ′j(y) · φn − 1 < −p′

for all j = 1, . . . ,m, and for enough big n, where ȳ is fixed function with values in
cl B(0, K̄), t is such that the assumption (H3) is satisfied, ȳ(t) = y, φn ∈ Gn(t, ȳ(t)).
We define the function wn,j : [0, a]→ R in the following way:

wn,j(t) := τj(yn(t))− t, j = 1, . . . ,m.

Let us fix a solution yn of problem (3.17).
Now we prove by induction that the j-th time of jump is zero of the function

wn,j .



14 A. GRUDZKA, S. RUSZKOWSKI EJDE-2015/114

Basis. By assumption (H2) we have:
(a) wn,j(0) = τj(y0) > 0,
(b) wn,j(a) = τj(yn(a))− a < 0,
(c) wn,j(t) = τj(yn(t))− t < τj+1(yn(t))− t = wn,j+1(t) for all t ∈ [0, a].

If there are no impulses then wn,j(t) 6= 0 on [0, a], but by the definition of wn,j for
every j the function wn,j is continuous, which contradicts with a) and b). Hence
there is at least one jump time.

Let 0 < t1yn < a be the first time of jump for the solution yn. Then

wn,j(t1yn) = 0, wn,j(t) > 0, for t ∈ [0, t1yn).

By the assumption (H2) we obtain

wn,j(t1yn
+

) = τj(yn(t1yn
+

))− t1yn = τj(yn(t1yn) + Ij(yn(t1yn)))− t1yn ≤ 0.

For a.e. t ≥ t1yn we have

w′n,j(t) = τ ′j(yn(t)) · y′n(t)− 1 = τ ′j(yn(t)) · φn(t)− 1 < −p′ < 0.

Hence wn,j is decreasing function at [t1yn , a], so yn for every j meets Σj exactly
once. By c) we know that the time t1yn of the first jump is zero of the function wn,1.
Inductive step. We assume that the j-th time of jump is zero of wn,j , j < m.
Denote by tjyn the time for which we have t = τj(yn(t)). We know that

wn,l(tjyn
+

) = τl(yn(tjyn))− tjyn > τj(yn(tjyn))− tjyn = 0

for j > 1, l > j. We consider interval J := (tjyn , a]. By analogy to Step 1 in the
proof of theorem 3.1 we have wn,i(t) 6= 0, t ∈ J , i ≤ j, as long as there is no jump
caused by wn,l for l > j. There have to be at least one jump after tjyn and we denote
it by t̃. By c) there are no jumps before the jump caused by wn,j+1, so t̃ = tj+1

yn .
Since both the basis and the inductive step have been proved, it has been proved

by mathematical induction that there are exactly m jumps one for each Σj , j =
1, . . . ,m.

Next we will proceed similarly to the proof of theorem 3.1.
Let (t1∗, t

2
∗, . . . , t

m
∗ ) be the limit of the sequence ((t1yn , t

2
yn , . . . , t

m
yn)). We can show

that on [0, t1∗] there exists the subsequence of (ynk) such that I1(ynkl (tynkl )) →
I1(y∗(t1∗)) and τ1(y∗(t1∗)) = t1∗, so

τ2(y∗((t1∗)
+)) = τ2(y∗(t1∗) + I1(y∗(t1∗))) > τ1(y∗(t1∗)) = t1∗.

By the assumptions (H1) and (H2) there exists ε1 > 0 such that there is only one
jump time of y∗ on [0, t1∗ + 2ε1] and we obtain that for all sufficiently big l there
is only one jump time of ynkl on [0, t1∗ + ε1]. By analogy we find subsequence and
ε2 > 0 such that there is exactly one jump on [t1∗+ ε1, t

2
∗+ ε2], and so on. On every

such interval we proceed with reasoning from theorem 3.1. �

The following example shows the case of inclusion with exactly one jump, but
can easily be rearranged to a multijump case.

Example 3.3. There are two trust funds with interest rates (dependent on time
and amount of money) α(t, y1) ∈ A(t, y1) and β(t, y2) ∈ B(t, y2) respectively where
A and B are (multivalued) investment plans. It is available to transfer money once
(in or out) without loosing interest.
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We decided to start both trust funds with the same amount of money and transfer
money from worse deposit to better one after clarifying which one is better. The
amount of money that we wish to transfer would be proportional to difference in
incomes.

This situation can be represented in the form of following differential inclusion:

˙(y1, y2)(t) ∈ F (t, (y1, y2)(t)), for t ∈ [0, 1], t 6= τ((y1, y2)(t)), (3.18)

(y1, y2)(0) = (y0, y0), (3.19)

(y1, y2)(t+) = (y1, y2)(t) + I((y1, y2)(t)), for t = τ((y1, y2)(t)) (3.20)

with
F (t, y1, y2) = A(t, y1)×B(t, y2),

where A and B fulfill assumptions (F1) and (F2) (for example continuous) and have
interval values with A(t, y), B(t, y) ∈ [−6y, 6y]

I(y1, y2) =


(−y1, y1), 0 ≤ (1 + 1

ρ )y1 < y2,

(y2,−y2), 0 ≤ (1 + 1
ρ )y2 < y1,

(ρ(y1 − y2), ρ(y2 − y1)), 0 ≤ y1 ≤ (1 + 1
ρ )y2 ≤ (1 + 1

ρ )2y1,

(0, 0), y1 < 0 or y2 < 0

and
τ(y1, y2) := arc cot(y1 + y2)/π.

For any α ∈ A(t, y) we have that

α ≥ −3(1/2 + 2y2) = (π(p− 1))(1/2 + 2y2)

where 1 > p = 1−3/π > 0. We have analogous inequality for β therefore we obtain

sup
ϕ∈F (t,y1,y2)

τ ′j(y1, y2) · ϕ = sup
α∈A(t,y1)

sup
β∈B(t,y2)

α+ β

−π(1 + (y1 + y2)2)

≤ (1− p) 1 + 2y2
1 + 2y2

2

1 + (y1 + y2)2
≤ 1− p < 1

All assumptions of Theorem 3.1 are satisfied, therefore the solution set of this
problem is an Rδ-set.
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