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LIE GROUP CLASSIFICATION AND EXACT SOLUTIONS OF
THE GENERALIZED KOMPANEETS EQUATIONS

OLEKSII PATSIUK

Abstract. We study generalized Kompaneets equations (GKEs) with one

functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out
the group classification. It is shown that the kernel algebra of the full groups of

the GKEs is the one-dimensional Lie algebra. Using the direct method, we find

the equivalence group. We obtain six non-equivalent (up to transformations
from the equivalence group) GKEs that allow wider invariance algebras than

the kernel one. We find a number of exact solutions of the non-linear GKE
which has the maximal symmetry properties.

1. Introduction

In this article, we study the generalized Kompaneets equations (GKEs)

ut =
1
x2

[x4(ux + f(u))]x, (t, x) ∈ R+ × R+, (1.1)

where u = u(t, x), ut = ∂u
∂t , ux = ∂u

∂x , uxx = ∂2u
∂x2 ; f(u) is an arbitrary smooth

function of the variable u.
Equation (1.1) with f(u) = u2 + u, namely,

ut =
1
x2
· [x4(ux + u2 + u)]x, (t, x) ∈ R+ × R+, (1.2)

was obtained in 1950 by Kompaneets [19] (see also [35]). It describes the scatter-
ing of unpolarized, low energy photons on a dilute distribution of non-relativistic
electrons when all the particles (both photons and electrons) are distributed isotrop-
ically in their momenta. Its possible applications (mainly, astrophysical) were inves-
tigated in detail in [9, 16, 35, 36] et al. It should also be noted that in the previous
few decades much attention has been devoted to generalizing (1.2), for instance, on
the relativistic case, etc. (see [4, 5, 11, 17, 27] and papers cited therein).

If u� 1 then one can put f(u) = u2 (now induced scattering is only considered).
The corresponding equation of the form (1.2) was studied, e.g., in [35]. If u� 1 then
we get the linear equation with f(u) = u. The general solution of this equation was
obtained by Kompaneets [19] using the Green function, whose properties have been

2010 Mathematics Subject Classification. 17B81, 35Q85, 35K10, 35K55.
Key words and phrases. Generalized Kompaneets equation; group classification;

exact solution.
c©2015 Texas State University - San Marcos.

Submitted April 9, 2015. Published April 23, 2015.

1



2 O. PATSIUK EJDE-2015/112

investigated in [22, 23]. The Green function for the linear Kompaneets equation
with f(u) = 0 was obtained in [36].

For the nonlinear Kompaneets equation (1.2), classical methods for solving linear
partial differential equations (PDEs) such as the Green functions, the separation of
variables, the integral transforms, are not available. Therefore, the construction of
exact analytical solutions of the nonlinear Kompaneets equation (1.2) is an actual
task of modern mathematical physics.

One of the most powerful methods for constructing exact solutions of nonlinear
PDEs is the classical Lie method [2, 24, 26], and its various generalizations and
modifications (see, e.g., [12]).

Group analysis of the Kompaneets equation (1.2) was held recently in [14]. It
was shown that the maximal algebra of invariance (MAI) of this equation is the
one-dimensional algebra 〈∂t〉, i.e. equation (1.2) only allows the one-parameter time
translation group. This symmetry leads only to the well-known stationary solution
found by Kompaneets [19].

At the same time, it has been shown [14] that for various limiting cases (e.g., for
the prevailing induced scattering or the degenerate limiting case u2 � u, u2 � ux)
the corresponding equations of the form (1.1) allow extensions of the symmetry
properties. This allow us to construct a series of new exact solutions, which were
not known before.

We note also the recent paper [3], where the analysis of the nonlinear Kompaneets
equation (1.2) in the case of prevailing induced scattering was held by using the
Bluman–Cole method [1] (see also [12]) and a number of new exact solutions of this
equation were built.

It is noteworthy that the class of equations (1.1) is the particular case of the
class of GKEs of the form

ut =
1

β(x)
[α(x)(ux + f(x, u))]x, (t, x) ∈ R+ × R+,

which was investigated by Wang et al. [33, 34, 10], using non-group-theoretical
methods.

The results in [3, 14] indicate that in the class of GKEs (1.1) there are equations
with nontrivial symmetry properties. This enables us to build exact analytical
solutions of these equations using the method of symmetry reduction. So, it is nat-
urally arised the problem of classification of symmetry properties of the differential
equations of the form (1.1), i.e. the problem of group classification of the class of
GKEs (1.1). It can be formulated as follows: find the kernel g∩ of the MAIs of
equations from class (1.1), i.e. the MAIs of equation (1.1) with an arbitrary func-
tion f(u), and describe all non-equivalent equations that admit invariance algebras
of dimension, higher than g∩.

Hereafter, we are going to work with the class of equations (1.1), written in the
form

ut = x2uxx + x[xf ′(u) + 4]ux + 4xf(u), (t, x) ∈ R+ × R+. (1.3)

Taking into account the physical meaning of the function u, we assume that u > 0
in (1.3).

The purpose of this article is to carry out the group classification of the class of
GKEs (1.3), and to build the exact invariant solutions of the equations admitting
the highest symmetry properties.
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The structure of this article is as follows. In Section 2, using the direct method,
we find the complete group of equivalence transformations of class (1.3), up to which
we carried out the group classification of one. In Section 3, using the Lie method,
we get the system of the determining equations for the infinitesimal symmetries of
equations from class (1.3). Analysis of its classifying part is made in Section 4. In
Section 5, exact invariant solutions are found for equation (1.3) with f(u) = u4/3,
which is a representative of the equivalence class of nonlinear equations (1.3) with
the three-dimensional MAI. In Section 6, we give some remarks discussing our main
results and a problem for further investigation.

2. Group of equivalence transformations

Performing the group classification of classes of differential equations, it is im-
portant to know the local transformations of variables that alter the functional
parameters contained in the studied class of equations, but keep the differential
structure of one. Such transformations induce an equivalence relation on the set
of the functional parameters. In other words, isomorphic are the symmetry groups
of two differential equations, which correspond to two different, but equivalent pa-
rameters.

Traditionally, finding a group of equivalence transformations, one use the Lie-
Ovsyannikov infinitesimal method (see, for example, [15, 20, 26]). However, this
method only allows to find all continuous equivalence transformations, while for
finding a complete group (pseudogroup) of equivalence transformations (including
both continuous ones and discrete ones) it should be used the direct method [18].

We start the construction of the group of equivalence transformations of the
class of GKEs (1.3) from the previous study of the set of admissible transformations
(other names, allowed or form-preserving transformations) of this class of equations.
In other words, we look for all non-degenerate point transformations of variables

t̄ = T (t, x, u), x̄ = X(t, x, u), ū = U(t, x, u),
∂(T,X,U)
∂(t, x, u)

6= 0,

that map a fixed equation of the form (1.3) to an equation of the same form:

ūt̄ = x̄2ūx̄x̄ + x̄[x̄f̄ ′(ū) + 4]ūx̄ + 4x̄f̄(ū). (2.1)

Without loss of generality, we can restrict ourselves by consideration of point
transformations of the form

t̄ = T (t), x̄ = X(t, x), ū = U(t, x, u),

where T , X, and U are arbitrary smooth functions of their variables with TtXxUu 6=
0 (see [18, 32]). Under these transformations, the partial derivatives are transformed
as follows:

ut =
1
Uu

(Ttūt̄ +Xtūx̄ − Ut), ux =
1
Uu

(Xxūx̄ − Ux),

uxx =
1
Uu

[
X2
xūx̄x̄ +

(
Xxx − 2Xx

Uxu
Uu

+ 2Xx
UxUuu
U2
u

)
ūx̄

−X2
x

Uuu
U2
u

ū2
x̄ − Uxx + 2

UxUxu
Uu

− U2
xUuu
U2
u

]
.
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Substituting the last formulas in (1.3) and taking into account equality (2.1), we
obtain the equation

ūx̄x̄(x2X2
x − TtX2)− ū2

x̄x
2X2

x

Uuu
U2
u

+ ūx̄

[
x2
(
Xxx − 2Xx

Uxu
Uu

+ 2Xx
UxUuu
U2
u

)
+ x(xfu + 4)Xx −

(
f̄ūX + 4

)
TtX −Xt

]
− x2

(
Uxx − 2

UxUxu
Uu

+
U2
xUuu
U2
u

)
− x(xfu + 4)Ux + 4xfUu − 4f̄TtX + Ut = 0.

Splitting it in ūx̄, and ūx̄x̄, we have:

ūx̄x̄ : x2X2
x − TtX2 = 0, ū2

x̄ : Uuu = 0,

ūx̄ : x2
(
Xxx − 2Xx

Uxu
Uu

)
+ x(xfu + 4)Xx −

(
f̄ūX + 4

)
TtX −Xt = 0,

1 : x2
(
Uxx − 2Ux

Uxu
Uu

)
+ x(xfu + 4)Ux − 4xfUu + 4f̄TtX − Ut = 0

(2.2)

(equality Uuu = 0 have been taken into account in the last two equations immedi-
ately).

From the second equation of system (2.2) we obtain

U = C1(t, x)u+ C2(t, x),

and from the first equation we obtain

Tt =
x2X2

x

X2
. (2.3)

Substituting (2.3) in the last equation of system (2.2), we have

f̄ =
X

4x2X2
x

[
x2
(

2
UxUxu
Uu

− Uxx
)
− x(xfu + 4)Ux + 4xfUu + Ut

]
. (2.4)

Differentiated equation (2.4) with respect to u, we find that

f̄ū =
X

4x2X2
xUu

[
x2
(

2
U2
xu

Uu
−Uxxu−fuuUx−fuUxu

)
−4x (Uxu − fuUu)+Utu

]
. (2.5)

Now we substitute (2.3) and (2.5) into the third equation of system (2.2). After
simple transformations, we arrive at the equation

x2
(
Xxx − 2Xx

Uxu
Uu
− 4X2

x

X

)
− X

4Uu

(
x2
(

2
U2
xu

Uu
− Uxxu

)
− 4xUxu + Utu

)
+ 4xXx −Xt + x2

(
Xx −

X

x
+
XUxu
4Uu

)
fu +

x2XUx
4Uu

fuu = 0.

Further analysis of the obtained equation is not possible without additional as-
sumptions on the function f(u). Thereby, now we find the group of equivalence
transformations of the class of equations (1.3).

The equivalence transformations of the class of equations (1.3) are picking out
the set of all admissible transformations by the additional condition that they map
every equation of the form (1.3) to an equation of the same form. In this case,
the functional parameter f varies, and thus, the last equation can be split by the
derivatives of f .

Solving the obtained system of equations, we have:

X = B(t)x, U =
C

B4(t)
u+ C2(t), C ∈ R.
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Then from the first equation of system (2.2), it follows that T = t+A, where A ∈ R.
If B(t) is not constant, then substituting the expressions for T,X, and U in

(2.4), we obtain

f̄ =
C

B5(t)
f − C

xB6(t)
u+

C ′2(t)
4xB(t)

.

Multiplying this equality by 4xB(t) and differentiating the resulting equation by x,
we obtain the equality

f̄ =
C

B5(t)
f,

which implies that C ′2(t) = 0, and C = 0. But then Uu = 0, that is impossible.
Thus, B(t) = const. Then from (2.4), we obtain

f̄ =
C

B5
f +

C ′2(t)
4xB

.

Here, as above, we can show that C ′2(t) = 0. Denoting now C
B4 in C1, we arrive at

the following assertion.

Theorem 2.1. The group of equivalence transformations G∼ of the class of GKEs
(1.3) consists of the following transformations:

t̄ = t+A, x̄ = Bx, ū = C1u+ C2, f̄ =
C1

B
f, (2.6)

where A,B,C1, C2 are arbitrary real constants with BC1 6= 0.

Remark 2.2. From Theorem 2.1, it is directly followed that any transformation
T from the group G∼ of equivalence transformations of the class of differential
equations (1.3) can be represented as the composition

T = T (A)T (B)T (C1)T (C2),

where each of the transformations

T (A) : (t, x, u, f) 7→ (t+A, x, u, f),

T (B) : (t, x, u, f) 7→ (t, Bx, u,B−1f), B 6= 0,

T (C1) : (t, x, u, f) 7→ (t, x, C1u,C1f), C1 6= 0,

T (C2) : (t, x, u, f) 7→ (t, x, u+ C2, f)

belongs to the one-parameter family of equivalence transformations.

3. The kernel of MAIs

According to the classical Lie algorithm [24, 26], we look for the infinitesimal op-
erators generating the invariance algebra of equation (1.3) in the class of differential
operators of the first order

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (3.1)

where τ , ξ, and η are arbitrary smooth functions of their variables.
The condition of invariance of equation (1.3) with respect to operator (3.1) is as

follows:
X(2)

{
ut − x2uxx − x(xfu + 4)ux − 4xf

} ∣∣∣
(1.3)

= 0,
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or, in detail,

ηt − 2xuxxξ − x2ηxx − 2(xfu + 2)uxξ

− x2fuuuxη − x(xfu + 4)ηx − 4fξ − 4xfuη
∣∣∣
(1.3)

= 0.
(3.2)

We used the following notation:

X(2) = X + ηt∂ut + ηx∂ux + ηtt∂utt + ηtx∂utx + ηxx∂uxx

is the second prolongation of the operator X;

ηi = Di(η)− utDi(τ)− uxDi(ξ), i ∈ {t, x},
ηij = Dj(ηi)− utiDj(τ)− uixDj(ξ), i, j ∈ {t, x},

where Di, i ∈ {t, x}, is the operator of the total differentiation with respect to i;
condition |(3) in (3.2) means replacing ut to x2uxx + x(xfu + 4)ux + 4xf .

Substituting the expressions for ηt, ηx, and ηxx in equation (3.2) and splitting the
obtained equality with respect to the various derivatives of u, we get the following
system of determining equations:

uxutx : τu = 0,
utx : τx = 0,
uxuxx : ξu = 0,

u2
x : ηuu = 0,

uxx : x(2ξx − τt)− 2ξ = 0,

ux : x(xfu + 4)(τt − ξx) + 2(xfu + 2)ξ + ξt + x2(fuuη + 2ηxu − ξxx) = 0,

1 : 4xf(τt − ηu) + 4fξ + 4xfuη − ηt + x(xfu + 4)ηx + x2ηxx = 0.

(3.3)

The last two equations including the functional parameter f form the classifying
part of the system. Using the remaining equations, we find that

τ = τ(t), ξ = x
(1

2
τ ′(t) lnx+ γ(t)

)
, η = α(t, x)u+ β(t, x),

where α, β, γ, and τ are smooth functions of their variables.
If f is an arbitrary function, we can further split system (3.3) with respect

to derivatives of f and find the kernel g∩ of MAIs of the equations of the form
(1.3) (i.e., those operators that are allowed by arbitrary equation from class (1.3)).
Splitting yields: ξ = η = 0, τt = 0. From the equations, it directly follows the next
statement.

Theorem 3.1. The kernel of MAIs of GKEs (1.3) is the one-dimensional Lie
algebra g∩ = 〈∂t〉.

Extensions of the kernel can exist only in the cases when the equations of the
classifying part are satisfied not only for an arbitrary function f . The analysis of
these equations will be made in the next section.
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4. Extensions of the kernel of MAIs

Rewrite the classifying part of system (3.3) as follows

3τt + τtt lnx+ 4xαx + 2γt + x[τt(1 + lnx) + 2γ]fu
+ 2xβfuu + 2xαufuu = 0,

4βx + xβxx − x−1βt +
(
4αx + xαxx − x−1αt

)
u

+ 2[τt(2 + lnx) + 2(γ − α)]f + (4β + xβx)fu + (4α+ xαx)ufu = 0.

(4.1)

For the analysis of system (4.1) we apply the method of structural constants. To
do this, we first show that this system is equivalent to the system of two ordinary
differential equations on the function f(u):

a+ bfu + cfuu + dufuu = 0, (4.2)

a∗ + b∗u+ c∗f + d∗fu + e∗ufu = 0, (4.3)

with the constant coefficients a, b, c, d, a∗, b∗, c∗, d∗, and e∗.
Indeed, since f depends only on u, (4.1) satisfies only if all the coefficients in

these equations are equal to zero, or proportional (with constant coefficients) of
some function λ = λ(t, x) 6≡ 0:

(1) 3τt + τtt lnx + 4xαx + 2γt = aλ, x[τt(1 + lnx) + 2γ] = bλ, 2xβ = cλ,
2xα = dλ;

(2) 4βx+xβxx−x−1βt = a∗λ, 4αx+xαxx−x−1αt = b∗λ, 2[τt(2+lnx)+2(γ−
α)] = c∗λ, 4β + xβx = d∗λ, 4α+ xαx = e∗λ.

It is easy to verify that if all the coefficients in (4.2) and (4.3) are simultaneously
equal to zero, it corresponds to an arbitrary function f . Therefore, extensions of the
kernel of MAIs are only possible for the function f , which satisfy the overdetermined
system of classifying equations of the form (4.2) and (4.3) with constant coefficients.

The analysis of this system allows to obtain the following result.

Theorem 4.1. The GKE of the form (1.3) may allow the invariance algebra of
dimension, higher than g∩, when the function f belongs to one of the following
classes (non-equivalent up to the transformations from the group G∼):

(1) f(u) = eu + ku (k 6= 0);
(2) f(u) = eu + n;
(3) f(u) = u lnu+ ku+ n;
(4) f(u) = lnu+ ku+ n;
(5) f(u) = um + ku+ n (m 6= 0, 1, 2);
(6) f(u) = u2 + n;
(7) f(u) = u;
(8) f(u) = 1;
(9) f(u) = 0,

where k,m, n are arbitrary real constants.

Proof. Let us consider equation (4.2). The analysis of it for the purpose of con-
structing the general solution strongly depends on the constant d.

If d = 0, the corresponding equation has the general solutions of the following
forms:

(1) f(u) = ku2 + lu+ n if b = 0;
(2) f(u) = kemu + lu+ n (where km 6= 0) if b 6= 0,



8 O. PATSIUK EJDE-2015/112

where k, l,m, n are arbitrary real constants that satisfy the specified conditions.
Now let d 6= 0. For the purpose of analysis of equation (4.2), we use the fact

that the equivalence relations in the class (1.3) are transferred to the system of
classifying equations (4.1), and hence to equation (4.2) and (4.3). Applying the
transformations from the group G∼ to equation (4.2), we find that in the new
variables, the structure of this equation is preserved, but its coefficients change as
follows:

a 7→ a

B
, b 7→ b, c 7→ cC1 − dC2, d 7→ d.

Now it is easy to see that picking in the correct way the value of C1, the coefficient
c in equation (4.2) can be reduced to zero.

Solving the resulting equation (with c = 0), we obtain the following expressions
for its general solution (depending on the coefficients b and d):

(1) f(u) = ku lnu+ lu+ n if b = 0;
(2) f(u) = k lnu+ lu+ n (where k 6= 0) if b = d;
(3) f(u) = kum + lu+ n (where k 6= 0, m 6= 0, 1) in other cases,

where k,m, n are arbitrary real constants that satisfy the specified conditions.
Now, collecting all the possible cases for the function f(u) in such a way that they

are not mutually disjoint, and taking into account the non-used transformations
from the group G∼, we get the nine non-equivalent (up to the transformations
from the group G∼) classes listed in the formulation of the theorem. If a fixed
function f(u) belongs to some of these classes, then the extension of the kernel of
MAIs of the corresponding GKE of the form (1.3) may be exist.

Analysis of equation (4.3) can be made similarly and gives the same result as in
the case of equation (4.2). �

Substituting the resulting expressions for the function f(u) in system (4.1) and
holding the corresponding calculations, we arrive at such statement (detailed proof
is in [29]).

Theorem 4.2. All possible MAIs of the GKEs (1.3) with some fixed function f(u)
are described in Table 1. Any other equation of the form (1.3) with nontrivial Lie
symmetry maps to one of the equations given in Table 1 by means of the equivalence
transformations of the form (2.6).

5. Exact solutions of GKE (1.3) with f(u) = u4/3

In the previous section, it was shown that the equation

ut = x2uxx + 4x
(1

3
xu1/3 + 1

)
ux + 4xu4/3, (t, x) ∈ R+ × R+ (5.1)

(corresponding to Case 3 of Table 1) has the highest symmetry properties among the
non-linear GKEs of the form (1.3), namely, this equation admits as MAI the three-
dimensional Lie algebra of infinitesimal symmetries. It is natural to expect that
this fact will allow us to build a number of non-trivial invariant exact solutions of
equation (5.1). We could obtain a comprehensive list of the non-equivalent invariant
solutions of this equation by operators from the admitted Lie algebra constructing
an optimal system of subalgebras of this algebra (see, e.g., [24, Section 3.3]).

However, equation (5.1) can be reduced to the equation

ut = uxx +
4
3
u1/3ux (5.2)
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Table 1. The group classification of GKEs (1.3)

N f(u) Basis of MAI

1 eu ∂t, x∂x − ∂u
2 uk (k 6= 0, 1, 4

3 ) ∂t, x∂x − 1
k−1u∂u

3 u4/3 ∂t, x∂x − 3u∂u, 2t∂t + (3t+ lnx)x∂x − 3(1 + 3t+ lnx)u∂u
4 u ∂t, u∂u, ϕ(t, x)∂ua

5 1 ∂t, x∂x + u∂u, (x+ u)∂u,
2t∂t + (lnx− 3t)x∂x − (lnx− 3t)x∂u,
4t2∂t + 4tx lnx∂x − [((lnx+ 3t)2 + 2t)(x+ u) + 4tx lnx]∂u,
2tx∂x − [(lnx+ 3t)(x+ u) + 2tx]∂u, ψ(t, x)∂ub

6 0 ∂t, x∂x, u∂u, 2t∂t + (lnx− 3t)x∂x, 2tx∂x − (lnx+ 3t)u∂u,
4t2∂t + 4tx lnx∂x − [(lnx+ 3t)2 + 2t]u∂u, ψ(t, x)∂ub

aThe function ϕ(t, x) is an arbitrary smooth solution of ut = x2uxx + x(x+ 4)ux + 4xu.
bThe function ψ(t, x) is an arbitrary smooth solution of ut = x2uxx + 4xux.

by the local transformation of variables

t = t, x = lnx− 3t, u = x3u. (5.3)

Equation (5.2) is a well-known non-linear diffusion-convection equation (see, e.g.,
[6, 25], and also [31, Subs. 5.1.5, No. 9]).

Using the results of [6], we immediately obtain that the basis of MAI of equation
(5.2) can be chosen as follows:

X1 = ∂t, X2 = ∂x, X3 = t∂t +
1
2
x∂x −

3
2
u∂u,

and the optimal system of one-dimensional subalgebras of the MAI consists of the
following ones:

〈X2〉, 〈X3〉, 〈X1 + cX2 | c ∈ R〉.
A symmetry of the type 〈X1 + cX2 | c ∈ R \ {0}〉 generates a travelling wave

solution. Solutions of this type can be found in [31] (see Subs. 5.1.5, No. 9.2):

u(t, x) =
(
ce−

λ
3 (x+λt) +

1
λ

)−3

;

u(t, x) =
λ3

8
{

1 + tanh[
λ

6
(x+ λt) + c]

}3
.

The operator 〈X1〉 gives the ansatz u = ϕ(x) and reduces equation (5.2) to the
equation

ϕ′′ +
4
3
ϕ1/3ϕ′ = 0.

We obtained a generalized Emden-Fowler equation, for which the solution in the
parametric form is known [30, Subs. 2.5.2, No. 1.1] We rewrite it as a function x(ϕ):

x =
∫

dϕ

c− ϕ4/3
.

After integrating, we have such solutions (depending on the value of c):

ϕ(x) =
27

(x+ c0)3
, if c = 0;
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x =
3
4
c1

(
ln |

c1 3
√
ϕ+ 1

c1 3
√
ϕ− 1

| − 2 arctan(c1 3
√
ϕ)
)

+ c2, if c > 0;

x =
3
4
c3

(
ln

2c23
3
√
ϕ2 + 2c3 3

√
ϕ+ 1

2c23
3
√
ϕ2 − 2c3 3

√
ϕ+ 1

− 2 arctan
2c3 3
√
ϕ

1− 2c23
3
√
ϕ2

)
+ c4, if c < 0.

Further, the operator 〈X3〉 gives the ansatz [6, p. 153]

u =
ϕ(y)√
t3
, y =

x√
t

and reduces equation (5.1) to

ϕ′′ +
(4

3
ϕ1/3 +

1
2
y
)
ϕ′ +

3
2
ϕ = 0. (5.4)

We could not find the general solution of equation (5.4), however, it is easy to
see that one has a particular solution ϕ(y) = 27y−3. Then we have the following
particular solution of equation (5.2),

u(x) = 27x−3.

It is a self-similar solution mentioned in [31] (see Subs. 5.1.5, No. 9.3).
Finally, it is easy to see that the operator 〈X2〉 generate only trivial solution

u = c.
Now, using transformation (5.3), we obtain such solutions of (5.1):
(1) u(x) = cx−3;
(2) u(t, x) = 27x−3(lnx− 3t+ c)−3;
(3) u(t, x) = x−3

{
c[xe(λ−3)t]−

λ
3 + 1

λ

}−3;
(4) u(t, x) = λ3

8 x
−3
{

1 + tanh[λ6 (lnx+ (λ− 3)t) + c]
}3,

Also there are two solutions in implicit form (here u(t, x) = x−3ψ(y), y = lnx−3t):

(5) x = λ
{∣∣ c 3√ψ+1
c 3√ψ−1

∣∣c/4 exp[t− c
2 arctan(c 3

√
ψ)]
}3, λ > 0;

(6) x = λ
{( 2c2 3

√
ψ2+2c 3√ψ+1

2c2 3
√
ψ2−2c 3√ψ+1

)c/4 exp
(
t− c

2 arctan 2c 3√ψ
1−2c2 3

√
ψ2

)}3, λ > 0.

The obtained solutions can potentially be used for solving some physical problems.
As an illustrative example, we present their usage for solving a boundary value
problem (BVP).

Consider the set of exact solutions of equation (5.1) in an explicit form, namely,
solutions 1)–4). Let S be the class of all positive continuous in R+ × R+ solutions
u(t, x) from them. Solutions 2) does not belong to this class, because they are
discontinuous. Solutions 1), 3), 4) belong to S, if c > 0, c > 0 and λ > 0, λ > 0,
respectively.

Proposition 5.1. In the class S, the boundary-value problem

ut =
1
x2
· [x4(ux + u4/3)]x, (t, x) ∈ R+ × R+,

x4(ux + u4/3)→ 0, as x→ +0,

x4(ux + u4/3)→ k, as x→ +∞,

u(0, x) = F (x), where
∫ +∞

0

F (x)dx = 1

(5.5)

(where k is a constant, not ±∞):
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(1) has no solutions when k < −8 139
256 ;

(2) has a unique solution when k = −8 139
256 or k ≥ −8; this solution reads as

u(t, x) = λ3x−3
{[

3(λ− 3)(λ− 6)
π

sin 6π
λ

]λ/6[xe(λ−3)t]−λ/3 + 1
}−3

, (5.6)

where λ is a real root of the equation

λ4 − 3λ3 = k; (5.7)

(3) has two solutions when −8 139
256 < k < −8; these solutions read as (5.6),

where λ = λ1 and λ = λ2 are two real roots of equation (5.7).

Proof. First of all, note that solutions (1) do not satisfy the initial condition. Thus,
only solutions (3) and (4) can be ones of BVP (5.5).

Further, using the programm of symbolic calculations Mathematica, we obtain
that solutions (3) and (4) satisfy the boundary conditions for all λ > 0 (moreover,
k = λ4 − 3λ3), and the initial condition, only if λ > 2. In this case,

c =
1
λ

[
3(λ− 3)(λ− 6)

π

sin 6π
λ

]λ/6 (5.8)

for solution (3), and

c = − λ

12
log
[
3(λ− 3)(λ− 6)

π

sin 6π
λ

]
(5.9)

for solution (4) (the values of c(3) and c(6) can be found as the corresponding limits
of these expressions).

If λ > 2, then equation (5.7) has two real solutions, when −8 139
256 < k < −8, and

the unique real solution, when k = −8 139
256 or k ≥ −8; otherwise this equation has

no solutions. Now, substituting (5.8) into solution (3), we obtain the solution of
BVP (5.5) in the form (5.6), if one exists. Executing routine calculations, we can
reduce solution (4) (for the same λ and c of the form (5.9)) to (5.6). �

Example 5.2. Let k = 0. Then λ = 3, c =
√

3/2, and u(t, x) = 27(x+ 3
√

3/2)−3.
So, in this (and only in this) case BVP (5.5) has only stationary solution.

Note that the similar BVPs with vanishing boundary condition at infinity were
considered previously in [7, 8, 10, 33, 34] et al.

Example 5.3. Let k = 64. Then λ = 4, c = 1
4

3
√

36π2, and

u(t, x) = 64x−3
(

3
√

36π2[xet]−
4
3 + 1

)−3

.

The graph of this solution is presented on Figure 1.

Example 5.4. Let k = −8, 2944. Then λ1 ≈ 2, 0853; λ2 = −2, 4. For λ2, c =
5
12

5
√

41, 9904π2, and

u(t, x) = 13, 824x−3
(

5
√

41, 9904π2[xe−
3
5 t]−

4
5 + 1

)−3

.

The graph of this solution is presented on Figure 2.
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Figure 1. Solution of BVP (5.5), k = 64

Figure 2. Solution of BVP (5.5), k = −8, 2944

6. Discussion

Now we give some remarks discussing our main results.

Remark 6.1. It should be emphasized that Theorem 4.2 gives a comprehensive
description of all non-equivalent GKEs of the form (1.3) up to the transformations
of variables from the group G∼. However, it can be shown that the GKE (1.3)
with f(u) = 1 may be mapped to the GKE (1.3) with f(u) = 0 by the local
transformation of variables (which does not belong to the group G∼):

t = t, x = x, u = u+ x.
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Note also that the GKEs (1.3) with f(u) = uk (k 6= 0, 1, 4
3 ) and f(u) = eu admit the

isomorphic MAIs (type A2.1 by the Mubarakzyanov classification [21]). However,
the direct analysis of (2.4) shows that among the admissible transformations in the
class of GKEs of the form (1.3) there are no such point transformations of variables
mapping these two equations into each other.

Remark 6.2. Lie classification of the linear parabolic second order differential
equations with two independent variables is widely known (see, e.g., [13]). One of
the main results of this classification is the fact that any equation of the form

P (t, x)ut +Q(t, x)ux +R(t, x)uxx + S(t, x)u = 0, P 6= 0, R 6= 0,

which admits a five-dimensional nontrivial Lie algebra of infinitesimal symmetries
is reduced to the linear heat equation

vτ = vyy (6.1)

by the change of variables

τ = α(t), y = β(t, x), v = γ(t, x)u, αtβx 6= 0, (6.2)

with some fixed functions α, β, and γ.
Therefore, Theorem 4.2 implies that equation (1.3) with f(u) = const admitting

the five-dimensional non-trivial algebra of infinitesimal symmetries is reduced to
the linear heat equation by some change of variables of the form (6.2). Indeed,
it has been shown [36] that the linear Kompaneets equation (1.3) with f(u) = 0
reduces to equation (6.1) by the change of variables

τ = t, y = 3t+ lnx, v = u.

Remark 6.3. Since equation (5.2) is a PDE with two independent variables t
and x, then it can be looked for the invariant solutions of ranks ρ = 0 or ρ = 1.
We perform only the analysis of invariant solutions of rank ρ = 1. To find the
invariant solutions of equation (5.2) of rank ρ = 0, it is necessary to use the two-
dimensional subalgebras of the algebra 〈X1, X2, X3〉. Using the results of [28], it is
easy to see that there are three non-equivalent (up to conjugacy, which is determined
by the actions of the group of inner automorphisms of the algebra 〈X1, X2, X3〉)
two-dimensional subalgebras of this algebra, namely, 〈X1, X2〉, 〈X1, X3〉, 〈X2, X3〉.
However, their analysis shows that they do not lead to any new invariant solutions
of equation (5.2) compared with ones obtained as a result of analysis of the one-
dimensional subalgebras.

In the forthcoming article, we are going to consider from the group-theoretical
point of view a class of the variable coefficients GKEs with two functional param-
eters.

Conclusions. In the present article, Lie group classification problem for the class
of GKEs (1.3) was solved exhaustively. The main result of the paper is the classifi-
cation list (see Table 1), which consists of the six non-equivalent cases (up to equiv-
alence transformations obtained in Section 2). Among the corresponding non-linear
equations from the class under study, the GKE with f(u) = u4/3 has the maximal
symmetry properties, namely, it admits a three-dimensional MAI. A number of ex-
act solutions were constructed for this equation. As an illustrative example, a BVP
for this equation was solved using the solutions obtained.
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