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A SIGN-CHANGING SOLUTION FOR NONLINEAR PROBLEMS
INVOLVING THE FRACTIONAL LAPLACIAN

KAIMIN TENG, KUN WANG, RUIMENG WANG

Abstract. In this article, we establish the existence of a least energy sign-

changing solution for nonlinear problems involving the fractional Laplacian.
Our main tool is constrained minimization in a closed subset containing all

the sign-changing solutions of the equation.

1. Introduction

In this article, we establish the existence of least energy sign-changing solutions
for the nonlinear problem involving the fractional Laplacian,

(−∆)su = f(x, u) in Ω,

u = 0 in RN\Ω,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, s ∈ (0, 1), N > 2s,
(−∆)s stands for the fractional Laplacian, which is defined by

(−∆)su(x) = C(N, s) lim
ε↓0

∫
RN\Bε(x)

u(x)− u(y)
|x− y|N+2s

dy, x ∈ RN ,

where C(N, s) is a suitable positive normalization constant. The nonlinearity f :
Ω̄× R→ R is of class C1 and satisfies the growth conditions:

(F1) limt→0 f(x, t)/t = 0 uniformly for a.e. x ∈ Ω;
(F2) lim|t|→+∞ f(x, t)/|t|2∗s−1 = 0 uniformly for a.e. x ∈ Ω;
(F3) There exist R > 0 and µ > 2 such that

0 < µF (t, x) ≤ tf(x, t), ∀x ∈ Ω,∀|t| ≥ R;

(F4) f(x, t)/t is increasing in |t| > 0, for every x ∈ Ω.

Here 2∗s = 2N
N−2s is the fractional critical exponent, and F (x, t) =

∫ t
0
f(x, s) ds).

Remark 1.1. The conditions (F1) and (F4) imply that H(x, t) = tf(x, t)−2F (x, t)
is a nonnegative function, increasing in |s| with

tH ′(x, t) = t2f ′(x, t)− f(x, t)t > 0 for any |t| > 0.
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Recently, a great attention has been focused on the study nonlinear problems
involving fractional Laplacian, because of its importance in the field of physics,
engineering, finance and so on. For example, it arises in phase transition, quan-
tum mechanics, flame propagation, chemical reaction liquids American options in
finance, crystal dislocation, see [2, 11, 21] and so on. Owing to the pioneer work
Caffarelli and Silvestre [6], who developed the technique of harmonic extension to
define the fractional Laplace operator, many well-known results corresponding to
classical elliptic problems have been obtained, see [3, 5, 7, 20] and the references
therein. On the other hand, Servadei and Valdinoci [16, 17] who takes the frac-
tional Laplace operator as singular integral operator, introduced a suitable Sobolev
space which can be to develop the variational formula, some existence and multiple
results for problem (1.1) have been obtained, one can see [9, 10, 14, 15, 18, 19]
and the references therein, they deal with another nonlocal operator, the spectral
fractional Laplacian, which is different from the operator considered in the present
paper defined by the singular integral kernel.

As we know, in the past decades, the existence and multiplicity of sign-changing
solutions for nonlinear elliptic problems have been intensively studied. There are
some powerful methods which have been developed, such as the descended flow
methods [12], constrained minimization methods [4], super and sub solution com-
bining with truncation techniques [8] and so on. The existence and multiplicity of
sign-changing solutions for problem (1.1) has been investigated by the recent paper
of Chang and Wang [7], through using the descended flow methods and harmonic
extension techniques. In a recent paper [1], the authors proved the existence of a
least energy solution for Schrödinger-Poisson equations by the minimization meth-
ods, the problem is similar to ours, because of appearing the “nonlocal” term. In
this paper, we borrow some ideas from [1], we use the constrained minimization
methods to prove the existence of sign-changing solutions for problem (1.1).

For any measurable function u : RN → R we define the Gagliadro seminorm by
setting

[u]2s =
∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy,

and we introduce the fractional Sobolev space

Hs(RN ) = {u ∈ L2(RN ) : [u]s <∞},

which is a Hilbert space. We also define a closed subspace

X(Ω) = {u ∈ Hs(RN ) : u = 0 a.e. in RN\Ω}.

Because of the fractional Sobolev inequality, X(Ω) is a Hilbert space with inner
product

〈u, v〉 =
∫

R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dxdy,

which induces a norm ‖ · ‖X = [·]s. For u ∈ X(Ω), set

J(u) =
1
2
‖u‖X −

∫
Ω

F (x, u) dx.

Then, J ∈ C1(X(Ω)) and

〈J ′(u), v〉 =
∫

R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dxdy −
∫

Ω

f(x, u)v dx, ∀v ∈ X(Ω).
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Moreover, all its critical points are (up to a normalization constant depending on
s and N , which we will neglect henceforth) weak solutions of (1.1), namely they
satisfy

〈u, v〉 =
∫

Ω

f(x, u)v dx, ∀v ∈ X(Ω).

Our main result is the following.

Theorem 1.2. Suppose that f satisfies (F1)–(F4). Then problem (1.1) possesses
a least energy sign-changing solution.

Remark 1.3. We observe that (F2) is weaker than the usual subcritical condition,
such as the (F2) of [7, Theorem 1.1].

Remark 1.4. Under the conditions (F1)–(F3), using the usual mountain pass
theorem, we can obtain two solutions: a positive solution and a negative solution.

Remark 1.5. In this framework, because there is a nonlocal term∫
R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dxdy,

we can not prove the exactly nodal domains corresponding to the sign-changing
solution obtained in Theorem 1.2.

In the proof of Theorem 1.2, we will prove that the functional J achieves a
minimum value on the nodal set

M = {u ∈ N : 〈J ′(u), u+〉 = 0, 〈J ′(u), u−〉 = 0 and u± 6= 0}
where u+(x) = max{u(x), 0}, u−(x) = min{u(x), 0} and

N = {u ∈ X(Ω)\{0} : 〈J ′(u), u〉 = 0}.
More precisely, we prove that there is w ∈M such that

J(w) = inf
u∈M

J(u).

2. Preliminary lemmas

Lemma 2.1. For any a, b ∈ R, we have:
(i) (ka)± = ka±, for all k ≥ 0, (a+ b)± ≤ a± + b±;

(ii) (a− b)(a+ − b+) ≥ (a+ − b+)2;
(iii) (a− b)(a− − b−) ≥ (a− − b−)2.

Remark 2.2. The conclusion (ii) of Lemma 2.1 implies that (a+−b+)(a−−b−) ≥ 0,
for any a, b ∈ R.

From Lemma 2.1, by simple computations, we deduce the following Lemma.

Lemma 2.3. For any u ∈ X(Ω), the following element facts hold.
(i) ‖u±‖X ≤ ‖u‖X ;
(ii)

〈u, u±〉 = 〈u±, u±〉 −
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy −
∫

R2N

u−(x)u+(y)
|x− y|N+2s

dx dy;

(iii)

〈J ′(u), u±〉 = 〈J ′(u±), u±〉 −
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy −
∫

R2N

u−(x)u+(y)
|x− y|N+2s

dxdy.
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Lemma 2.4. Let {un} be a bounded sequence in X(Ω). Then up to a subsequence,
still denoted by {un}, there exists u ∈ X(Ω) such that

(i)

lim
n→∞

∫
Ω

|u±n |q dx =
∫

Ω

|u±|q dx;

(ii)

lim
n→∞

∫
Ω

u±n f(x, u±n ) dx =
∫

Ω

u±f(x, u±) dx;

(iii)

lim
n→∞

∫
Ω

F (x, u±n ) dx =
∫

Ω

F (x, u±) dx;

(iv)

lim inf
n→∞

[
−
∫

R2N

u+
n (x)u−n (y)
|x− y|N+2s

dxdy
]
≥ −

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dxdy.

Proof. From the boundedness of sequence {un} in X(Ω), it follows that up to a
subsequence, we may assume that there exists u ∈ X(Ω) such that

un ⇀ u, weakly in X(Ω),

un → u, strongly in Lq(RN ) with q ∈ [2, 2∗s),

un(x)→ u(x), a.e. in RN .

(2.1)

(i) From Lemma 2.1, one has∣∣∣ ∫
Ω

|u±n |q dx−
∫

Ω

|u±|q dx
∣∣∣ ≤ ∫

Ω

|u±n − u±|q dx

≤
∫

Ω

|(un − u)±|q dx

≤
∫

Ω

|un − u|q dx.

Hence, the conclusion (i) can be deduced from (2.1).
(ii) By hypotheses (F1) and (F2), given ε > 0, there exists Cε > 0 such that

|f(x, t)| ≤ ε|t|+ Cε|t|q−1 + ε|t|2
∗
s−1 for all t ∈ R and almost all x ∈ Ω. (2.2)

Thus, {f(x, u±n )} is bounded in L2∗s−1(Ω), and so there exists v ∈ L2∗s−1(Ω) such
that f(x, u±n ) ⇀ v in L2∗s−1(Ω). Because f(x, u±n )→ f(x, u±) a.e. x ∈ Ω, we obtain
f(x, u±n ) ⇀ f(x, u±) in L2∗s−1(Ω). As a result, we deduce that∫

Ω

u±(f(x, u±n )− f(x, u±)) dx→ 0 as n→∞. (2.3)

By Hölder’s inequality and (2.2), we have∣∣∣ ∫
Ω

[u±n f(x, u±n )− u±f(x, u±)]dx
∣∣∣

≤
∫

Ω

|u±n − u±||f(x, u±n )|dx+ |
∫

Ω

u±(f(x, u±n )− f(x, u±)) dx|

≤ ε‖u±n − u±‖2‖u±n ‖2 + Cε‖u±n − u±‖q‖u±n ‖q + ε‖u±n − u±‖2∗s‖u
±
n ‖2∗s

+ |
∫

Ω

u±(f(x, u±n )− f(x, u±)) dx|
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≤ C0[‖u±n − u±‖2 + ‖u±n − u±‖q] + C0ε+ |
∫

Ω

u±(f(x, u±n )− f(x, u±)) dx|.

Taking the limit in the above inequality and using the arbitrariness of ε and (2.3),
conclusion (ii) follows.

(iii) By Hölder’s inequality and (2.3), we have∣∣∣ ∫
Ω

[F (x, u±n )− F (x, u±)] dx
∣∣∣ =

∫
Ω

∫ 1

0

|u±n − u±||f(x, θu±n + (1− θ)u±)|dθ dx

≤ ε‖u±n − u±‖2‖u±n ‖2 + Cε‖u±n − u±‖q‖u±n ‖q
+ ε‖u±n − u±‖2∗s‖u

±
n ‖2∗s

≤ C0[‖u±n − u±‖2 + ‖u±n − u±‖q] + C0ε.

Hence, taking the limit in the above inequality and using the arbitrariness of ε,
conclusion (iii) follows.

(iv) By Fatou’s Lemma, conclusion (iv) follows is trivially. �

Lemma 2.5. There exists C1 > 0 and α > 0 such that
(i) J(u) ≥ (µ2 − 1)‖u‖2X − C1 and ‖u‖X ≥ α, ∀u ∈ N ;
(ii) ‖u±‖X ≥ α, ∀u ∈M.

Proof. (i) For any u ∈ N , by (F3) and (2.2), we have

µJ(u) = µJ(u)− 〈J ′(u), u〉 = (
µ

2
− 1)‖u‖2X +

∫
Ω

[uf(x, u)− µF (x, u)] dx

= (
µ

2
− 1)‖u‖2X +

∫
{|u|≤R}

[uf(x, u)− µF (x, u)] dx

+
∫
{|u|≥R}

[uf(x, u)− µF (x, u)] dx

≥ (
µ

2
− 1)‖u‖2X − C1.

From (F1) and (F2), for any ε > 0, there exists C2 > 0 such that

f(x, t)t ≤ εt2 + C2|t|2
∗
s , for all t ∈ R and a.e. x ∈ Ω. (2.4)

Since 〈J ′(u), u〉 = 0, by Sobolev embedding and (2.4), we have

‖u‖2X =
∫

Ω

uf(x, u) dx ≤ ε
∫

Ω

u2 dx+ C2

∫
Ω

|u|2
∗
s dx ≤ C3[ε‖u‖2X + ‖u‖2

∗
s

X ],

from this inequality, taking ε = 1/(2C3), α = (1/(2C3))2∗s−2, it follows that

‖u‖X ≥ α, ∀u ∈ N .

(ii) Assume that u ∈M, we have that 〈J ′(u), u±〉 = 0. From (iii) of Lemma 2.3,
we have

〈J ′(u±), u±〉 =
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy +
∫

R2N

u−(x)u+(y)
|x− y|N+2s

dxdy < 0.

Thus,

‖u±‖2X <

∫
Ω

u±f(x, u±) dx.

As in the proof of (i), we deduce that ‖u±‖X ≥ α. �
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Lemma 2.6. If {un} is a bounded sequence in M and p ∈ (2, 2∗s), we have

lim inf
n→∞

∫
Ω

|u±n |p dx > 0.

Proof. By (F1) and (F2), for any ε > 0, there exists C4 > 0 such that

tf(x, t) ≤ εt2 + C4|t|p + ε|t|2
∗
s , for all t ∈ R and a.e. x ∈ Ω. (2.5)

Since un ∈M, by Lemma 2.5 and (2.5), we have

α2 ≤ ‖u±‖2X <

∫
Ω

u±n f(x, u±n ) dx ≤ ε
∫

Ω

|u±n |2 dx+C4

∫
Ω

|u±n |p dx+ ε

∫
Ω

|u±n |2
∗
s dx.

From the boundedness of {un}, there is C5 > 0 such that

α2 ≤ εC5 + C4

∫
Ω

|u±n |p dx,

which implies

lim inf
n→∞

∫
Ω

|u±n |p dx > 0.

�

3. Proof of main result

In this section, we devote to proving Theorem 1.2. We denote by c0 the infimum
of J on M; that is,

c0 = inf
u∈M

J(u).

To prove that this infimum can be attained, moreover, it is a critical point of
functional J , we need the following Lemmas.

Lemma 3.1. Let u ∈ X(Ω) with u± 6= 0. Then there are t, θ > 0 such that
〈J ′(tu+ + θu−), u+〉 = 0 and 〈J ′(tu+ + θu−), u−〉 = 0.

Proof. We define a function

γ(t, θ) = (〈J ′(tu+ + θu−), tu+〉, 〈J ′(tu+ + θu−), θu−〉),
obviously, γ ∈ C([0,+∞)× [0,+∞)). Since

〈J ′(tu+ + θu−), tu+〉 = t2‖u+‖2X − 2ts
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy−
∫

Ω

tu+f(x, tu+)dx

and

〈J ′(tu++θu−), θu−〉 = θ2‖u−‖2X−2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy−
∫

Ω

θu−f(x, θu−)dx,

from (2.4), by Sobolev embedding, we obtain

〈J ′(tu+ + θu−), tu+〉 ≥ t2‖u+‖2X − 2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy

− εt2‖u+‖22 − C2t
2∗s‖u+‖2

∗
s

2∗s

≥ t2(1− C6ε)‖u+‖2X − C7t
2∗s‖u+‖2

∗
s

X .

Similarly,

〈J ′(tu+ + θu−), θu−〉 ≥ θ2(1− C6ε)‖u−‖2X − C7θ
2∗s‖u−‖2

∗
s

X .
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Hence, There is r1 > 0 such that

〈J ′(r1u
+ + θu−), r1u

+〉 > 0, ∀s > 0, 〈J ′(tu+ + r1u
−), r1u

−〉 > 0, ∀t > 0. (3.1)

From (F3), there are C8, C9 > 0 such that

tf(x, t) ≥ C8|t|µ − C9, , for all t ∈ R and all x ∈ Ω̄. (3.2)

Indeed, from (F3), we obtain

tf(x, t) ≥ µF (x, t) ≥ C8|t|µ, ∀|t| ≥ R and a.e. x ∈ Ω. (3.3)

From the continuity of tf(x, t), tf(x, t) is bounded on Ω̄ × [−R,R]; that is, there
exists a constant k0 > 0 such that

tf(x, t) ≥ −k0 ≥ C8|t|µ − C8R
µ − k0, ∀|t| ≤ R. (3.4)

Combining (3.3) and (3.4), we obtain that (3.2) holds. Hence, by 3.2), one has

〈J ′(tu+ + θu−), tu+〉 ≤ t2‖u+‖2X − 2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy

− C8t
µ

∫
Ω

|u+|µdx+ C9|Ω|

and

〈J ′(tu+ + θu−), θu−〉 ≤ θ2‖u−‖2X − 2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy

− C8θ
µ

∫
Ω

|u−|µdx+ C9|Ω|,

where |Ω| denotes the Lebesgue measure of Ω. Hence, there is r2 > 0 such that

〈J ′(r2u
+ + θu−), r2u

+〉 < 0, 〈J ′(tu+ + r2u
−), r2u

−〉 > 0, ∀t, θ ∈ [r1, r2]. (3.5)

From (3.1) and (3.5), this Lemma follows applying Miranda’s Theorem [13]. �

For u ∈ X(Ω) with u± 6= 0, we consider the function hu(t, θ) : [0,+∞) ×
[0,+∞)→ R defined as

hu(t, θ) = J(tu+ + θu−)

and gu : [0,+∞)× [0,+∞)→ R2 given by

gu(t, θ) = (
∂hu
∂t

(t, θ),
∂hu
∂θ

(t, θ)) = (〈J ′(tu+ + θu−), u+〉, 〈J ′(tu+ + θu−), u−〉).

By the assumption f ∈ C1, we can deduce that gu is also a C1 map.

Lemma 3.2. Let u ∈M,
(i) hu(t, θ) < hu(1, 1), for all θ, t ≥ 0 and (t, θ) 6= (1, 1);

(ii) det(gu)′(1, 1) > 0.

Proof. (i) Since u ∈M, then 〈J ′(u), u±〉 = 0; that is,

‖u+‖2X − 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy =
∫

Ω

u+f(x, u+) dx,

‖u−‖2X − 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy =
∫

Ω

u−f(x, u−) dx .
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The above two equalities imply that (1, 1) is a critical point of hu. By condition
(F3), it is easy to prove that

lim
|(t,θ)|→∞

hu(t, θ) = −∞.

By the property of continuous function, we can get that hu attains a global maxi-
mum in some (a, b) ∈ [0,+∞)× [0,+∞).

1. We claim that a, b > 0. If b = 0, obviously a 6= 0 and then 〈J ′(au+), au+〉 = 0,
i.e.,

a2‖u+‖2X =
∫

Ω

au+f(x, au+) dx. (3.6)

Since

〈J ′(u+), u+〉 = 〈J ′(u), u+〉+ 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy

= 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy < 0,

we obtain

‖u+‖2X <

∫
Ω

u+f(x, u+) dx. (3.7)

By (3.6) and (3.7), one has

(1− 1
a2

)‖u+‖2X <

∫
Ω

(u+f(x, u+)
(u+)2

− au+f(x, au+)
(au+)2

)
(u+)2 dx.

From (F4), we can infer that a ≤ 1. Thus, by Remark 1.1, we have

hu(a, 0) = J(au+) = J(au+)− 1
2
〈J ′(au+), au+〉

=
1
2

∫
Ω

[au+f(x, au+)− 2F (x, au+)] dx

≤ 1
2

∫
Ω

[u+f(x, u+)− 2F (x, u+)] dx

≤ 1
2

∫
Ω

[u+f(x, u+)− 2F (x, u+)] dx

+
1
2

∫
Ω

[u−f(x, u−)− 2F (x, u−)] dx

=
1
2

∫
Ω

[uf(x, u)− 2F (x, u)]

= J(u)− 1
2
〈J ′(u), u〉 = hu(1, 1).

This contradicts tht (a, b) is a global maximum point for hu. Similarly, we can show
that a 6= 0, and the proof of claim is complete.

2. We claim that a, b ≤ 1. Since (hu)′(a, b) = 0, we have

a2‖u+‖2X − 2ab
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy =
∫

Ω

au+f(x, au+) dx,

b2‖u−‖2X − 2ab
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy =
∫

Ω

bu−f(x, bu−) dx.
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Without loss of generality, we suppose that a ≥ b. Hence,

a2‖u+‖2X − 2a2

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dx dy ≥
∫

Ω

au+f(x, au+) dx.

Note that the assumption 〈J ′(u), u+〉 = 0, we deduce that

0 ≥
∫

Ω

(au+f(x, au+)
(au+)2

− u+f(x, u+)
(u+)2

)
(u+)2 dx.

The condition (F4) implies that a ≤ 1 and so the proof of the claim is complete.
To conclude the proof of (i), we only need to show that hu does not have a

global maximum in [0, 1] × [0, 1]\{(1, 1)}. If not, we assume that (a, b) is a global
maximum of hu in [0, 1]× [0, 1]\{(1, 1)}. From definition of hu and Remark 1.1, we
have

hu(a, b) = J(au+ + bu−)− 1
2

((hu)′(a, b), (a, b))

= J(au+ + bu−)− 1
2
〈J ′(au+ + bu−), au+〉 − 1

2
〈J ′(au+ + bu−), bu−〉

=
a2

2
‖u+‖2X +

b2

2
‖u−‖2X − 2ab

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dx dy

−
∫

Ω

F (x, au+) dx−
∫

Ω

F (x, bu−) dx− a2

2
‖u+‖2X −

b2

2
‖u−‖2X

+ 2ab
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy +
1
2

∫
Ω

au+f(x, au+) dx

+
1
2

∫
Ω

bu−f(x, bu−) dx

=
1
2

∫
Ω

[au+f(x, au+)− 2F (x, au+) dx

+
1
2

∫
Ω

[bu−f(x, bu−)− 2F (x, bu−) dx

<
1
2

∫
Ω

[u+f(x, u+)− 2F (x, u+) dx+
1
2

∫
Ω

[u−f(x, u−)− 2F (x, u−) dx

=
1
2

∫
Ω

[uf(x, u)− 2F (x, u)] dx = hu(1, 1).

Hence, hu does not have a global maximum in [0, 1]× [0, 1]\{(1, 1)}. Therefore, the
proof of (i) is complete.

(ii) Since

∂2hu
∂t2

(t, θ) = ‖u+‖2X −
∫

Ω

f ′(x, tu+)(u+)2 dx,

∂2hu
∂θ2

(t, θ) = ‖u−‖2X −
∫

Ω

f ′(x, θu−)(u−)2 dx,

∂2hu
∂t∂θ

(t, θ) = −2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy,

by a simple computation, observing that u ∈M and by Remark 1.1, we obtain

det(gu)′(1, 1)
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=
[
‖u+‖2X −

∫
Ω

f ′(x, u+)(u+)2 dx
][
‖u−‖2X −

∫
Ω

f ′(x, u−)(u−)2 dx
]

− 4
(∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy
)2

=
[ ∫

Ω

(
u+f(x, u+)− f ′(x, u+)(u+)2

)
dx+ 2

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dxdy
]

×
[ ∫

Ω

(
u−f(x, u−)− f ′(x, u−)(u−)2

)
dx+ 2

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dxdy
]

− 4
(∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy
)2

> 0.

�

Corollary 3.3. Suppose that u ∈ X(Ω) satisfies u± 6= 0 and 〈J ′(u), u±〉 ≤ 0. Then
there are t, s ∈ [0, 1] such that tu+ + θu− ∈M.

Proof. From (F3), it is easy to deduce that

lim
|(t,θ)|→∞

hu(t, θ) = −∞.

We assume that hu attain a global maximum in some (a, b) ∈ [0,+∞) × [0,+∞)
and then (hu)′(a, b) = 0, we have

a2‖u+‖2X − 2ab
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy =
∫

Ω

au+f(x, au+) dx,

b2‖u−‖2X − 2ab
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy =
∫

Ω

bu−f(x, bu−) dx.

If a ≥ b, then

a2‖u+‖2X − 2a2

∫
R2N

u+(x)u−(y)
|x− y|N+2s

dx dy ≥
∫

Ω

au+f(x, au+) dx.

Note that by the assumption 〈J ′(u), u+〉 ≤ 0, we deduce

0 ≥
∫

Ω

(au+f(x, au+)
(au+)2

− u+f(x, u+)
(u+)2

)
(u+)2 dx.

The condition (F4) implies that a ≤ 1 and so the proof is complete. �

Proof of Theorem 1.2. Let {un} be a sequence in M such that

lim
n→∞

J(un) = c0.

From Lemma 2.5 (i), {un} is bounded in X(Ω). From Lemma 2.6, it follows that
u± 6= 0. Then, by Lemma 3.1, there are t, θ > 0 such that

〈J ′(tu+ + θu−), u+〉 = 0, 〈J ′(tu+ + θu−), u−〉 = 0. (3.8)

Next, we show that t, θ ≤ 1. Since 〈J ′(un), u±n 〉 = 0; that is,

‖u+
n ‖2X − 2

∫
R2N

u+
n (x)u−n (y)
|x− y|N+2s

dxdy =
∫

Ω

u+
n f(x, u+

n ) dx,

‖u−n ‖2X − 2
∫

R2N

u+
n (x)u−n (y)
|x− y|N+2s

dx dy =
∫

Ω

u−n f(x, u−n ) dx .
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From Lemma 2.4, by the weak semi-continuity of norm function in Banach space,
we obtain

‖u+‖2X − 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy ≤
∫

Ω

u+f(x, u+) dx,

and

‖u−‖2X − 2
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy ≤
∫

Ω

u−f(x, u−) dx; (3.9)

that is,

〈J ′(u), u+〉 ≤ 0, 〈J ′(u), u−〉 ≤ 0. (3.10)

From (3.8), it follows that

t2‖u+‖2X − 2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dx dy =
∫

Ω

tu+f(x, tu+) dx

and

θ2‖u−‖2X − 2tθ
∫

R2N

u+(x)u−(y)
|x− y|N+2s

dxdy =
∫

Ω

θu−f(x, θu−) dx. (3.11)

Without loss of generality, we can assume that θ ≥ t. From (3.9) and (3.11), we
deduce that

0 ≥
∫

Ω

(θu−f(x, θu−)
(θu−)2

− u−f(x, u−)
(u−)2

)
(u−)2

)
dx

which implies that θ ≤ 1 (using (F4)).
Next, we show that J(tu+ + θu−) = c0. By (3.8) and u± 6= 0, we see that

tu+ + θu− ∈M. Thus, by Remark 1.1, one has

c0 ≤ J(tu+ + θu−) = J(tu+ + θu−)− 1
2
〈J ′(tu+ + θu−), tu+ + θu−〉

= J(tu+)− 1
2
〈J ′(tu+), tu+〉+ J(θu−)− 1

2
〈J ′(θu−), θu−〉

≤ J(u+)− 1
2
〈J ′(u+), u+〉+ J(u−)− 1

2
〈J ′(u−), u−〉

= lim
n→∞

(
J(un)− 1

2
〈J ′(un), un〉

)
= lim
n→∞

J(un) = c0.

Consequently, we have proved that there exists tu+ + θu− ∈M such that J(tu+ +
θu−) = c0. Hereafter, we denote w = tu+ + θu−.

As in the proof of [1, Theorem 1.3], by using Lemma 3.2, we conclude that w is
a critical point of J on X(Ω). �
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[2] D. Applebaum; Lévy process -from probability to finance and quantum groups, Notices Amer.

Math. Soc. 51: 1336–1347, 2004.
[3] B. Barrios, E. Colorado, A. de Pablo, U. Sánchez; On some critical problems for the fractional

Laplacian operator, J. Differential Equations 252: 6133–6162, 2012.

[4] T. Bartsch, T. Weth; Three nodal solutions of singularly perturbed elliptic equations on
domains without topology, Ann. I. H. Poincaré-AN, 22: 259–281, 2005.
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