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LOCAL WELL-POSEDNESS AND BLOW-UP OF SOLUTIONS
FOR WAVE EQUATIONS ON SHALLOW WATER WITH

PERIODIC DEPTH

LILI FAN, HONGJUN GAO

Abstract. In this article, we consider a nonlinear evolution equation for sur-

face waves in shallow water over periodic uneven bottom. The local well-

posedness in Sobolev space Hs(S) with s > 3/2 is established by applying
Kato’s theory. Then a blow up criterion is determined in Hs(S), s > 3/2.

Finally, some blow-up results are given for a simplified model.

1. Introduction

This article concerns an evolution equation which models the propagation of
surface waves in shallow water over uneven bottom [17]:

(1− µm∂2
x)ut + cux + kcxu+

∑
j∈J

εjfju
jux + µguxxx

= εµ[h1uuxxx + ∂x(h2u)uxx + ux∂
2
x(h2u)],

(1.1)

where u(t, x) is the free surface elevation, m ∈ R+, k ∈ R, J is a finite subset of Z+

and c =
√

1− βb(α) (b(α)(x) = b(αx) is the bottom function), fj = fj(c), g = g(c),
h1 = h1(c) and h2 = h2(c) are smooth functions of c. In order to give a detailed
interpretation of the above equation, we introduce the following quantities: a is
the order of amplitude of the waves; λ is the wave-length of the waves; b0 is the
order of amplitude of the variation of the bottom topography; λ0 is the wavelength
of the bottom variations; h0 is the reference depth. Then the four dimensionless
parameters in (1.1) are:

ε =
a

h0
, µ =

h2
0

λ2
, α =

λ

λ0
, β =

b0
h0
.

Since µ is small, we assume that |µm| < 1.
Note that (1.1) is related to Constantin-Lannes equations [9], Camassa-Holm

(CH) equation [2] and Degasperis-Procesi (DP) equation [10].
(I) From [17], choosing

m =
1
12
, k =

1
2
, J = {1, 2, 3},
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f1(c) =
3
2c
, f2(c) = − 3

8c3
, f3(c) =

3
16c5

,

g(c) = − 1
12
c5 +

1
12
c5 +

1
12
c, h1(c) = −1

6
c3 − 1

8c
,

h2(c) = − 5
48
c3 − 3

16c
, α = ε, β = µ3/2,

and neglecting the O(µ2) terms, Equation (1.1) reads

ut + cux +
1
2
cxu+

3
2
εuux −

3
8
ε2u2ux +

3
16
ε3u3ux +

µ

12
(uxxx − uxxt)

= − 7
24
εµ(uuxxx + 2uxuxx).

(1.2)

If we take b = 0 (i.e., we consider a flat bottom) in (1.2), then one recovers the
Constantin-Lannes equations:

ut + ux +
3
2
εuux −

3
8
ε2u2ux +

3
16
ε3u3ux +

µ

12
(uxxx − uxxt)

= − 7
24
εµ(uuxxx + 2uxuxx).

(1.3)

(II) From [17], choosing c = 1 (i.e., b = 0):

m = −B, k =
3
2
, J = {1}, f1(c) =

3
2
,

g(c) = A, h1(c) = E, h2(c) = F,

where A, B, E, F , are constants, one gets the class of equations:

ut + ux +
3
2
εuux + µ(Auxxx +Buxxt) = εµ(Euuxxx + Fuxuxx). (1.4)

Furthermore, as in [9], (i) if we take:

A 6= B, B = −2E, F = 2E, U(x, t) =
1
a
u(
x

γ
+
ν

δ
t,
t

δ
),

with k̂ 6= 0, a = 2
εk̂

(1 − ν), γ2 = − 1
Bµ , ν = A

B , and δ = γ

k̂
(1 − ν), then we recover

the CH equation

Ut + k̂Ux + 3UUx − Utxx = 2UxUxx + UUxxx.

(ii) If we take:

A 6= B, B = −3
8
E, F = 3E, U(x, t) =

1
a
u(
x

γ
+
ν

δ
t,
t

δ
),

with k̂ 6= 0, a = 8
3εk̂

(1− ν), γ2 = − 1
Bµ , ν = A

B , and δ = γ

k̂
(1− ν), then we recover

the DP equation

Ut + k̂Ux + 4UUx − Utxx = 3UxUxx + UUxxx.

As using the governing equations for water waves to study the property of waves
has proved intractable, many approximate model equations have been proposed,
which are based on linear theory and therefore inadequate to explain potential
nonlinear behaviours like wave breaking (meaning solutions that remain bounded
while its slope becomes unbounded in finite time) or solitary waves. Hence many
competing nonlinear models have been suggested to manage these phenomena. One
of the most prominent examples is the CH equation, which has been studied exten-
sively in the last twenty years because of its many remarkable properties: infinity
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of conservation laws and complete integrability [2, 14], existence of peaked solitons
and multi-peakons [1, 2], well-posedness and breaking waves [4, 6, 7, 8], and so on.

The relevance of the CH equation as a model for the propagation of shallow
water waves was discussed by Johnson [18]. Later, Constantin and Lannes derived
the evolution equation (1.3) for the free surface which approximates the governing
equation to the same order as the CH equation, and they also proved that the
Cauchy problem on the line associated to (1.3), is locally well-posed [9]. Employing
a semigroup approach due to Kato [19], Duruk showed that this result also holds
true for a larger class of initial data [11], as well as for the corresponding spatially
periodic Cauchy problem [12]. Shortly afterwards, Mi and Mu [23] discussed the
local well-posedness of (1.3) in Besov spaces Bsp,r, p, r ∈ [1,+∞], s > max{ 3

2 , 1+ 1
p}

by using Littlewood-Paley decomposition and transport equation theory, along with
a study about analytic solutions and persistence properties of strong solutions.
Besides, the equation (1.3) captures the non-linear phenomenon of wave breaking [9,
12]. This model equation also possesses solitary travelling wave solutions decaying
at infinity [16] and their orbital stability has been studied in [13].

Following the ideas presented in [9], Samer Israwi derived equation (1.1), a model
describing water waves over uneven bottoms [17]. Local well-posedness result of the
initial value problem associated to (1.1) was first proved by Samer Israwi for initial
data u0 ∈ Hs(R) with s > 5/2 [17]. In this article, we obtain the local well-
posedness for the Cauchy problem corresponding to (1.1) for a class of initial data
with less regular data u0 ∈ Hs(S), s > 3/2. The key point to get this desirable
result is to transform (1.1) into the type of transport equation (3.4), which enables
us to use Kato’s theory. Furthermore, the blow-up criterion for periodic solutions
of (1.1) is also presented in our paper. As for (1.2), a simplification of (1.1), we
present the blow-up criterion in Hs(S) with s > 3/2, an improvement compared
with the parallel result in [17]. Besides, we give a sufficient condition (4.10) which
ensures the occurrence of wave-breaking.

This article is organized as follows. In Section 2, we state the theory Kato
proposed. In Section 3, we establish local well-posedness for periodic solutions
of the Cauchy problem corresponding to (1.1). In Section 4, we investigate the
wave-breaking phenomena of (1.1) and (1.2).
Notation. In this article, a . b means that there is a uniform constant C that may
be different on different lines, such that a ≤ Cb. All of different positive constants
might be denoted by the uniform constant C and Cκ denotes a constant related to
κ.

2. Kato’s theory

In this section, we state Kato’s theorem in the form suitable for our purpose. We
begin by fixing some notation. Let A denotes an operator, we denote by D(A) the
domain of the operator A. [A,B] denotes the commutator of two linear operators
A and B. ‖ · ‖X denotes the norm of the Banach space X.

Consider the abstract quasilinear equation

dv

dt
+A(t, v)v = f(t, v), t ≥ 0,

v(0) = v0.
(2.1)
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Let X and Y be Hilbert spaces, such that Y is continuously and densely embedded
in X, and let Q : Y → X be a topological isomorphism. Let L(Y,X) denotes the
space of all bounded linear operators from Y to X (L(X), if X = Y ).

Assume the following:
(i) For each t ≥ 0, A(t, y) ∈ L(Y,X) for y ∈ X with

‖(A(t, y)−A(t, z))w‖X ≤ µ1‖y − z‖X‖w‖Y , t ≥ 0, y, z, w ∈ Y,

and A(t, y) ∈ G(X, 1, β) (i.e., A(t, y) is quasi-m-accretive), uniformly on bounded
sets in Y .

(ii) QA(t, y)Q−1 = A(t, y) + B(t, y), where B(t, y) ∈ L(X) is bounded for each
t ≥ 0, uniformly on bounded sets in Y . Moreover,

‖(B(t, y)−B(t, z))w‖X ≤ µ2‖y − z‖Y ‖w‖X , t ≥ 0, y, z ∈ Y, w ∈ X.

(iii) For each y ∈ Y , t 7→ f(t, y) is continuous on [0,+∞). For each t ≥ 0,
f(t, y) : Y → Y and extends also to a map from X into X. f is uniformly bounded
on bounded sets in Y , and

‖(f(t, y)− f(t, z))‖Y ≤ µ3‖y − z‖Y , t ≥ 0, y, z ∈ Y,
‖(f(t, y)− f(t, z))‖X ≤ µ4‖y − z‖X , t ≥ 0, y, z,∈ X.

Here µ1, µ2, µ3, and µ4 are constants depending only on max{‖y‖Y , ‖z‖Y }.

Theorem 2.1 ([19]). Assume (i)–(iii) hold. Given v0 ∈ Y , there is a maximal
T > 0 depending only on ‖v0‖Y and a unique solution v to (2.1), such that

v = v(.; v0) ∈ C([0, T );Y ) ∩ C1([0, T );X).

Also, the map v0 7→ v(.; v0) is continuous from Y to C([0, T );Y ) ∩ C1([0, T );X).

3. Local well-posedness

In this section, we will establish the local existence for periodic solutions to the
Cauchy problem of (1.1) in Hs(S) with s > 3/2 with S = R/Z (the circle of unit
length) by applying Kato’s semigroup theorem. In sequence, ‖ ·‖s and (·, ·)s denote
the norm and the inner product of Hs(S) respectively, and b ∈ H∞(S).

First, we rewrite (1.1) in the form

0 = (1− µm∂2
x)ut −

1
m

(1− µm∂2
x)(gux) +

ε

m
(1− µm∂2

x)(h1uux) + kcxu

+ (
g

m
+ c− µgxx)ux − 2µgxuxx + (εµ∂2

xh1 −
ε

m
h1 − εµ∂2

xh2)uux

+
∑
j∈J

εjfju
jux + εµ(2∂xh1 − 2∂xh2)u2

x + εµ(2∂xh1 − ∂xh2)uuxx

+ εµ(3h1 − 2h2)uxuxx.

(3.1)

Then this equation is equivalent to

ut + (− 1
m
g∂x +

ε

m
h1u∂x)u = F (u), (3.2)
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where

F (u) = −(1− µm∂2
x)−1[kcxu+ (

g

m
+ c− µgxx)ux − 2µgxuxx

+ (εµ∂2
xh1 −

ε

m
h1 − εµ∂2

xh2)uux +
∑
j∈J

εjfju
jux

+ εµ(2∂xh1 − 2∂xh2)u2
x + εµ(2∂xh1 − ∂xh2)uuxx + εµ(3h1 − 2h2)uxuxx]

:= −(1− µm∂2
x)−1f(u).

(3.3)
Now we present a local well-posedness result for the system

ut + (− 1
m
g∂x +

ε

m
h1u∂x)u = F (u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
u(t, x+ 1) = u(t, x), t > 0, x ∈ R,

b(x+ 1) = b(x), x ∈ R.

(3.4)

Theorem 3.1. Given u0 ∈ Hs(S), s > 3/2, there exists a maximal T = T (u0) > 0
and a unique solution u(t, x) to (3.4), such that

u = u(.;u0) ∈ C ([0, T );Hs(S)) ∩ C1
(
[0, T );Hs−1(S)

)
.

Moreover, the solution depends continuously on the initial data; i.e., the mapping

u0 7→ u(.;u0) : Hs(S)→ C ([0, T );Hs(S)) ∩ C1
(
[0, T );Hs−1(S)

)
is continuous.

To prove our results, we apply Theorem 2.1 with Y = Hs(S), X = Hs−1(S),
s > 3/2, Q = Λ = (1 − ∂2

x)1/2. Obviously, Q is an isomorphism of Y onto X.
First of all, we need the following lemmas ensuring the validity of the assumptions
(i)–(iii). For convenience, we may neglect the constant coefficients of the terms
appearing in the evolution equation.

Lemma 3.2. Let A(u) = (g − h1u)∂x with u ∈ Hs(S) and s > 3/2. Then for each
t ≥ 0, A(u) ∈ L(Hs(S), Hs−1(S)) for u ∈ Hs(S). Moreover,

‖(A(y)−A(z))w‖s−1 ≤ µ1‖y − z‖s−1‖w‖s, t ≥ 0, y, z, w ∈ Hs(S).

Proof. Let y, z, w ∈ Hs(S), s > 3/2. We have

‖(A(y)−A(z))w‖s−1 ≤ ‖h1(y − z)wx‖s−1

≤ ‖h1(y − z)‖s−1‖wx‖s−1

≤ ‖h1‖s−1‖(y − z)‖s−1‖w‖s
≤ µ1‖(y − z)‖s−1‖w‖s,

where µ1 = ‖h1‖s−1. �

Next, we prove that A(u) ∈ G(Hs−1(S), 1, β). First, we need the following
lemmas.

Lemma 3.3 ([19]). Let k, l be real numbers, such that −k < l ≤ k. Then

‖fg‖l ≤ C‖f‖k‖g‖l, if k >
1
2
,

where C is a positive constant depending on k, l.
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Lemma 3.4 ([20]). Let f ∈ Hr, r > 3/2. Then

‖Λ−k[Λk+l+1,Mf ]Λ−l‖L(L2(S)) ≤ C‖f‖r, |k|, |l| ≤ r − 1,

where Mf is the operator of multiplication by f and C is a constant depending only
on k, l.

Lemma 3.5 ([24]). Let Z and X be two Banach spaces, such that X be contin-
uously and densely embedded in Z. Let −A be the infinitesimal generator of the
C0-semigroup T (t) on Z and let Q be an isomorphism from X onto Z. Then X is
−A-admissible [i.e., T (t)X ⊂ X; for all t ≥ 0, and the restriction of T (t) to X is a
C0-semigroup on X] if and only if −A1 = −QAQ−1 is the infinitesimal generator
of the C0-semigroup T1(t) = QT (t)Q−1 on Z. Moreover, if X is −A-admissible,
then the part of −A in X is the infinitesimal generator of the restriction of T (t) to
X.

Lemma 3.6. The operator A(u) = (g − h1u)∂x, with u ∈ Hs(S), s > 3/2, belongs
to G(Hs−1(S), 1, β).

Proof. Because Hs−1(S) is a Hilbert space, A(u) belongs to G(Hs−1(S), 1, β) if and
only if there is a real number, such that

(1) (A(u)y, y)s−1 ≥ −β‖y‖2s−1, y ∈ Hs−1(S),
(2) −A(u) is the infinitesimal generator of a C0-semigroup on Hs−1(S).

First, let us prove (1). Since u ∈ Hs(S), s > 3/2, it follows that u and ux belong
to L∞(S), and ‖u‖L∞(S), ‖ux‖L∞(S) ≤ ‖u‖s. Note that

Λs−1((g − h1u)∂xy) = [Λs−1, g − h1u]∂xy + (g − h1u)Λs−1∂xy

= [Λs−1, g − h1u]∂xy + (g − h1u)∂xΛs−1y.

Then we have

(A(u)y, y)s−1 = ([Λs−1, g − h1u]∂xΛ1−sΛs−1y,Λs−1y)0

− 1
2

(∂x(g − h1u)Λs−1y,Λs−1y)0

≤ ‖[Λs−1, g − h1u]Λ−(s−2)‖L(L2(S))‖Λs−1y‖2L2(S)

+ ‖gx − ∂xh1u+ h1ux‖L(L∞(S))‖Λs−1y‖2L2(S)

≤ C‖g − h1u‖s‖y‖2s−1 + C‖u‖s‖y‖2s−1

≤ C‖u‖s‖y‖2s−1,

where we have applied Lemma 3.4 with k = 0, l = s− 2. Let β = C‖u‖s. Then

(A(u)y, y)s−1 ≥ −β‖y‖2s−1.

Next, we prove (2). Let Q = Λs−1. Note that Q is an isomorphism of Hs−1(S)
onto L2(S) and that Hs−1(S) is continuously and densely embedded in L2(S) as
s > 3/2. Define

A1(u) := QA(u)Q−1 = Λs−1A(u)Λ1−s, B1(u) = A1(u)−A(u).

Let y ∈ L2(S) and u ∈ Hs(S), s > 3/2. Then we have

‖B1(u)y‖0 = ‖[Λs−1, A]Λ1−sy‖0
≤ ‖[Λs−1, g − h1u]Λ2−s‖L(L2(S))‖Λ−1∂xy‖0
≤ C‖u‖s‖y‖0 ≤ C‖y‖0.
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The above inequality implies B1(u) ∈ L(L2(S)).
Note that A1(u) = A(u)+B1(u). By a perturbation theorem for semigroups [24,

Sec. 5.2 Theorem 2.3], we obtain A1 ∈ G(L2(S), 1, β′) provided A ∈ G(L2(S), 1, β′).
Applying Lemma 3.5 with X = Hs−1(S), Z = L2(S) and Q = Λs−1, we conclude
that Hs−1(S) is −A(u)-admissible. Therefore, −A(u) is the infinitesimal generator
of a C0-semigroup on Hs−1(S). This will complete the proof of Lemma 3.6. �

To complete the proof of Lemma 3.6, it remains to prove A ∈ G(L2(S), 1, β′).

Lemma 3.7. The operator A(u) = (g − h1u)∂x, with u ∈ Hs(S), s > 3/2, belongs
to G(L2(S), 1, β′).

Proof. Because L2(S) is a Hilbert space, A(u) ∈ G(L2(S), 1, β′) [21] if and only if
there is a real number β′, such that

(1) (A(u)y, y)0 ≥ −β′‖y‖20, y ∈ L2(S),
(2) the range of A+ λ is all of X, for some (or all) λ > β′.

First, let us prove (1),

(A(u)y, y)0 = ((g − h1u)∂xy, y)0

= −1
2

(∂x(g − h1u)y, y)0

≤ 1
2
‖ux‖L∞(S)‖y‖20 ≤ C‖u‖s‖y‖20.

Setting β′ = C‖u‖s, we have (A(u)y, y)0 ≥ −β′‖y‖20.
Next, we prove (2). Because A(u) is a closed operator and satisfies (1), it follows

that (λI + A) has closed range in L2(S) for all λ > β′. Thus, it suffices to show
(λI +A) has dense range in L2(S) for all λ > β′.

Given u ∈ Hs(S), s > 3/2, y ∈ L2(S), we obtain

∂x(g − h1u)y = (gx − ∂xh1u− h1ux)y ∈ L2(S), y ∈ L2(S).

Then

D(A) = {y ∈ L2(S), (g − h1u)∂xy ∈ L2(S)}
= {z ∈ L2(S),−∂x((g − h1u)z) ∈ L2(S)}
= D(A∗).

Assume that the range of (λI +A) is not all of L2(S). Then there exists z ∈ L2(S),
z 6= 0, such that ((λI + A)y, z)0 = 0 for all y ∈ D(A). Since H1(S) ⊂ D(A),
we have that D(A) = D(A∗) is dense in L2(S). This means that there exists a
sequence zk ∈ D(A∗) which converges to an element z ∈ L2(S). Recalling that
D(A∗) is closed, we find that z ∈ D(A∗) and λz + A∗z = 0 in L2(S). Note that
D(A) = D(A∗). Multiplying by z and then integrating by parts, we obtain

0 = ((λI +A∗)z, z)0 = (λz, z)0 + (z,Az)0 ≥ (λ− β′)‖z0‖20, λ > β′.

Thus, we obtain z = 0. This contradicts the previous assumption z 6= 0 and
completes the proof. �

Lemma 3.8. B(u) = ΛA(u)Λ−1−A = [Λ, A(u)]Λ−1 ∈ L(Hs−1(S)), for u ∈ Hs(S).
Moreover,

‖(B(y)−B(z))w‖s−1 ≤ µ2‖y − z‖s‖w‖s−1, y, z ∈ Hs(S), w ∈ Hs−1(S).
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Proof.

B(u) = ΛA(u)Λ−1 −A(u) = ΛA(u)Λ−1 −A(u)ΛΛ−1 = [Λ, A(u)]Λ−1,

and for y, z ∈ Hs(S), w ∈ Hs−1(S), we have

‖(B(y)−B(z))w‖s−1 = ‖Λs−1[Λ, (A(y)−A(z)]Λ−1w‖0
≤ ‖Λs−1[Λ, h1(y − z)]Λ−1∂xw‖0
≤ ‖Λs−1[Λ, h1(y − z)]Λ1−s‖L(L2(S))‖Λs−2∂xw‖0
≤ ‖h1(y − z)‖s‖w‖s−1

≤ µ2‖(y − z)‖s‖w‖s−1.

Taking z = 0 in the above inequality, we obtain B(u) ∈ L(Hs−1(S)), t ≥ 0,
u ∈ Hs(S). This completes the proof. �

Lemma 3.9. The function F (u) defined by (3.3) is uniformly bounded on bounded
sets in Hs(S), and for all s > 3/2, it satisfies

(1) ‖F (y)− F (z)‖s ≤ µ3‖y − z‖s,
(2) ‖F (y)− F (z)‖s−1 ≤ µ4‖y − z‖s−1.

Proof. Observe that F (u) = −(1− µm∂2
x)−1f(u) and

‖(1− µm∂2
x)−1f(u)‖s =

( +∞∑
k=−∞

(1 + |k|2)s|F((1− µm∂2
x)−1f)(k)|2

)1/2

=
( +∞∑
k=−∞

(1 + |k|2)s|F [F−1((1 + µm|k|2)−1Ff)(k)]|2
)1/2

=
( +∞∑
k=−∞

(1 + |k|2)s|(1 + µm|k|2)−1f̂(k)|2
)1/2

=
( +∞∑
k=−∞

(1 + |k|2)s(1 + µm|k|2)−2|f̂(k)|2
)1/2

=
( +∞∑
k=−∞

(1 + |k|2)s(µm)−2(
1
µm

+ |k|2)−2|f̂(k)|2
)1/2

≤ C
( +∞∑
k=−∞

(1 + |k|2)s(1 + |k|2)−2|f̂(k)|2
)1/2

= C‖f(u)‖s−2,

where we used that |µm| < 1. Thus,

‖F (y)− F (z)‖s−1

≤ ‖f(y)− f(z)‖s−3

≤ ‖kcx(y − z)‖s−3 + ‖( g
m

+ c− µgxx)(yx − zx)‖s−3

+ ‖2µgx(yxx − zxx)‖s−3 + ‖(εµ∂2
xh1 −

ε

m
h1 − εµ∂2

xh2)(yyx − zzx)‖s−3

+ ‖
∑
j∈J

εjfj(yjyx − zjzx)‖s−3 + ‖εµ(2∂xh1 − 2∂xh2)(y2
x − z2

x)‖s−3
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+ ‖εµ(2∂xh1 − ∂xh2)(yyxx − zzxx)‖s−3

+ ‖εµ(3h1 − 2h2)(yxyxx − zxzxx)‖s−3.

Now, we estimate each of the items above.

‖kcx(y − z)‖s−3 . ‖y − z‖s−3 . ‖y − z‖s−1,

‖( g
m

+ c− µgxx)(yx − zx)‖s−3 . ‖y − z‖s−2 . ‖y − z‖s−1,

‖2µgx(yxx − zxx)‖s−3 . ‖y − z‖s−1,

‖(εµ∂2
xh1 −

ε

m
h1 − εµ∂2

xh2)(yyx − zzx)‖s−3 . ‖y2 − z2‖s−2

. ‖y + z‖s−1‖y − z‖s−2

. (‖y‖s−1 + ‖z‖s−1)‖y − z‖s−1,

‖
∑
j∈J

εjfj(yjyx − zjzx)‖s−3 . ‖
∑
j∈J

(yj+1 − zj+1)‖s−2

.
∑
j∈J
‖yj+1 − zj+1‖s−2

.
∑
j∈J
‖y − z‖s−2‖yj + yj−1z + . . .+ zj‖s−1

≤ C(‖y‖s−1,‖z‖s−1)‖y − z‖s−1,

‖εµ(2∂xh1 − 2∂xh2)(y2
x − z2

x)‖s−3 . ‖∂x(y + z)∂x(y − z)‖s−3

. ‖∂x(y + z)‖s−1‖∂x(y − z)‖s−3

. (‖y‖s + ‖z‖s)‖y − z‖s−1,

‖εµ(3h1 − 2h2)(yxyxx − zxzxx)‖s−3 . ‖y2
x − z2

x‖s−2

. (‖y‖s + ‖z‖s)‖y − z‖s−1,

‖εµ(2∂xh1 − ∂xh2)(yyxx − zzxx)‖s−3 . ‖(yyx)x − y2
x − (zzx)x + z2

x‖s−3

. ‖yyx − zzx‖s−2 + ‖y2
x − z2

x‖s−3

. ‖y2 − z2‖s−1 + ‖y2
x − z2

x‖s−3

. (‖y‖s−1 + ‖z‖s−1 + ‖y‖s + ‖z‖s)‖y − z‖s−1,

here we have used the imbedding property of Sobolev spaces Hs(S) (i.e., if s1 ≤ s2,
then ‖ · ‖s1 ≤ ‖ · ‖s2), and Cauchy-Schwarz inequality. So, we obtain

‖F (y)− F (z)‖s−1 ≤ µ4‖y − z‖s−1.

Similarly, we can obtain ‖F (y) − F (z)‖s ≤ µ3‖y − z‖s. This completes the
proof. �

Proof of Theorem 3.1. Combining Theorem 2.1 and Lemmas 3.2, 3.6, 3.8, 3.9, we
have the proof of Theorem 3.1. �

Theorem 3.10. The existence time T > 0 in Theorem 3.1 can be chosen indepen-
dently of s in the following sense. If u ∈ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S))
is a solution of (3.4), and if u0 ∈ Hs′(S) for some s′ 6= s, s′ > 3/2, then
u ∈ C([0, T );Hs′(S)) ∩ C1([0, T );Hs′−1(S)) with the same T . In particular, if
u0 ∈ H∞(S), then u ∈ ([0, T );H∞(S)).
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Proof. If s′ < s, the result follows from the uniqueness of the solution guaranteed
by Theorem 3.1 and Hs(S) ⊂ Hs′(S). So it suffices to consider the case s′ > s. We
suppose that s < s′ ≤ s + 1, otherwise if s′ > s + 1, we can obtain the result by
iterated application of the argument below.

For u ∈ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)) and u0 ∈ Hs′(S), set y(t) =
(1− µm∂2

x)u(t, x), and

A(t)y = ∂x((− 1
m
g +

ε

m
h1u)y),

B(t)y = [
1
m
gx −

ε

m
(∂x(h1u) + ∂x(h2u) + h2ux)]y,

f(t) = −cux − kcxu−
∑
j∈J

εjfju
jux −

1
m
gux +

ε

m
h1uux

+ εµ∂2
xh2uux + 2εµ∂xh2u

2
x +

ε

m
∂x(h2u)u+

ε

m
h2uux.

From (3.4) we obtain the abstract evolution equation

dy

dt
+A(t)y +B(t)y = f(t), y(0) = u(0)− µm∂2

xu(0).

Since u ∈ C([0, T );Hs(S)) and u0 ∈ Hs′(S), it follows that y ∈ C([0, T );Hs−2(S))
and y(0) ∈ Hs′−2(S). It is our purpose to show y ∈ C([0, T );Hs′−2(S)) for the same
T , which implies that u ∈ C([0, T );Hs′(S)), because (1−µm∂2

x) is an isomorphism
form Hs′(S) to Hs′−2(S) (|µm| < 1). This will complete the proof.

Following the argument in [20], it is easy to see that the family A(t) generates
a unique evolution operator U(t, τ) associated with the space X = H l(S) and
Y = Hk(S), where −s ≤ l ≤ s−2, 1−s ≤ k ≤ s−1, and k ≥ l+1. Accordingly, an
evolution operator U(t, τ) for the family A(t) exists and is unique. In particular,
U(t, τ) maps Hr(S) into itself for −s ≤ r ≤ s− 1.

Choose X = Hs−3(S) and Y = Hs−2(S). Obviously,

y ∈ C([0, T );Hs−2(S)) ∩ C1([0, T );Hs−3(S)).

By the properties of the evolution operator U(t, τ), we obtain

d

dτ
(U(t, τ)y(τ)) = U(t, τ)(−B(τ)y(τ) + f(τ)).

Integrating with respect to τ ∈ [0, t] gives

y(t) = U(t, 0)y(0) +
∫ t

0

U(t, τ)(−B(τ)y(τ) + f(τ))dτ.

If s < s′ ≤ s+ 1, we have

f(t) ∈ C
(
[0, T );Hs−1(S)

)
⊂ C

(
[0, T );Hs′−2(S)

)
,

B(t) = [
1
m
gx −

ε

m
(∂x(h1u) + ∂x(h2u) + h2ux)](t) ∈ L(Hs′−2(S))

is strongly continuous in [0, t), and

Hs−1(S)Hs′−2(S) ⊂ Hs′−2(S).

Due to −s < s − 2 < s′ − 2 < s − 1, the family {U(t, τ)} is strongly continuous
from Hs′−2(S) into itself. Observe that y(0) ∈ Hs′−2(S), (3) can be regarded as an
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Volterra-type integral equation and can be solved for y by successive approximation.
This completes the proof of the theorem. �

4. Wave breaking

In this section, we address the question of the formation of singularities for
solutions to (1.1) and we also give some blow up results for (1.2).

4.1. Blow-up condition for (1.1). As in the case of flat bottoms, it is possible
to give some information on the blow-up pattern for (1.1). First we rewrite (1.1)
(i.e., the first equation in (3.4)) in an equivalent form that is better suited for our
purpose:

ut + (− 1
m
g +

ε

m
h1u)ux = f(t, u) (4.1)

with
f(t, u)

= −(1− µm∂2
x)−1

[
kcxu+ (

g

m
+ c+ µgxx)ux

− (εµ∂2
xh1 +

ε

m
h1)uux +

∑
j∈J

εjfju
jux −

3
2
εµ∂xh1u

2
x

]
− ∂x(1− µm∂2

x)−1[−2µgxux + εµ(2∂xh1 − ∂xh2)uux + εµ(
3
2
h1 − h2)u2

x]

:= −P ∗ f1(t, u)− ∂xP ∗ f2(t, u),

(4.2)

where ∗ denotes the convolution and P (x) stands for the Green’s function of the
operator (1 − µm∂2

x) in the periodic case. Before giving the result, we need the
following lemmas.

Lemma 4.1 ([22]). If s > 0, then

‖[Λs, g]f‖L2(S) ≤ C(‖∂xg‖L∞(S)‖Λs−1f‖L2(S) + ‖Λsg‖L2(S)‖f‖L∞(S)),

where C is a constant depending only on s.

Lemma 4.2 ([22]). Assume that s > 0. Then Hs(S) ∩ L∞(S) is an algebra.
Moreover,

‖fg‖s ≤ C(‖f‖L∞(S)‖g‖s + ‖f‖s‖g‖L∞(S)),

where C is a constant depending only on s.

Theorem 4.3. Assume b ∈ H∞(S) and let u0 ∈ Hs(S) with s > 3/2. If T is
the existence time of the corresponding solution of initial data u0, then the Hs(S)
-norm of u(t, x) to (1.1) blows up on [0, T ) if and only if

lim sup
t↑T

{‖u(t, x)‖L∞(S) + ‖ux(t, x)‖L∞(S)} = +∞.

Proof. Let u(t, x) be the solution of (1.1) with the initial data u0 ∈ Hs(S), s > 3/2,
which is guaranteed by Theorem 3.1. If

lim sup
t↑T

{‖u(t, x)‖L∞(S) + ‖ux(t, x)‖L∞(S)} = +∞,

by Sobolev’s embedding theorem, we obtain that the solution u(t, x) will blows up
in finite time.
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Next, we prove that if there exists M > 0 such that

lim sup
t↑T

{‖u(t, x)‖L∞(S) + ‖ux(t, x)‖L∞(S)} ≤M,

then ‖u(t)‖Hs(S) with s > 3
2 remains bounded on [0, T ).

Applying the operator Λs to (4.1), multiplying the obtained equation by Λsu,
and integrating with respect to x over [0,1], we obtain

d

dt
(u, u)s = −2((− 1

m
g∂x +

ε

m
h1u∂x)u, u)s + 2(f(t, u), u)s. (4.3)

Similar to [15], using Lemma 4.1, we obtain

|(− 1
m
g∂x +

ε

m
h1u∂x)u, u)s| ≤ C(‖u‖L∞(S) + ‖ux‖L∞(S))‖u‖2s ≤ CM‖u‖2s. (4.4)

On the other hand, we estimate the second term on the right-hand side of (4.3) as

(f(t, u), u)s
= (−P ∗ f1(t, u)− ∂xP ∗ f2(t, u), u)s
. ‖u‖s(‖f1(t, u)‖s−1 + ‖f2(t, u)‖s−1)

. ‖u‖s(‖cxu‖s−1 + ‖( g
m

+ c+ µgxx)ux‖s−1 + ‖(εµ∂2
xh1 +

ε

m
h1)uux‖s−1

+ ‖
∑
j∈J

εjfju
jux‖s−1 + ‖3

2
εµ∂xh1u

2
x‖s−1 + ‖2µgxux‖s−1

+ ‖εµ(2∂xh1 − ∂xh2)uux‖s−1 + ‖εµ(
3
2
h1 − h2)u2

x‖s−1).

(4.5)

Now we estimate the above items individually.

‖cxu‖s−1 . ‖u‖s,

‖( g
m

+ c+ µgxx)ux‖s−1 . ‖u‖s,

‖(εµ∂2
xh1 +

ε

m
h1)uux‖s−1 . ‖∂x(u2)‖s−1 . ‖u2‖s . ‖u‖L∞(S)‖u‖s,

‖
∑
j∈J

εjfju
jux‖s−1 .

∑
j∈J
‖uj+1‖s . ‖u‖s

∑
j∈J
‖u‖jL∞(S) . C‖u‖L∞(S)‖u‖s,

‖3
2
εµ∂xh1u

2
x‖s−1 . ‖u2

x‖s−1 . ‖ux‖L∞(S)‖ux‖s−1 . ‖ux‖L∞(S)‖u‖s,

‖2µgxux‖s−1 . ‖u‖s,
‖εµ(2∂xh1 − ∂xh2)uux‖s−1 . ‖u‖L∞(S)‖u‖s,

‖εµ(
3
2
h1 − h2)u2

x‖s−1 . ‖ux‖L∞(S)‖u‖s,

where we have used Lemma 4.2 and the imbedding property of Sobolev spaces
Hs(S). Inserting the above set of inequalities into (4.5), we obtain

(f(t, u), u)s ≤ CM‖u‖2s. (4.6)

From (4.3), (4.4) and (4.6), we obtain
d

dt
‖u‖2s ≤ CM‖u‖2s.

In view of Gronwall’s inequality, we have

‖u‖2s ≤ ‖u0‖2seCM t.
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This means ‖u‖2s does not blow up in finite time under the assumption of the
Theorem. This completes the proof. �

4.2. Blow-up results for (1.2). In the following, we deduce that for solutions of
the evolution equation

ut + cux +
1
2
cxu+

3
2
εuux −

3
8
ε2u2ux +

3
16
ε3u3ux +

µ

12
(uxxx − uxxt)

= − 7
24
εµ(uuxxx + 2uxuxx),

(4.7)

singularities can occur in finite time only in the form of wave breaking, more specif-
ically surging breakers. In other words, there exists a breaking time for the solution
which remains bounded while its slope becomes unbounded.

Proposition 4.4. Let b ∈ H∞(S). If for some initial data u0 ∈ Hs(S), s > 3/2,
the maximal existence time T > 0 of the periodic solution to (1.2) is finite, then
the solution u(t, x) ∈ C([0, T ), Hs(S)) ∩ C1([0, T ), Hs−1(S)) satisfies:

sup
t∈[0,T ),x∈[0,1]

{|u(t, x)|} <∞, lim
t↑T

sup
x∈[0,1]

{ux(t, x)} = +∞.

Proof. By Theorems 3.1 and 3.10 and a simple density argument, the bow-up con-
ditions for (1.2) in [17] in the Sobolev space Hs(S) with s ≥ 3 are correct in Hs(S)
with s > 3/2. Thus, we obtain the above proposition. �

Next we show that there exist solutions to (1.2) that blow up in finite time in the
form of breaking waves. From Proposition 4.4, we know that to ensure the blow-up
solutions exist, its key to guarantee the existence of at least one real valued point
where the supremum of the slope approaches infinity. Therefore, we analyze the
equation that describes the evolution of

S(t) := sup
x∈[0,1]

{ux(t, x)}. (4.8)

Before giving the result, we need to reformulate (1.2). Applying (1 − µ
12∂

2
x) to

(1.2), we obtain

ut + P̃x ∗ (cu)− 1
2
P̃ ∗ (cxu) +

3ε
4
P̃x ∗ u2 − ε2

8
P̃x ∗ u3 +

3ε3

64
P̃x ∗ u4

+
µ

12
∂3
xP̃ ∗ u+

7εµ
24

P̃x ∗ u2
x +

7εµ
24

P̃ ∗ (uuxxx) = 0,

where P̃ (x) is the Green function of the operator (1 − µ
12∂

2
x) in the periodic case.

Differentiating this equation with respect to x, we obtain

uxt + ∂2
xP̃ ∗ (cu)− 1

2
P̃ ∗ (cxu)x +

3
4
ε∂2
xP̃ ∗ u2 − ε2

8
∂2
xP̃ ∗ u3 +

3ε3

64
∂2
xP̃ ∗ u4

+
µ

12
∂4
xP̃ ∗ u+

7εµ
24

∂2
xP̃ ∗ u2

x +
7εµ
24

P̃x ∗ (uuxxx) = 0.

Noticing the identity uuxxx = ∂2
x(uux)− 3uxuxx and using the fact

∂2
xP̃ ∗ f =

12
µ
P̃ ∗ f − 12

µ
f,
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we deduce that

uxt − uxx −
7ε
4
u2
x −

7ε
4
P̃ ∗ u2

x −
7ε
2
uuxx

− 1
2
P̃ ∗ (cxu)x +

12
µ
P̃ ∗ g(u)− 12

µ
g(u) = 0,

(4.9)

where

g(u) = (1 + c)u+
5ε
2
u2 − ε2

8
u3 +

3ε3

64
u4.

Also, we denote

‖P̃ (x)‖L1[0,1] := n1, ‖P̃ (x)‖L2[0,1] := n2, ‖P̃ (x)‖L∞[0,1] := n∞.

Then we present a condition which guarantees the solutions must blow up in finite
time.

Proposition 4.5. If the initial wave profile u0 ∈ H3(S) satisfies

| inf
x∈[0,1]

{∂xu0(x)}|2 > 12
εµ

[(n∞ +M)(
17ε
4
C0 +

ε2

8

√
MC

3/2
0 +

3ε3

64
MC2

0 )

+ (1 + C1)(n2 +
√
M)
√
C0] +

(1 +M)
2

n∞C1

√
C0,

(4.10)

where

C0 =
∫ 1

0

(u2
0 +

µ

12
u2

0x)dx > 0, C1 = ‖c‖W 2,∞(S), M = max
{13
µ
,

13
12
}
,

then wave breaking for the solutions of (1.2) occurs in finite time, T = O(1/ε).

Proof. In view of [5, Lemma 2], for u ∈ H3(S),

max
x∈[0,1]

u2(x) ≤ max
{13
µ
,

13
12
}
C0 = MC0.

Furthermore, using Young’s inequality, we obtain

‖P̃ ∗ (1 + c)u‖L∞[0,1] ≤ ‖P̃‖L2[0,1]‖1 + c‖L∞[0,1]‖u‖L2[0,1]

≤ (1 + C1)n2

√
C0,

(4.11)

‖P̃ ∗ u2‖L∞[0,1] ≤ ‖P̃‖L∞[0,1]‖u2‖L2[0,1] ≤ ‖P̃‖L∞[0,1]‖u‖2L2[0,1] ≤ n∞C0,

‖P̃ ∗ u3‖L∞[0,1] ≤ ‖P̃‖L∞[0,1]‖u‖L∞[0,1]‖u‖2L2[0,1] ≤ n∞
√
MC

3/2
0 ,

‖P̃ ∗ u4‖L∞[0,1] ≤ ‖P̃‖L∞[0,1]‖u2‖L∞[0,1]‖u‖2L2[0,1] ≤ n∞MC2
0 ,

‖P̃ ∗ (cxu)x‖L∞[0,1] ≤ ‖P̃‖L∞[0,1]‖cxxu+ cxux‖L2[0,1]

≤ n∞(‖cx‖L∞[0,1] + ‖cxx‖L∞[0,1])(1 +
12
µ

)C1/2
0

≤ n∞C1(1 +M)C1/2
0 ,

(4.12)

‖P̃ ∗ u2
x‖L∞[0,1] ≤ ‖P̃‖L∞[0,1]‖ux‖2L2[0,1] ≤ n∞

12
µ
C0.

Since (4.9) is an equality in the space of the continuous function, we can evaluate
both sides at some fixed time t at a point ξ(t) ∈ R, where

S(t) = ux(t, ξ(t)),
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with S(t) defined by (4.8). Besides, uxx(t, ξ(t)) = 0 due to u is C2 in the spatial
variable and the result on the evolution of extrema [7] imply an equivalent form of
(4.9),

S′(t)− 7ε
4
S(t) = −12

µ
(P̃ ∗ g(u)) +

12
µ
g(u) +

7ε
4
P̃ ∗ u2

x +
1
2
P̃ ∗ (cxu)x.

The previous estimates enable us to derive the differential inequality

S′(t) ≤ 7ε
4
S(t) +

12
µ

[(1 + C1)n2

√
C0 +

17ε
4
n∞C0 +

ε2

8
n∞
√
MC

3/2
0

+
3ε3

64
n∞MC2

0 + (1 + C1)
√
MC0 +

5ε
2
MC0 +

ε2

8
(MC0)3/2

+
3ε3

64
(MC0)2] +

(1 +M)
2

n∞C1C
1/2
0

≤ 7ε
4
S(t) +

12
µ

[(n∞ +M)(
17ε
4
C0 +

ε2

8

√
MC

3/2
0 +

3ε3

64
MC2

0 )

+ (1 + C1)(n2 +
√
M)
√
C0] +

(1 +M)
2

n∞C1

√
C0

(4.13)

and

S′(t) ≥ 7ε
4
S(t)− 12

µ
[(n∞ +M)(

17ε
4
C0 +

ε2

8

√
MC

3/2
0 +

3ε3

64
MC2

0 )

+ (1 + C1)(n2 +
√
M)
√
C0]− (1 +M)

2
n∞C1

√
C0

(4.14)

for a.e. t ∈ (0, T ). Notice that u0 6≡ 0 ensures S(0) > 0. By our assumption on
the initial wave profile, at t = 0, the right hand of (4.14) is strictly positive. We
infer that, up to the maximal existence time T > 0 of the solution, the function
S(t) must be strictly increasing and moreover

S′(t) ≥ 3
4
εS2(t) for a.e. t ∈ (0, T ).

Dividing by S2(t) ≥ S2(0) > 0, t ∈ (0, T ), and integrating, we have

1
S(t)

≤ 1
S(0)

− 3
4
εt, t ∈ (0, T ).

As S(t) > 0, we have limt↑T S(t) =∞, and

T ≤ 4
3εS(0)

. (4.15)

Furthermore, the inequality (4.13) combined with our assumption on S(0) yield

S′(t) ≤ 11
4
εS2(t) for a.e. t ∈ (0, T ).

Since limt↑T S(t) =∞, we obtain

T ≥ 4
11εS(0)

. (4.16)

From the estimates (4.15) and (4.16), we deduce the finite maximal existence time
T > 0 is of order O(1/ε). �
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Remark 4.6. Considering the case that the bottom to be flat, we have c ≡ 1 as
a result of b = 0 and the definition of c =

√
1− βb(α). From estimates (4.11) and

(4.12) in the proof of Proposition 4.5, we have that condition (4.10) to guarante
the solutions must blow up in finite time reduces to∣∣ inf

x∈[0,1]
{∂xu0(x)}

∣∣2 > 12
εµ

[(n∞ +M)(
17ε
4
C0 +

ε2

8

√
MC

3/2
0 +

3ε3

64
MC2

0 )

+ 2(n2 +
√
M)
√
C0],

(4.17)

Assume that there exists a point subjecting to b(αx) = 0, implying that ‖c‖L∞[0,1] ≥
1, then we obtain

| inf
x∈[0,1]

{∂xu0(x)}|2 > 12
εµ

[(n∞ +M)(
17ε
4
C0 +

ε2

8

√
MC

3/2
0 +

3ε3

64
MC2

0 )

+ (1 + ‖c‖L∞[0,1])(n2 +
√
M)
√
C0]

+
(1 +M)

2
n∞(‖cx‖L∞[0,1] + ‖cxx‖L∞[0,1])

√
C0.

(4.18)

Comparing (4.17) with (4.18), we find that it is more restrictive for the initial wave
profile u0 in the case of the variable bottom than the analogous condition in the
case of the flat bottom, which means that the infimum of the slope for the initial
value has to be steeper to ensure the existence of the blow-up solutions.
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