Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 04, pp. 1-15.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

WELL-POSEDNESS FOR ONE-DIMENSIONAL ANISOTROPIC
CAHN-HILLTARD AND ALLEN-CAHN SYSTEMS

AHMAD MAKKI, ALAIN MIRANVILLE

ABSTRACT. Our aim is to prove the existence and uniqueness of solutions
for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a
modification of the Ginzburg-Landau free energy proposed in [8]. In particular,
the free energy contains an additional term called Willmore regularization and
takes into account strong anisotropy effects.

1. INTRODUCTION

The original Ginzburg-Landau free energy
1
Ve = / (g\Vu|2 + F(u)) dz (1.1)
Q

plays a fundamental role in phase separation and transition, see, [4, 2]. Here, u is
the order parameter, €2 is the domain occupied by the material (we assume that it
is a bounded and regular domain of RY),

F(s) = (s — 1), (1.2)

f(s) =% —s. (1.3)
In [7] (also in [13]), the authors proposed the following modification of the

Ginzburg-Landau free energy which takes into account strong anisotropy effects
arising during the growth and coarsening of thin films, namely,

Vayer = /Q (7(”)(%|VU|2 + F(u)) + §w2) dx, (1.4)
where
n|§Z|, w=f(u)—Au, F' =f. (1.5)

Here, «v(n) accounts for anisotropy effects (we also refer the reader to, e.g., [6] for
a different approach to account for anisotropy effects in phase-field models) and
G(u) = w? is called nonlinear Willmore regularization. Such a regularization is
relevant, e.g., in determining the equilibrium shape of a crystal in its own liquid
matrix, when anisotropy effects are strong. Indeed, in that case, the equilibrium
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interface may not be a smooth curve, but may present facets and corners with slopes
of discontinuities (see, e.g., [12]). In particular, the corresponding Cahn-Hilliard
equation

ou D\IJMGL

U _A
ot Du
D

(where - denotes a variational derivative) is an ill-posed problem and requires

regularization. The author in [9] proved the well-posedness for a one-dimensional
Allen-Cahn system based on .

In [§], the author introduced another modification of the Ginzburg-Landau free
energy, namely,

VYapmer = /Q [%|’y(n)Vu|2 + F(u) + %wz] dzx. (1.6)

This model describes dendritic pattern formations and plays an important role in
crystal growth.

To the best of our knowledge, there is no mathematical result concerning the
Cahn-Hilliard (resp. Allen-Cahn) model associated with the free energy (L.6)).

In this article, we consider the one dimensional case, i.e., taking Q = (=L, L),

(1.6) reads

1 1
¥ [ [Ghul + F) + 3o do w7)
where
nz%’ w:f(u)_uzxa F,:f- (1.8)

In [7, 14], the authors proposed efficient energy stable schemes for the Cahn-
Hilliard equation based on and ; actually, in [7], the authors considered a
slightly different problem and also considered a second regularization, based on the
bi-Laplacian, and, in that case, studied the isotropic case v(n) = 1 as well. We also
mention that, in [I0] (resp. [11]), the Cahn-Hilliard (resp. Allen-Cahn) equation
based on the Willmore regularization is studied in the isotropic case. There, well-
posedness results are obtained.

Our aim in this article is to prove the existence and uniqueness of solutions for
the Cahn-Hilliard and Allen-Cahn systems associated with the Ginzburg-Landau

free energy (L.7)).

Assumptions and notation. As far as the nonlinear term f is concerned, we
assume more generally that f is of class C* and that

f0)=0, f'(s)>—co, c0>0, s€R, (1.9)
f(s)s>c1F(s)—ca>—chy, 1 >0, c2,¢h>0, seER, (1.10)

where F(s) = [ f(7)dr,

sf(s)f'(s) — f(s)> > csf(s)> —cyy, c3>0, ¢4>0, s€ER, (1.11)
[f' () < el f(s)]+ 5, Ve>0,¢52>0, s€R, (1.12)
sf’(s) >0, seR. (1.13)

Note that these assumptions are satisfied by the cubic nonlinear term (|1.3)).
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As far as the bounded function + is concerned, we introduce the following func-
tions:
Y2 (-1)s2 s<0,
g(s) =10 5=0, (1.14)
Y2(1)s* s> 0,
g being a C''-function, with ¢’(0) = 0, and
Y (~1)s s<0,
h(s) =140 s=0, (1.15)
Y(1)s  s>0.
Thus, h is a C%-function, with &’ € L>(R).
Lemma 1.1. The function h is Lipschitz continuous on (—L, L).
Proof. Let s; and s3 belong to R. We have two cases, depending on the sign of s;
and sso:
e If 51 and sy have the same sign (or vanish), then it is clear that
[h(s1) = h(s2)| < max{r2(1),7%(—1)}s1 — sal.

e If s; and so have opposite signs, then, assuming that s; > 0 and sy < 0
(the case s1 < 0 and sp > 0 is similar),

|h(s1) = h(s2)| = 7*(1)s1 — ¥*(—1)s2
< max{y*(1),7*(—=1)}(s1 — s2)
= max{y*(1),7*(=1)}|s1 — sa].

The result follows. U
We denote by ((-,-)) the usual L?-scalar product, with associated norm ||- ||, and
we set ||-||_1 = [|[(=A)~'/2-||, where (—~A)~! is the inverse minus Laplace operator

associated with Neumann boundary conditions and acting on functions with null
average.
We set, whenever it makes sense, (-) = ﬁ(ﬂ) fQ -dx, being understood that, for

(TS Hﬁl(Q), <<p> = m«p, 1>H*1(Q),H1(Q)v and we note that

22 2\1/2
o= (le = (@212 + (9)?)
is a norm on H~1(Q) which is equivalent to the usual one.

Throughout this article, the same letter ¢ (and sometimes ¢’) denotes constants
which may vary from line to line. Similarly, the same letter ) denotes monotone
increasing (with respect to each argument) functions which may vary from line to
line.

Remark 1.2. We can write, formally, for a small variation,

L
DV = /_L [ (v(n)uz) D(y(n)ug) + F'(u)Du + wDw| da

L
= /_L [v(n)uz D(y(n)uz) + f(u)Du+ wf'(u) Du — wye Du] dz.
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We then note that

Indeed, we have
56) = o (SN (Y () i D
((5)s) =7 () +0(y) D

Now, it is sufficient to prove that
S S \/ .
sv'(m) (H> =0 inD.
To do so, we let ¢ € D(—L, L) and have

L
il / :_i / ’ = — i /
<(|S|)a§0>D,D <‘37¢>D,D /L‘S|<p(s)ds

|
—Awawu+/i¢%®w

= [p(s)]° 1 + [~ ())&
= 2¢(0) = 2(0o, )’ D,

so that
IV — 2500 (2 in DY
87(\3\)(|s|) 25507(|8|) in D'
Since ség = 0 in D', we obtain
s " s . ,
(V(H)s) —’y(|s|) inD'. (1.16)

Thus, owing to (1.16]), we obtain, formally,

L
bv = ~/—L [Vz(n)uwD(ux) + f(u)Du + wf’(u)Du - WMJDU} dzx

= /—L [_ (72<n)uw)w + fu) + Wf/(u) — wm]Du dz

and the variational derivative of ¥ with respect to u reads

DV !
B =~ (b)), + f(w) + W' (1) = wes.

2. CAHN-HILLIARD SYSTEM

The Cahn-Hilliard equation is an equation of mathematical physics which de-
scribes the evolution of different material phases via an order parameter (or multiple
order parameters). The equation was initially derived as a model for spinodal de-
composition in solid materials [3, 5] and has since been extended to many other
physical systems.
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Setting of the problem. Writing mass conservation, i.e., % = —h,, where h
is the mass flux which is related to the chemical potential ; by the constitutive
relation h = —pu,, and that the chemical potential is the variational derivative of ¥
with respect to u, we end up with the following sixth-order Cahn-Hilliard system
p=—(h(uz))e + f(u) +wf'(u) = wee, (2.2)

w = f(u) — Ugg,
together with the Neumann boundary conditions

ux’iL:Mm}iL:quL:O (2.4)

and the initial condition
u|t:0 = uo_ (2.5)

2.1. A priori estimates. We first note that, integrating (formally) (2.1)) over €,
we obtain the conservation of mass, namely,

(u(t)) = (uo), t=0. (2.6)
Multiplying (2.1]) by (fA)’l%?, we have, integrating over € and by parts,
ou 5 ou
2y = —((p So)). 2.
150120 = ~(Gs 500 (2.7
We then multiply (2.2]) by %7; and integrate over {2 to obtain
ou
(. 20
(2.8)
Ouy d ou ou
= [ hu) o+ G [ Plde + (@F (), G = (res G)
Noting that from ([2.3)) it follows that
ou Ju 1d
/ et _ et _ - 2
(@F @), 50) = (@ea ) = 5 20l (29)
we have, owing to (|1.14)),
Ouy 1d
h(uy der = —— z) dT. 2.1
[ hun G o= 5% [ gt do (210)
We finally deduce from (2.7))-(2.10) that
d 9 ou o
%[/ﬂg(uw)dw—k2/QF(u) o+ )] + 2052, = 0. (2.11)

In particular, yields that the free energy decreases along the trajectories, as
expected.
We now multiply by (—A)~tu, where @ = u — (u), and integrate over (2.
We obtain, owing to ([2.6)),
1d
2dt
where, owing to ,

)%y = (1, ) + Vol(2){u) (uo), (2.12)

(1) = (f(w)) + (f'(w)). (2.13)
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Multiplying then (2.2]) by « and integrating over ), we have, owing to (2.3)),

(1, w)) = /Q 9(ua) da + ((f (u), ) + ((f (W) ' (w), u))

(2.14)
= ((f" (W) tze, u)) = ((f (u)ez, ) + ||UMH2
Noting that
((f' (Wtize, w) = =((f' (Wue, us)) — (wf” (W), us)),
(f(Waz,u)) = = ((f"(u)te, us)),
we obtain
(1, u) = /Qg(uz)der ((fu),w) + [l + ((uf" (w)ue, us))
+ [ (fwr @ - ) do
Q
and finally, owing to (1.10]), (1.11)), (1.13]) and (2.12)), we obtain
d, 9 2 2
Gl el [ ot dov2 [ P de o+ ol + 1w o

< 2Vol(Q){u)(uo) + ¢, ¢>0.
We now assume that
[{(ug)] < M (hence, |[(u(t))| < M,t>0), M >0. (2.16)
Therefore, owing to and ,
12 Vol(€) (uo) ()| < ear (|{f (w)] + [{wf'(w))])

2.17
SE(/f(u)Qd:B—i—/dea:)—i—c']W (217)
2\ Ja Q
where c¢ is the constant appearing in (2.15)), and we deduce from (2.15) and (2.17))

that

d
—lall?, + c[/ 9(uz) dx + 2/ F(u) dx + ||w||2} < - (2.18)
Combining (2.11) and ([2.18)), we have an inequality of the form
dE ou
T o(E+ ||a||31) < s (2.19)
where
E = |all?; + (u)® +/ g(uy) dz + 2/ F(u) da + Jw]/*. (2.20)
Q Q
In particular, we deduce from (2.19) and Gronwall’s Lemma that
Et) < E0)e " +cy, ¢>0,t>0. (2.21)
Noting that, owing to ([1.9)),
wl> > 1 (@)1 + [Juezl? = 2¢0llusl?, (2.22)
we finally deduce from (2.20)-(2.22)) and the boundedness of v(n) that
[ullFrz @) + IF ()1 < Qlluoll 2™ + ey (2.23)

Rewriting (2.1]) in the equivalent form

p= ) - () (2.24)
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we obtain 5
U
il < el 5 ll-1- (2.25)
Noting that, proceeding as in (2.17)),
d] < e (Iullmgey + 172 +1).
we finally find
ou
il oy < e(l57 -1+ [ullFr2 () + 1 ()| + 1). (2:26)
Now, owing to (2.2]), we have
Wee = —(M(uz))e — p 4 fu) +wf'(u)
and, owing to (1.12)), there holds

lwaall < ¢ (I1(h(ua))all + 1 I + ] + [lll)

(2.27)
< c(lhu)llm@) + I1F @I+l + (),
where we have used the fact that
h(uz) = 7*(n)u, € L*(Q) 1
Lt oy € fagmy J = o) € '
Recall that h is Lipschitz continuous, with 2(0) = 0, and note that
[ (ua)ll () < cllullr2(0)-
We then have, owing to (|1.14]) and (2.26))-([2.27)),
ou
el < (15711 + NulBragey + @I +1). (2.28)
We now multiply (2.1) by u and integrate over 2 to get
1d 9
5@”“” = —((Ha, ug)). (2.29)

Multiplying then (2.2) by —u,, and integrating over 2, we obtain, in view of ([2.3)),

((Nxvuw)) = /Qh(uw)umw dx + ((f/(u)um,uw)) - ((Wf/(u)a“ww))

— ((f()aa, tzz)) + ||uzmr||2

(2.30)

We note that

[(wf' (), tea))]

IN

ILF" ()l oe () lw [t |

1 (2.31)
< Slluaal® + @ (lullz2(@) I,

AN

where @ is continuous (here, we have used the fact that H?(2) is continuously
embedded into C(2)), and, proceeding similarly,

1 (2.32)
3 tezal* + Q (lull2ey) Tual

IN

Finally,
| /Qh(uz)uzm’ d$| < fllue]® + luzes]- (2.33)
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It thus follows from and (2.29)-(2.33) that

d

%IIUII2 + IIUH%IS(Q) < QUlullz2(0)) (el 0y + ll1?), (2.34)
where @ is continuous.
2.2. Existence and uniqueness of solutions.

Theorem 2.1. Assume that (2.16)) holds and that ug € H*(SY), with a“”
Then (2.1)-(2.5) admits a unique (variational) solution such that

‘:I:L 0.

we L(RY H2(Q) N 20,7 HQ), 5% e 120, T H' (@),

peL*(0,T;HY(Q), we LR LX) N L*0,T; H* ()
for all T > 0.

Proof. (a) Existence: The proof of existence is based on a classical Galerkin scheme
and on the a priori estimates derived in the previous section. We can note that a
weak (variational) formulation of (2.1))-(2.5) reads

((%7”)) = ((Mwwav)); Vv € HI(Q), (235)
((1,0)) = ((A(uz), ve)) + ((wf'(lq,v)) + ((f(u),v)) = ((waz, ), (2.36)
Yo e H (),
(w,0)) = (f(w),v)) = (waw,v)), Vo€ HY(Q), (2.37)
u|t=0 = ug. (2.38)
Let vg,v1,... be an orthonormal (in L?(Q2)) and orthogonal (in H'(Q)) family
associated with the eigenvalues 0 = A\g < A; < - - - of the operator —A associated

with Neumann boundary conditions (note that vy is a constant). We set
Vin = Span{wg, v1, ..., 0m}

and consider the approximate problem:
Find (wm, ttm, wm) : [0, T] — Vi X Vi, X Vi, such that

ou,

((W,U)) = —((me’v)), Yo € Vm, (239)
((ms0) = ((h(tma), v2)) + (@ (um), v))
 (f ). 0) ~ (@mps): Y0 € Vin, (240)
((wma )) ((f( ) )) - ((ummwav))a Vo € Vm? (2'41)
um|t:0 = U m, (2.42)
where ug ,,, = Pruo, Py, being the orthogonal projector from L2(Q) onto V,,.

The existence of a local (in time) solution to (2.39)-(2.42) is standard. Indeed,
we have to solve a Lipschitz continuous finite-dimensional system of ODE’s to find
Uy, which yields wy, and then p,,.

The a priori estimates derived in the previous section, which are now justi-
fied within the Galerkin approximation, yield that the solution is global and that,
up to a subsequence which we do not relabel and owing to classical Aubin-Lions
compacteness results,

Uy — u  weak star in L>(0,T; H?(Q)), strongly in C([0,T]; H*¢(R)), and a.e.,



EJDE-2015/04 ANISOTROPIC CAHN-HILLIARD AND ALLEN-CAHN SYSTEMS 9
Oy, ou
Zm 2
ot ot
tm — i weakly in L?(0,T; H'(2)),
Wm — w  weak star in L°°(0,T; L?(Q)) and weakly in L2(0,T; H*()),

weakly in L2(0,T; H (1)),

as m — +oo, V1T > 0.

Note that, owing to (2.19), (2.21) and (2.23)), we have u € L>°(R*; H%(Q)) and,
consequently, w € L*(RT; L%(Q)).

As far as the passage to the limit is concerned, the most delicate part is to prove
that

/T / (Win f' (Um) —wf'(u))pdrdt — 0 as m — +oo,
o Ja

T
/ /(h(umx) — h(ug))pydedt — 0 asm — +0o0,
Q

for ¢ regular enough. -
We have, say, for ¢ € C?([0,T] x Q) such that ¢(T) = »(0) =0,

/ ' [ o) = of ) s

/ / SDd:cdtJr/ /wm (um) — f'(u)) @ dz dt.

The passage to the limit in the first integral in the right-hand side of (2.43) is
straightforward, while the passage to the limit in the second one follows from the
above convergences which yield, in particular, the inequality

(2.43)

T
| / /Q wm (' () — F' () @ dt] < cllum — ull 1201y x)-
0

Finally, recalling that A is Lipschitz continuous, we have

T
| / /Q (h(umw) — h(ux))gow dx dt| < lltmg — vall L2 0,17y % 0)-

(b) Uniqueness: Let (uy, p1,w;) and (ug, 2, ws) be two solutions to (2.1)-(2.4) with
initial data ;0 and usg,g, respectively, such that

(uio)| < M, i=1,2. (2.44)
We set (u, p,w) = (u1, p1,w1) — (U2, to,w2) and ug = u1,0 — uz,o and have

ou
s 2.4
5 = M (2.45)

p=—(h(u1,)), + (h(uzz)), + f(u1) = f(uz)

, , (2.46)
+W1f (ul) - w2f (U2) — Wxax,

w = f(u1) — flug) — g, (2.47)

um|iL = Mm|iL = wm}iL =0, (2.48)

ul,_, = uo. (2.49)
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We multiply (2.45) by (—A)~1'4 and obtain, integrating over Q and by parts,

S T2, = ~(n ) + Vol ) ). (2.50)
where, owing to ,
(1) = {F(ur) = Flua)) + oS (wr) = " (w2)). (251)

We then multiply (2.46) by v and find, in view of (2.47)),

“Mﬂﬁf:jgh@hﬂuzif*/QhODxﬁ%dx o
+ () = flus),w)) + (@ f' () — waf(us), w) (2.52)
— (Flun) = F(uz), ) + [tz
We have, owing to ,
((f(ur) = fluz),w)) = ((f (w)u,u)) > —collul® (2.53)
Furthermore,
Kuwo—ﬂw»wnn§§MMW+memmm»wmwmm»mw (2.54)

and
}((Wlf/(ul) - wzf’(“z)au))’
< (Wi (f'(ur) = f'(u2)), w) |+ [((wf' (u2), u))|
< QUlurollr2(e)s luzoll 20y lwill m2 o) llull? (2.55)

(' (u2) gz, )| + [((f (u2) (f (w1) = f(uz)), w))|
< éllumll2 +Qluroll (), luzoll a2 @) (lws ll 2 () + D) lull*.

Similarly,
| Vol(€2){w) ()]

/Um, fluldo+ [ forf(ur) = (ua)] o)l o)
< ([ 1rtwn) = sl )l ds) o)

(2.56)
(] Jall ) = £l da+ [ Jueallf (o) o)l o)
+ Q(llua.oll 20 [luz.0ll 72 ) ull[{w)|
< gllumH2 +Q(llur oll 22, luzoll 2o (lwr | + D (flul® + [(u) ).
Recalling that h is Lipschitz continuous, we have
[((h(u1z) = h(ugz), us))| < /Q [h(u1z) = h(uzg)||us| do < cfjuqll®. (2.57)

We finally deduce from (2.50), (2.52))-(2.57)) and the interpolation inequality

_ _n1l/2 _ —n1/2 —
lall < ellal Y2val'? < a7 | Au) (2.58)
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l’/ rT

< QUlur,oll z20)s Nuzoll g2 0)) (1 + llw || + lwll a2 (1@l + [(w)]?).

Gronwall’s Lemma then yields, owing to (2.19), (2.23) and (2.28) (written for
(u17/~‘t’17w1))a

(2.59)

||u(t)||H—1(Q) < CBQ(HUI,O||H2(Q)7“u2,0HHQ(SZ))t||UOHH71(Q)’ (2.60)

hence the uniqueness, as well as the continuous dependence with respect to the
initial data in the H ~'-norm.

It follows from Theorem that we can define the continuous (for the H~!-
norm) semigroup

S(t):q)Mﬁq?M, ’LLO—‘r’LL(t)7 tZO

(i.e., S(0) = Id and S(t+ s) = S(t) o S(s), t,s > 0), where
v
%}iL
We then deduce from (2.23)) that S(¢) is dissipative, i.e., it possesses a bounded
absorbing set By C @, (in the sense that, for all B C ®,; bounded, there exists
to = to(B) such that ¢t >t = S(¢)B C By). O

Oy = {v e HA(Q), =0,[(v)] <M}, M=>0.

3. ALLEN-CAHN SYSTEM

The Allen-Cahn equation describes important processes related with phase sep-
aration in binary alloys, namely, the ordering of atoms in a lattice (see [I]).

Assuming the relaxation dynamics 2% = —2% e obtain the Allen-Cahn system

ot Du>’
ou ,
ot (h(uz))e + f(u) + wf'(u) — wee =0, (3.1)
w= f(u) — Ugg, (3.2)
together with the Neumann boundary conditions
Uy, = we| =0 (3.3)
and the initial condition
u|t:0 = UO- (3.4)

3.1. A priori estimates. We Multiply (3.1]) by %7; and have, integrating over (2
and by parts,

ou 5 Ouy d ou
v h z) rn F ' —Wexy, 77)) = Y
15712+ [ Bt G2 do+ 5 [ P do+ (@F () = 3 =0
which yields, noting that it follows from (3.2) that
ou ou 1d
/ el _ el _ - 2
(0 (), T) ~ (e, o)) = 5 o]
and from (1.14) that

Oug 1d
/Qh(ux)ﬁ dx—ia/ﬂg(um)dx,
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the differential equality
d 2 811, 2
a[/ﬂg(uz)dx—i-2/QF(u) dz + ||w|| ] +2] 517 = 0. (3.5)

In particular, it follows from (3.5)) that the energy decreases along the trajectories,
as expected.
We then multiply (3.1) by v and obtain, owing to (3.2),
1d
sl + [ gt do+ (w0 + [ wff s
Q Q
+ 2((f (g, ug)) + (wf" (Wte, uz)) + uze|* = 0,

which yields, owing to (3.2)),

3l + [ o) do+ ((F.u) +

+/hﬁwwmofﬂw»MwaﬂwmmM»:m
Q

hence, in view of (1.10)), (1.11)) and (1.13)),

d
—lul® + c[/ g(ug)dx + 2/ F(u)dzx + ||w|\2} <d, ¢>0. (3.6)
Summing (3.5) and (3.6), we find an inequality of the form
dE1 8’[1, 2 ’
-1 —?) < .
- +C<E1+||at\|>_c, >0, (3.7)
where
E; = |jul? +/ g(ux)dx+2/ F(u)dz + ||w|*. (3.8)
Q Q
In particular, it follows from (3.7) and Gronwall’s Lemma that
Ei(t) < E1(0)e "+, ¢>0, (3.9)

hence, in view of (1.9) (which yields that [w||? > |lug||* + || f(w)]|* — 2colluz||?),
(3-8) and classical elliptic regularity results,

||u(t)HH2(Q) < Q(”UOHH?(Q))G_Ct + C/, c>0,t>0. (3.10)
Next, we multiply (3.1) by —u,, to have

—/ @umdzf/ h(um)umxdmf/ f(w)ug, dx
o Ot Q Q

(3.11)
— / wf' () gy dr + / Waplyy dz = 0.
Q Q
It follows from (3.2)) that
1 d 2 / /
——||ugl|” — h(ug)Uppe dr + U) Uy, Uge
5 gplll? = [ hes) (W, 2) 519

— (W' (u), tze)) + (((f(1))ams ) + [tazal* = 0.
Now, owing to the continuous embedding H?(2) C C(Q2) and (3.2)), there holds
(' ()t ua))| + [(WF (1), e )] + [((F () taa)) | < QI r2(0)
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(indeed, it follows from (3.2) that ||w|| < Q(||ullz2())) and

| / Wt )t d| < cua]® + Jutzasll?],

hence

d
%Iluzcll2 +llullips @) < QUlullrrz(0))- (3.13)

3.2. Existence and uniqueness of solutions.

Theorem 3.1. Let ug € H*(Q)NH(Q). Then, (3.1)-(3-4) admits a unique (vari-
ational) solution such that u € L (R*; H2(Q) N HE(Q)) and %’; € L%(0,T; L*(Q)).
Furthermore, w € L>=(RT; L2(Q))NL2(0,T; H*(Q)NHE (Q)) for all T > 0. Finally,
the associated semigroup is dissipative in H*(Q) N HE ().

Proof. (a) Uniqueness: Let u; and uz be two solutions to (3.1)-(3.3)) with initial
3.2

data uj ¢ and ug o respectively, where w; and wy are defined from (3.2). We set
U=1U] — U2, W= W — Wa, Uy = U1,0 — U2,0 and have

0

S = () + (h(uz))s + f(ur) = f(u2) (314

+ Wlf/(ul) - w2f/(u2) — Wz = 03
W = f(ul) - f(UQ) — Ugz, (315)
Up|y, =wal,, =0, (3.16)
ul,_, = uo. (3.17)

We multiply by u and integrating over 2, we obtain

Ml () — Bz, ), 0) + (o) = Fuz), ) 1s)

+ (Wi f'(ur) = w2 ' (u2), w) = ((f(wr) = f(u2), ) + |Juze||* = 0.
We note that, by ,
((f(ur) = fluz),w)) = collul|?

and that, owing to ,
(wif'(w1) — wa f'(u2), )|
< (@' (1), w) + [(wa(f (u1) = f'(u2)), w))|
< Qlluroll o), luzoll 2@ (wlllull + lwallllullZs o)) (3.19)
< Qlluoll 20y, luzollm2(0)) (lwws 1l + lluall?)

< taa I + Qlu,0ll 20 luz.oll g2 @) lue

|

and

() = Fluz), )| < llaal® + Qun o

Recalling that h is Lipschitz continuous, we have

m2(9)s [[uz,0ll 2 (o) lull®. (3.20)

[((h(urg) = Pluzs), ua))| < /Q [h(u1z) = h(uzy)|lus| dz < cfjulf®. (3.21)
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We finally deduce from (3.18])-(3.21)) and the interpolation inequality
el < ellull™?||uze||*?
that
d, 9 2 2
g™ + lluas|I” < QUlluroll (), luzoll () lull” (3.22)
Then Gronwall’s Lemma yields
l[ur () — ua (b)) < CGQ(”UI,OHHQ(Q)’Hu?,O”HQ(Q))t||u0||, (3.23)

hence the uniqueness, as well as the continuous dependence with respect to the
initial data in the L?-norm.

(b) Existence: The proof of existence of solutions is based on the a priori estimates
derived in the previous section and, e.g., a standard Galerkin scheme.

In particular, it follows from (3.7)-(3.8) and (3.10) that we can construct a

sequence of solutions u,, to a proper approximated problem such that
Uy — u  weak star in L>(0,T; H*(Q)), strongly in C([0,T]; H*~¢(Q)) and a.e.,

ou,, Ou . 19 o
5t " o weakly in L=(0,T; L*(12)),
Wwm — w  weak star in L°°(0,T; L*(Q)) and weakly in L2(0, T; H*()),

as m — oo for all T > 0.
The passage to the limit is then standard and can be done as in the previous

section. Furthermore, it follows from (3.7)-(3.8]) and (3.10]) that

0
u e L®(RY; HX(Q)), ai; € L*(0,T; L3 (), VT > 0,
and, consequently, w € L>(RT; L?(Q)).
It follows from Theorem m that we can define the continuous (for the L2-norm)
semigroup
St):®— D, wug— u(t)

where ® = H?(Q)NH}(Q). Finally, the dissipativity of S(t) follows from (3.10). O
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