
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 97, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

WELL-POSEDNESS OF FRACTIONAL PARABOLIC
DIFFERENTIAL AND DIFFERENCE EQUATIONS

WITH DIRICHLET-NEUMANN CONDITIONS

ALLABEREN ASHYRALYEV, NAZAR EMIROV, ZAFER CAKIR

Abstract. We study initial-boundary value problems for fractional parabolic
equations with the Dirichlet-Neumann conditions. We obtain a stable dif-

ference schemes for this problem, and obtain theorems on coercive stability

estimates for the solution of the first order of accuracy difference scheme. A
procedure of modified Gauss elimination method is applied for the solution of

the first and second order of accuracy difference schemes of one-dimensional

fractional parabolic differential equations.

1. Introduction

Theory, applications and methods of solutions of problems for fractional dif-
ferential equations have been studied extensively by many researchers (see, e.g.,
[1]–[8], [10]–[16], [18], [19], [21], [23]–[30], [32]–[34], [39]–[46] and the references
given therein). In this article, we study the initial-boundary value problem

Dα
t u(t, x)− a(x)uxx(t, x) + σu(t, x) = f(t, x), 0 < x < l, 0 < t < T,

u(t, 0) = 0, ux(t, l) = 0, 0 ≤ t ≤ T,
u(0, x) = 0, 0 ≤ x ≤ l

(1.1)

for the fractional parabolic equation with the Dirichlet-Neumann conditions. Here
Dα
t = Dα

0+ is the standard Riemann-Louville’s derivative of order α ∈ [0, 1). Here
a(x)(x ∈ (0, l)) and f(t, x)(t ∈ (0, T ), x ∈ (0, l)) are given smooth functions, a(x) ≥
a > 0, σ > 0. Theorem on coercive stability estimates for the solution of the
initial-boundary value problem (1.1) is established. Stable difference schemes for
the approximate solution of problem (1.1) are considered. Theorem on coercive
stability estimates for the solution of the first order of accuracy in t difference
scheme is proved. A procedure of modified Gauss elimination method is applied
for the solution of the first and second order of accuracy difference schemes for the
fractional parabolic equations.

The organization of the present paper as follows. The first section is introduction
where we provide the history and formulation of the problem. In Section 2, theorem
on coercivity stability of problem (1.1) is established. In Section 3, stable difference
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schemes for the approximate solution of problem (1.1) are considered. Theorem on
coercivity stability for the first order of accuracy in t difference scheme is proved.
In Section 4, the numerical application is given. Finally, Section 5 is conclusion.

2. Theorems on coercive stability

We will give some statements which will be useful in the sequel.
Let E be a Banach space, and A : D(A) ⊂ E → E be a linear unbounded

operator densely defined in E. We call A strongly positive in the Banach space
E, if its spectrum σA lies in the interior of the sector of angle φ, 0 < 2φ < π,
symmetric with respect to the real axis, and if on the edges of this sector, S1(φ) =
{ρeiφ : 0 ≤ ρ ≤ ∞} and S2(φ) = {ρe−iφ : 0 ≤ ρ ≤ ∞}, and outside of the sector
the resolvent (λ−A)−1 is subject to the bound

‖(λ−A)−1‖E→E ≤
M

1 + |λ|
. (2.1)

The infimum of such angles is called spectral angle ϕ(A,E) of A.
Throughout this article, positive constants have different values in time and they

will be indicated with M On the other hand M (α, β, · · · ) is used to focus on the
fact that the constant depends only on α, β, · · · .

For a positive operator A in the Banach space E, let us introduce the fractional
spaces Eβ = Eβ(E,A)(0 < β < 1) consisting of those ν ∈ E for which the norm

‖ν‖Eβ = sup
λ>0

λβ‖A(λ+A)−1ν‖E + ‖ν‖E

is finite.

Theorem 2.1 ([17, 31]). Let A and B be two commutative positive operators with
ϕ(A,E) + ϕ(B,E) < π. Then it follows that there exists the bounded operator
(A + B)−1 defined on whole space E. Moreover, for every β ∈ (0, 1) and f , there
exists a unique solution u = u(f) of the problem

Au+Bu = f

and the following estimates hold

‖Au‖Eβ(E,B) + ‖Bu‖Eβ(E,B) + ‖Bu‖Eβ(E,A) ≤M(β)‖f‖Eβ(E,B),

‖Au‖Eβ(E,A) + ‖Bu‖Eβ(E,A) + ‖Au‖Eβ(E,B) ≤M(β)‖f‖Eβ(E,A).

Theorem 2.2 ([31]). Let A be the positive operator with ϕ(A,E) < π. Then for
β ≤ 1

2 , A
β is a positive operator with ϕ(Aβ , E) < π

2 .

Theorem 2.3 ([3]). Let A be the operator acting in E = C[0, T ] defined by the
formula Av(t) = v′(t), with the domain D(A) = {v(t) : v′(t) ∈ C[0, T ], v(0) = 0}.
Then A is a positive operator in the Banach space E = C[0, T ] and

Aβf(t) = Dβ
t f(t)

for all f(t) ∈ D(A).

From the above theorems it follows the following theorem.

Theorem 2.4. Let A and B be the positive operators with ϕ(A,E) < π and
ϕ(B,E) ≤ π

2 . Then for β ≤ 1
2 it follows that there exists bounded (Dβ + B)−1
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defined on whole space E. Moreover, for every f , there exists a unique solution
u = u(f) of the problem

Dβu+Bu = f

and the following estimate holds

‖Dβu‖Eβ(E,B) + ‖Bu‖Eβ(E,B) ≤M(β)‖f‖Eβ(E,B).

Now, we consider the second order differential operator

Bxu(x) = −a(x)uxx(x) + σu(x) (2.2)

with the domain D(Bx) = {u;u, u′, u′′ ∈ C[0, l], u(0) = 0, u′(l) = 0}.
Let us introduce the Banach space Cγ [0, l], γ ∈ (0, 1] of all continuous function

ϕ(x) defined on [0, l] and satisfying a Hölder condition for which the following norm
is finite

‖ϕ‖Cγ [0,l] = ‖ϕ‖C[0,l] + sup
x1 6=x2

|ϕ(x1)− ϕ(x2)|
|x1 − x2|γ

,

where C[0, l] is the Banach space of all continuous functions ϕ(x) defined on [0, l]
with the norm

‖ϕ‖C[0,l] = max
x∈[0,l]

|ϕ(x)|.

The positivity of the operator Bx in the Banach space C[0, l] was established (see,
[37, 38]). Moreover, we have that for any β ∈ (0, 1/2) the norms in the spaces
Eβ(E,B) and C2β [0, l] are equivalent.

Theorem 2.5. For β ∈ (0, 1/2), the norms of the space Eβ(C[0, l], Bx) and the
Hölder space C2β [0, l] are equivalent.

The proof of Theorem 2.5 is based on the following estimates

|Gx(x, x0;λ)| ≤ M(σ, a)√
σ + λ

{
e−

1
2

√
σ+λ
a (x−s), 0 ≤ x0 ≤ x,

e−
1
2

√
σ+λ
a (x0−x), x ≤ x0 ≤ l,

|Gxx(x, x0;λ)| ≤M(σ, a)

{
e−

1
2

√
σ+λ
a (x−x0), 0 ≤ x0 ≤ x,

e−
1
2

√
σ+λ
a (x0−x), x ≤ x0 ≤ l

for the Green’s function of the differential operator Bx defined by the formula (2.2)
and it follows the scheme of the proof of the Theorem of paper [9].

Theorem 2.6. For the solution of problem (1.1) the coercive stability estimate

max
0≤t≤T

‖uxx(t, .)‖Cβ [0,l] ≤M(β)‖f(t, .)‖Cβ [0,l]

holds, where M(β) does not depend on f(t, x) (0 ≤ t ≤ T , x ∈ [0, l]) and 0 < β < 1.

The proof of Theorem 2.6 is based on the positivity of differential operator Bx

defined by formula (2.2), on the Theorem 2.3 on connection of fractional derivatives
with fractional powers of positive operators, on the Theorem 2.2 on spectral angle
of fractional powers of positive operators, and on the Theorem 2.4 on fractional
powers of coercively positive sums two operators.



4 A. ASHYRALYEV, N. EMIROV, Z. CAKIR EJDE-2014/97

3. Difference schemes and stability estimates

The discretization of problem (1.1) is carried out in two steps. In the first step,
let us define the grid space

[0, l]h = (xn = nh, 0 ≤ n ≤M, Mh = l)

To the differential space operator Bx generated by formula (2.2), we assign the
difference operator Bxh by the formula

Bxhu
h = −a(x)uhxnx̄n + σu(x)h (3.1)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for
all x = 0 and Dhuh(x) = 0 for x = l. Here Dhuh(x) is the approximation of ux.
With the help of Bxh we arrive at the initial boundary value problem

Dα
t v

h(t, x) +Bxhv
h(t, x) = fh(t, x), 0 < t < T, x ∈ [0, l]h,

vh(0, x) = 0, x ∈ [0, l]h
(3.2)

for a finite system of ordinary fractional differential equations.
In the second step, applying the first order of approximation formula (see [3])

Dα
τ uk =

1
Γ(1− α)

k∑
r=1

Γ(k − r − α+ 1)
(k − r)!

ur − ur−1

τα
, 1 ≤ k ≤ N

for

Dα
τ u(tk) =

1
Γ(1− α)

∫ tk

0

(tk − s)−αu′(s)ds

and using the first order of accuracy stable difference scheme for parabolic equa-
tions, one can present the first order of accuracy difference scheme with respect to
t,

1
Γ(1− α)

k∑
r=1

Γ(k − r − α+ 1)
(k − r)!

uhr (x)− uhr−1(x)
τα

+Bxhu
h
k(x) = fhk (x),

fhk (x) = fh(tk, x), tk = kτ, 1 ≤ k ≤ N, Nτ = T, x ∈ [0, l]h,

uh0 (x) = 0, x ∈ [0, l]h

(3.3)

for the approximate solution of problem (1.1). Moreover, applying the second order
of approximation formula: for k = 1,

Dα
τ uk = −d 2α−1

(2− α)(1− α)
u0 + d

2α−1

(2− α)(1− α)
u1,

for k = 2,

Dα
τ uk = d

[35−α

24−α
1

(1− α)(2− α)(3− α)
− 7

32−α

23−α
1

(1− α)(2− α)

]
u0

+ d
[
−34−α

22−α
1

(1− α)(2− α)(3− α)
+

32−α

2−α
1

(1− α)(2− α)

]
u1

+ d
[34−α

24−α
1

(1− α)(2− α)(3− α)
− 32−α

23−α
1

(1− α)(2− α)

]
u2,
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for 3 ≤ k ≤ N ,

Dα
τ uk = d

k−1∑
m=2

{[ (k −m)
1− α

ξ(k −m)− η(k −m)
2− α

]
um−2

+
[ (2m− 2k − 1)

1− α
ξ(k −m) +

2η(k −m)
2− α

]
um−1

+
[ (k −m+ 1)

1− α
ξ(k −m)− η(k −m)

2− α
]
um

}
+ d
[
− 2α−2

2− α
uk−2 −

( 2α−1

1− α
− 2α−1

2− α

)
uk−1 +

( 2α−1

1− α
− 2α−2

2− α

)
uk

]
(3.4)

for

Dα
t u(tk − τ/2) =

1
Γ(1− α)

∫ tk−τ/2

0

(tk − τ/2− s)−αu′(s)ds,

and using a Crank-Nicholson difference scheme for parabolic equations, one can
present the second order of accuracy difference scheme with respect to t and x,

Dα
τ u

h
k(x) +

1
2
Bxh

(
uhk(x) + uhk−1(x)

)
= fhk (x), x ∈ [0, l]h,

fhk (x) = f(tk − τ/2, x), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

uh0 (x) = 0, x ∈ [0, l]h

(3.5)

for the approximate solution of problem (1.1). Here,

d =
τ−α

Γ(1− α)
, ξ(r) =

(
r + 1/2

)1−α − (r − 1/2
)1−α

,

η(r) =
(
r + 1/2

)2−α − (r − 1/2
)2−α.

Now, we consider the equation

Bxhu
h + λuh = fh (3.6)

in the case a(x) = 1.

Lemma 3.1. Let λ > 0. Then (3.6) is uniquely solvable, and the formula

uh = (Bxh + λ)−1fh =
{M−1∑
i=1

G(k, i;λ+ σ)fih
}M

0
(3.7)

is valid, where

G(k, i;λ+ σ) =
h(RM−i −RM+i)(RM−k −RM+k)

(1−R2)(1 +R2M−1)
+
h(R|k−i|+1 −Rk+i+1)

(1−R2)
for 1 ≤ i ≤M − 1, and 1 ≤ k ≤M ,

R = (1 + δh)−1, δ =
1
2
(
h(λ+ σ) +

√
(λ+ σ)(4 + h2(λ+ σ))

)
.

The grid function G(k, i;λ + σ) is called the Green function of equation (3.6)
and by the formulas for R and δ, we get

M−1∑
i=1

G(k, i;λ+ σ)h =
1

λ+ σ
− 1
λ+ σ

Rk +R2M−k−1

1 +R2M−1
, 1 ≤ k ≤M. (3.8)

To prove the positivity on Bxh in the Banach space Ch, we need the following
auxiliary lemmas [13].
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Lemma 3.2. The following estimate holds

|δ| ≥ max
{ |λ+ σ|h

2
,
√
|λ+ σ|

}
. (3.9)

Lemma 3.3. The following estimate

|R| ≤ 1
1 +

√
|λ+ σ|h cos θ

< 1 (3.10)

is valid, where |θ| < π/2.

Theorem 3.4. For all λ in the sector Σθ = {λ : | arg λ| ≤ θ, 0 ≤ θ < π/2} the
resolvent (λI +Bxh)−1 defined by (3.7) satisfies the following estimate

‖(λI +Bxh)−1‖Ch→Ch ≤
M(µ, θ, σ)

1 + |λ|
. (3.11)

Proof. First, we consider the operator Bxh defined by formula (3.1) in the case
a(x) = 1. Let us set k = M . Since

uM =
h2R(1−RM−1)(1 +RM−1)

(1−R)(1 +R2M−1)
fM−1

+
1

(1−R)(1 +R2M−1)

M−2∑
i=1

(
RM−i −RM+i

)
h2fi,

we have that∣∣uM ∣∣ ≤ 2
∣∣∣ R

1−R

∣∣∣h2|fM−1|+
1(

1− |R|
) M−2∑
i=1

(
|R|M−i + |R|M+i

)
h2
∣∣fi∣∣

≤ 2h2‖fh‖Ch
{
| R

1−R
|+ |R2|(

1− |R|
)2}.

Now, let us 1 ≤ k ≤M − 1. Then by formula (3.7) and the triangle inequality, we
obtain

|uk| ≤
(
|R|M−k + |R|M+k

)
|1−R2|

∣∣1 +R2M−1
∣∣ M−1∑
i=1

(
|R|M−i + |R|M+i

)
h2
∣∣fi∣∣

+
1

|1−R2|

M−1∑
i=1

(
|R||k−i|+1 + |R|k+i+1

)
h2
∣∣fi∣∣

≤ 2
|1−R2|

M−1∑
i=1

(
|R|M−i+1 + |R|M+i+1

)
h2
∣∣fi∣∣

+
1

|1−R2|

M−1∑
i=1

(
|R||k−i|+1 + |R|k+i+1

)
h2
∣∣fi∣∣

≤ 4h2

|1−R2|
‖fh‖Ch

M−1∑
i=1

|R|M−i+1

+
2h2

|1−R2|
‖fh‖Ch

{k−1∑
i=1

|R|k−i+1 + |R|+
M−1∑
i=k+1

|R|i−k+1
}
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≤ 2h2

|1−R2|
‖fh‖Ch

{ 2|R|2

1− |R|
+

2|R|2

1− |R|
+ |R|

}
≤M

{ |R|2(
1− |R|

)2 h2∣∣1 +R
∣∣ +

∣∣∣ R

1−R

∣∣∣∣∣∣ 1
1 +R

∣∣∣h2
}
.

From estimate (3.10) it follows that

|R|2(
1− |R|

)2 ≤ (
1

1+
√
|λ+σ|hcosθ

1− 1

1+
√
|λ+σ|hcosθ

)2

=
( 1√
|λ+ σ|hcosθ

)2

. (3.12)

Clearly, we have that

|λ+ σ| = |ρ cos θ + iρ sin θ + σ| =
√
ρ2 + 2ρσ cos θ + σ2

≥
√
ρ2 cos2 θ + 2ρσ cos θ + σ2 = |λ| cos θ + σ.

Thus
1

|λ+ σ|
≤ 1
|λ| cos θ + σ

≤ 1
|λ| cos θ + σ cos θ

=
1

cos θ

|λ|+ σ
=

1
σ cos θ

1 + 1
σ |λ|

≤ M(σ, θ)
1 + |λ|

.

(3.13)

Combining estimates (3.12) and (3.13), we obtain that

h2|R|2(
1− |R|

)2 ≤ 1
cos2 θ

|λ+ σ|
≤ M(σ, θ)

1 + |λ|
. (3.14)

From the definition of R and estimate (3.9), it follows that∣∣∣ R

1−R

∣∣∣h2 =
h

|δ|
≤ 2

1 + |λ|
. (3.15)

Combining estimates (3.14) and (3.15), we obtain

‖uh‖Ch ≤
M(µ, σ, θ)

1 + |λ|
‖fh‖Ch .

This concludes the proof of Theorem 3.4 in the case a(x) = 1. Second, noted that
the proof of this statement is based on estimates for the Green’s function. Under
one more assumption that σ > 0 is sufficiently large number, applying a fixed point
Theorem, same estimates for the Green’s function can be obtained. Therefore, this
statement of theorem is true also for difference operator Bxh defined by formula
(3.1). Theorem 3.4 is proved. �

Theorem 3.5. Let 0 < β < 1
2 . Then, the norms of spaces Eβ(Ch, Bxh) and C2β

h

are equivalent uniformly in h, 0 < h < h0.

Proof. From (3.7) and (3.8) it follows that(
λβBxh(Bxh + λ)−1fh

)
k

=
σλβ

λ+ σ
fk +

λβ+1

λ+ σ

Rk +R2M−k−1

1 +R2M−1
fk

+ λβ+1
M−1∑
i=1

G(k, i;λ+ σ)h(fk − fj).
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Applying the triangle inequality, we obtain∣∣(λβBxh(Bxh + λ)−1fh
)
k

∣∣
≤ σλβ

λ+ σ

∣∣fk∣∣+
λβ+1

λ+ σ

∣∣fk∣∣+ λβ+1
M−1∑
i=1

|G(k, i;λ+ σ)|h|fk − fj |

≤
[ σλβ
λ+ σ

+
λβ+1

λ+ σ
+M(σ)

λβ+1

√
λ+ σ

M−1∑
i=1

R|k−i||(k − i)h|2βh
]
‖fh‖C2β

h

≤M1(σ)‖fh‖C2β
h

for any λ > 0 and x ∈ [0, l]. Therefore, fh ∈ Eβ(Ch, Bxh) and

‖fh‖Eβ(Ch,Bxh) ≤M1(σ)‖fh‖C2β
h
.

Now, we prove the reverse inequality. For any positive operator Bxh , we can write

v =
∫ ∞

0

M−1∑
i=1

G(k, i;λ+ σ)Bxh(Bxh + λ)−1fih1dt.

Consequently,

fk − fk+r =
∫ ∞

0

M−1∑
i=1

λ−β [G(k+ r, i;λ+ σ)−G(k, i;λ+ σ)]λβAxh(Axh +λ)−1fih1dt,

hence

|fk − fk+r| ≤
∫ ∞

0

λ−β
M−1∑
i=1

|G(k + r, i;λ+ σ)−G(k, i;λ+ σ)|h1dt‖fh‖Eβ(Ch,Bxh).

Let

Th = |rh1|−2β

∫ ∞
0

λ−β
M−1∑
i=1

|G(k + r, i;λ+ σ)−G(k, i;λ+ σ)|h1dt.

The proof of estimate
|fk − fk+r|
|rh1|2β

≤ Th‖fh‖Eβ(Ch,Bxh)

is based on the Lemmas 3.2 and 3.3. Thus, for any 1 ≤ k < k+ r ≤ N − 1 we have
established the inequality

|fk − fk+r|
|rh1|2β

≤ M

β(1− 2β)
‖fh‖Eβ(Ch,Bxh).

This means that
‖fh‖C2β

h
≤ M

β(1− 2β)
‖fh‖Eβ(Ch,Bxh).

Theorem 3.5 in the case a(x) = 1 is proved. Now, let a(x) be continuous functions
and let x, x0 ∈ [0, 1] be arbitrary fixed points. Clearly, we have that

‖(Bxh −B
x0
h )(Bx0

h )‖Ch→Ch ≤M.

From the formula

Bxh(Bxh + λ)−1fh = Bx0
h (Bx0

h + λ)−1fh

+ λ(λ+Bxh)−1[Bxh −B
x0
h ](Bx0

h )−1Bx0
h (Bx0

h + λ)−1fh
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it follows that∣∣λβBxh(Bxh + λ)−1fh
∣∣

≤ ‖fh‖Eβ(Ch,B
x0
h ) +Mλ‖(λ+Bxh)−1‖Ch→Ch‖fh‖Eβ(Ch,B

x0
h )

≤M1‖fh‖Eβ(Ch,B
x0
h ).

Then

‖fh‖Eβ(Ch,Bxh) ≤M1‖fh‖Eβ(Ch,B
x0
h ).

Theorem 3.5 is proved. �

Theorem 3.6 ([3]). Let Aτ be the operator acting in Eτ = C[0, T ]τ defined by the
formula Aτv

τ = { vk−vk−1
τ }N1 , with v0 = 0. Then Aτ is a positive operator in the

Banach space Eτ = C[0, T ]τ and

Aβτ f
τ =

{ 1
Γ(1− β)

k∑
r=1

Γ(k −m− β + 1)
(k −m)!

fm − fm−1

τβ

}N
1
.

By the definition of fractional difference derivative

Dβ
τ f

τ :=
{ 1

Γ(1− β)

k∑
r=1

Γ(k −m− β + 1)
(k −m)!

fm − fm−1

τβ

}N
1
.

Theorem 3.7. Let Aτ be the operator acting in Eτ = C[0, T ]τ defined by the
formula Aτvτ (t) = { vk−vk−1

τ }N1 with the domain

D(Aτ ) = {vτ :
vk − vk−1

τ
∈ C[0, T ]τ , v0 = 0}.

Then A is a positive operator in the Banach space Eτ = C[0, T ]τ , and

Aβτ f
τ (t) = Dβ

τ f
τ (t)

for all fτ (t) ∈ D(Aτ ).

Thus, we have the following result on coercive stability of difference scheme (3.5).

Theorem 3.8. Let τ and h be sufficiently small positive numbers and 0 < β < 1.
Then the solution of difference scheme (3.5) satisfies the following coercive stability
estimate:

max
1≤k≤N

Big‖
{ukn+1 − 2ukn + ukn−1

h2

}M−1

n=1
‖Cβ [0,l]h ≤M(β) max

1≤k≤N

∥∥∥fhk ‖Cβ [0,l]h .

Here, M(β) does not depend on τ, h and fhk , 1 ≤ k ≤ N.

The proof of Theorem 3.8 is based on the Theorem 3.4 on positivity of difference
space operator Bxh defined by formula ((3.1), on the Theorem 3.5 on the structure
of fractional space Eβ(Ch, Bx0

h ), on the Theorem 2.3 on connection of fractional
derivatives with fractional powers of positive operators, on the Theorem 2.2 on
spectral angle of fractional powers of positive operators, and on the Theorem 2.1
on fractional powers of coercively positive sums two operators.
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4. A numerical application

For numerical results, we consider the example

Dα
t u(t, x)− uxx(t, x) + u(t, x) = f(t, x),

f(t, x) =
6 sin2(πx)t3−α

Γ(4− α)
− 2π2t3 cos(2πx) + t3 sin2(πx),

0 < t < 1, 0 < x < 1,

u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = ux(t, 1) = 0, 0 ≤ t ≤ 1

(4.1)

for the one-dimensional fractional parabolic partial differential equation with 0 <
α < 1. The exact solution of problem (4.1) is u(t, x) = t3 sin2 πx. Note that this
function is independent of α, but f(t, x) depends on α.

Applying the difference scheme (3.3) for the numerical solution of (4.1), we
obtain

1
Γ(1− α)

k∑
m=1

Γ(k −m− α+ 1)
(k −m)!

umn − um−1
n

τα
−
ukn+1 − 2ukn + ukn−1

h2
+ ukn = φkn,

φnk = f(tk, xn), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

xn = nh, 1 ≤ n ≤M − 1,

u0
n = 0, 0 ≤ n ≤M,

uk0 = 0, ukM−1 = ukM , 0 ≤ k ≤ N.
(4.2)

We get the system of equations in the matrix form

AUn+1 +BUn + CUn−1 = Dφn, 1 ≤ n ≤M − 1,

U0 = 0̃, UM−1 = UM ,
(4.3)

where

A =



0 0 0 . . . 0 0
0 an 0 . . . 0 0
0 0 an . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . an 0
0 0 0 . . . 0 an


(N+1)x(N+1)

,

B =



b11 0 0 . . . 0 0
b21 b22 0 . . . 0 0
b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bN1 bN2 bN3 . . . bNN 0
bN+1,1 bN+1,2 bN+1,3 . . . bN+1,N bN+1,N+1


(N+1)x(N+1)

,
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C =



0 0 0 . . . 0 0
0 cn 0 . . . 0 0
0 0 cn . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . cn 0
0 0 0 . . . 0 cn


(N+1)x(N+1)

,

D =



0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0
0 0 0 . . . 0 1


(N+1)x(N+1)

,

φn =



φ0
n

φ1
n

φ2
n

...
φN−1
n

φNn


(N+1)x(1)

, Un =



U0
q

U1
q

U2
q

...
UN−1
q

UNq


(N+1)x(1)

, q = {n± 1, n},

an = − 1
h2
, cn = − 1

h2
, b11 = 1, b21 = − 1

τα
, b22 =

1
τα

+ 1 +
2
h2
,

b31 = − Γ(2− α)
Γ(1− α)τα

, b32 =
Γ(2− α)

Γ(1− α)τα
− 1
τα
, b33 =

1
τα

+ 1 +
2
h2
,

and

bij =



− Γ(i−1−α)
Γ(1−α)(i−2)!τα , j = 1,

1
Γ(1−α)τα

[
Γ(i−j+1−α)

(i−j)! − Γ(i−j−α)
(i−j−1)!

]
, 2 ≤ j ≤ i− 2,

Γ(2−α)−Γ(1−α)
Γ(1−α)τα , j = i− 1,

1
τα + 1 + 2

h2 , j = i,

0, i < j ≤ N + 1

(4.4)

for i = 4, 5, . . . , N + 1 and

φkn =
6 sin2(πnh)(kτ)3−α

Γ(4− α)
− 2π2(kτ)3 cos(2πnh) + (kτ)3 sin2(πnh).

To solve the difference problem (4.3), a procedure of modified Gauss elimination
method is applied. Hence, we seek a solution of the matrix equation in the following
form:

Uj = αj+1Uj+1 + βj+1, UM = (I − αM )−1βM , j = M − 1, . . . , 2, 1
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where αj (j = 1, 2, . . . ,M) are (N + 1)× (N + 1) square matrices, and
βj (j = 1, 2, . . . ,M) are (N + 1)× 1 column matrices defined by

αj+1 = −(B + Cαj)−1A,

βj+1 = (B + Cαj)−1(Dφ− Cβj), j = 1, 2, . . . ,M − 1

where j = 1, 2, . . . ,M − 1, α1 is the (N + 1) × (N + 1) zero matrix, and β1 is the
(N + 1)× 1 zero matrix.

Second, applying the difference scheme (3.5), we obtain the second order of
accuracy difference scheme in t and in x and the Crank-Nicholson difference scheme
for parabolic equations, one can represent the second order of accuracy difference
scheme with respect in t and in x

Dα
τ u

k
n −

1
2

[ukn+1 − 2ukn + ukn−1

h2
+
uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

]
+

1
2

[
ukn + uk−1

n

]
= φkn,

φkn = f(tk −
τ

2
, xn), tk = kτ, xn = nh,

1 ≤ k ≤ N, 1 ≤ n ≤M − 1,

u0
n = 0, 0 ≤ n ≤M,

uk0 = 0, 3ukM − 4ukM−1 + ukM−2 = 0, 0 ≤ k ≤ N.
(4.5)

Here Dα
τ u

k
n is defined by (3.4) for ukn. We get the system of equations in the matrix

form

AUn+1 +BUn + CUn−1 = Dφn, 1 ≤ n ≤M − 1,

U0 = 0̃, 3UM − 4UM−1 + UM−2 = 0,
(4.6)

where

A =



0 0 0 . . . 0 0
an an 0 . . . 0 0
0 an an . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . an 0
0 0 0 . . . an an


(N+1)x(N+1)

,

B =



b11 0 0 . . . 0 0
b21 b22 0 . . . 0 0
b31 b32 b33 . . . 0 0
. . . . . . . . . . . . . . . . . .

bN1 bN2 bN3 . . . bNN 0
bN+1,1 bN+1,2 bN+1,3 . . . bN+1,N bN+1,N+1


(N+1)x(N+1)

,
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C =



0 0 0 . . . 0 0
cn cn 0 . . . 0 0
0 cn cn . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . cn 0
0 0 0 . . . cn cn


(N+1)x(N+1)

,

D =



0 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0
0 0 0 . . . 0 1


(N+1)x(N+1)

,

φn =



φ0
n

φ1
n

φ2
n

...
φN−1
n

φNn


(N+1)x(1)

, Uq =



U0
q

U1
q

U2
q

...
UN−1
q

UNq


(N+1)x(1)

, q = {n± 1, n},

an = − 1
2h2

, cn = − 1
2h2

,

b11 = 1, b21 = −d 2α−1

(2− α)(1− α)
+

1
h2

+
1
2
, b22 = d

2α−1

(2− α)(1− α)
+

1
h2

+
1
2
,

b31 = d
[
(3/2)5−α

( 1
1− α

− 2
2− α

+
1

3− α

)
− 7

32−α

23−α
1

(1− α)(2− α)

]
,

b32 = d
[
−34−α

23−α

( 1
1− α

− 2
2− α

+
1

3− α

)
+

32−α

2−α
1

(1− α)(2− α)

]
+

1
h2

+
1
2
,

b33 = d
[34−α

25−α

( 1
1− α

− 2
2− α

+
1

3− α

)
− 32−α

23−α
1

(1− α)(2− α)

]
+

1
h2

+
1
2
,

b41 = d
[ 1

1− α
ξ(1)− 1

2− α
η(1)

]
,

b42 = d
[
− 5

1− α
ξ(1) +

2
2− α

η(1)− 2α−2

2− α

]
,

b43 = d
[ 2

1− α
ξ(1)− 1

2− α
η(1)− 2α−1

1− α
+

2α−1

2− α

]
+

1
h2

+
1
2
,

b44 = d
[ 2α−1

1− α
− 2α−2

2− α

]
+

1
h2

+
1
2
, b51 = d

[ 2
1− α

ξ(2)− 1
2− α

η(2)
]
,
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b52 = d
[
− 5

1− α
ξ(2) +

2
2− α

η(2) +
1

1− α
ξ(1)− 1

2− α
η(1)

]
,

b53 = d
[
− 3

1− α
ξ(1) +

2
2− α

η(1) +
3

1− α
ξ(2)− 1

2− α
η(2)− 2α−2

2− α

]
,

b54 = d
[ 2

1− α
ξ(1)− 1

2− α
η(1)− 2α−1

1− α
+

2α−1

2− α

]
+

1
h2

+
1
2
,

b55 = d
[ 2α−1

1− α
− 2α−2

2− α

]
+

1
h2

+
1
2
,

and

bij =



d
[

1
1−α (i− 3)ξ(i− 3)− 1

2−αη(i− 3)
]
, j = 1,

d
[

1
1−α (5− 2i)ξ(i− 3) + 2

2−αη(i− 3)

+ 1
1−α (i− 4)ξ(i− 4)− 1

2−αη(i− 4)
]
, j = 2,

d
[

1
1−α (i− j + 1)ξ(i− j)− 1

2−αη(i− j)
+ 1

1−α (2j − 2i+ 1)ξ(i− j − 1) + 2
2−αη(i− j − 1)

+ 1
1−α (i− j − 2)ξ(i− j − 2)− 1

2−αη(i− j − 2)
]
, 3 ≤ j ≤ i− 3,

d
[

3
1−αξ(2)− 1

2−αη(2)− 3
1−αξ(1)

+ 2
2−αη(1)− 2α−2

2−α

]
, j = i− 2,

d
[

2ξ(1)
1−α −

η(1)
2−α −

2α−1

1−α + 2α−1

2−α

]
+ 1

h2 + 1
2 , j = i− 1,

d
[

2α−1

1−α −
2α−2

2−α

]
+ 1

h2 + 1
2 , j = i,

0, i < j ≤ N + 1

for i = 6, 7, . . . , N + 1 and

φkn =
6 sin2(πnh)(kτ)3−α

Γ(4− α)
− 2π2(kτ)3 cos(2πnh) + (kτ)3 sin2(πnh).

For solving of the matrix equation (4.6), we use the same algorithm as in the
(4.3) with

uM = [3I − 4αM + αM−1αM ]−1[(4I − αM−1)βM − βM−1].

Applying the difference schemes (3.3) and (3.5) for the numerical solution of (4.1),
we constructed first and second order of accuracy difference schemes. The results
of computer calculations show that the Crank-Nicholson difference scheme is more
accurate than first order of accuracy difference scheme. Tables 11 and 2 are con-
structed for N = M = 10, 20, 40, 80, respectively.

Table 1. Error analysis of first and second order of accuracy dif-
ference schemes for α = 1/2

Method N=M=10 N=M=20 N=M=40 N=M=80
1st order of accuracy 1.1110 0.7049 0.3850 0.1998
2nd order of accuracy 0.0953 0.0111 0.0017 3.332× 10−4
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Table 2. Error analysis of first and second order of accuracy dif-
ference schemes for α = 1/3

Method N=M=10 N=M=20 N=M=40 N=M=80
1st order of accuracy 1.1493 0.7333 0.4015 0.2086
2nd order of accuracy 0.1015 0.0121 0.0019 7.5456× 10−4

Conclusion. In [12] the multidimensional fractional parabolic equation with the
Dirichlet-Neumann conditions was studied. Stability estimates for the solution of
the initial-boundary value problem for this fractional parabolic equation were given
without proof. The stable difference schemes for this problem were presented.
Stability estimates for the solution of the first order of accuracy difference scheme
were given without proof. The numerical result was given for the solution of first and
second order of accuracy difference schemes of one-dimensional fractional parabolic
differential equations without any discuss on the realization.

In the present study, coercive stability estimates for the solution of this initial-
value problem for the fractional parabolic equation with the Dirichlet-Neumann
conditions are established. Stable the first and second order of approximation
in t and first order of approximation in x difference schemes for this problem are
considered. Coercive stability estimates for the solution of the first order of accuracy
difference scheme are obtained. A procedure of modified Gauss elimination method
is applied for the solution of the first and second order of accuracy difference schemes
of one-dimensional fractional parabolic differential equations. Moreover, applying
this approach we can constructed the first and second of approximation in t and a
high order of approximation in x difference schemes. Of course, coercive stability
estimates for the solution of the first order of accuracy difference scheme can be
obtained.
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