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BIFURCATION OF LIMIT CYCLES FROM QUARTIC
ISOCHRONOUS SYSTEMS

LINPING PENG, ZHAOSHENG FENG

ABSTRACT. This article concerns the bifurcation of limit cycles for a quartic
system with an isochronous center. By using the averaging theory, it shows
that under any small quartic homogeneous perturbations, at most two limit
cycles bifurcate from the period annulus of the considered system, and this
upper bound can be reached. In addition, we study a family of perturbed
isochronous systems and prove that there are at most three limit cycles bifur-
cating from the period annulus of the unperturbed one, and the upper bound
is sharp.

1. INTRODUCTION

There has been a longstanding problem, called the Hilbert 16th problem, whose
second part asks for the maximum H(n) of the number of limit cycles and the
relative positions for all planar polynomial differential systems of degree n. One
of the most remarkable achievements, Ecalle-Ilyashenko Theorem, claims that the
number of limit cycles is finite for any individual vector field [7, 2], 12}, 22]. However,
the existence of a uniform upper bound for the number even for quadratic vector
fields is still an open problem.

To attack the Hilbert 16th problem, many researchers investigate the number
of limit cycles of various planar polynomial differential systems. Among them, the
problem of the number of limit cycles by perturbing the periodic orbits of a center
has been extensively studied in the literatures [8, 14} [15], 20l 24) 25, 26] and the
references therein. In general, some useful methods have been proposed based on
the Poincaré map [6l [T, 23], the Poincaré-Pontryagin-Melnikov integrals or the
Abelian integrals [TI, 2], [3, B 10} T3], B0} B1], the inverse integrating factor [16] [I7)
18, 29], and the averaging method which is equivalent to the Abelian integrals in
the plane [4] 9] 19} 24] 25] [26].

Although in the plane the methods based on the Abelian integrals and the av-
eraging theory are equivalent, each has its own advantages. For example, when
the associated Abelian integrals are complicated or we need to study the periodic
orbits of the non-autonomous differential systems, the averaging method displays
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more flexibility. Roughly speaking, the averaging method gives a quantitative rela-
tion between the solutions of a non-autonomous periodic differential system and the
solutions of its averaged differential system, which is autonomous. In particular,
for the averaging method of the first order, the number of hyperbolic equilibrium
points of the averaged differential system can give a lower bound of the maximal
number of limit cycles of the non-autonomous periodic differential system [27, [28].

As mentioned above, by using the averaging method, the problem on the number
of limit cycles of the non-autonomous periodic differential systems is equivalent to
the exploration of the number of hyperbolic equilibrium points of the averaged
differential systems. Hence, the averaging theory has played a crucial role in the
study of limit cycles of differential systems. Now there are quite many important
results on the number of limit cycles of the polynomial differential systems by the
averaging method, such as Llibre [26], Buicd and Llibre [4, [5], Gine and Llibre
[19] and so on. It seems that among these results, more are focused on differential
systems of lower degree. As far as we know, for the integrable systems of higher
degree, in some cases the first integrals may have complicated expressions so that
it is out of the reach to study the bifurcation of limit cycles of these systems under
small perturbations.

In this article, we consider the quartic system

i =—y+ 2y +ay’,
y=z+2%y° +y' (L)

which has
1 x

H(z,y) = 3(x2 +y2)3/2 o (22 —|—y2)1/2 -

as its first integral with the integrating factor 1/(z2 + »?)%/? and the unique finite
singularity (0,0) as its isochronous center. The period annulus, denoted by

{(m,y)\H(x,y) =¢ cE (17+OO)}

starts at the center (0,0) and terminates with the separatrix passing the infinite
degenerate singularity on the equator. The phase portrait of system is shown
in Fig.1.

By using the averaging method, we study the bifurcation of limit cycles from
system under any small perturbations, and prove the following main results.

Theorem 1.1. For any sufficiently small parameter ||, and any real constants a;;
and b; (1,5 =0,1,2,3,4), the following quartic perturbation of system (.1,

b= —y+ 23y +aydte Z aijxiyj,
itj=4

y=x+2’y? +yt+e Z bija'y,
i+j=4

(1.2)

has at most two limit cycles bifurcating from the period annulus around the center
(0,0) of the unperturbed one, and this upper bound is sharp.
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FIGURE 1. The phase portrait of system (|1.1)) in the Poincaré disk.

Theorem 1.2. For the family of quartic perturbations
@ =—y+ 2%y +ay® + e(aror + a0y + annxy + anz’y + agsy®
+ agoxt + as123y + agez®y? + arzzy® + aouy?),
J=x+2°y* +y* + (brom + bory + b + bo2y® + bsox® + bioay®
+ byoxt 4 bs1 23y + bosz®y? + biszy® + boayt),

(1.3)

where |e| is sufficiently small, a; j and b; j (i,j =0,1,2,3,4) are any real constants.
Then there are at most three limit cycles bifurcating from the period annulus sur-
rounding the center (0,0) of the unperturbed system, and this upper bound is sharp.

The rest of this paper is organized as follows. In Section 2, we give an intro-
duction on the averaging theory, including some technical lemmas and methods
employed in the averaging theory. Section 3 is dedicated to the proof of Theorem
[I:1) by computing the averaged equations corresponding to the equivalent system
of system and exploring the number of its hyperbolic equilibriums. In Section
4, after making a transformation to system 7 theorem is proven through
analyzing an equivalent system and a corresponding averaged system. In addition,
some examples are illustrated to verify the obtained results.

2. PRELIMINARY RESULTS

In this section, we introduce some preliminary results on the averaging theory
that will be used in our quartic polynomial systems.

The following lemma provides a first order approximation for the periodic solu-
tion of a periodic differential equation. For the proof, we refer the reader to [27,
Theorem 2.6.1] and [28, Theorems 11.5 and 11.6].
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Lemma 2.1. Consider the two initial value problems
i =cf(t,x) +e%h(t,x,e), x(0)= o, (2.1)
and
g=ef(y), y(0) =0, (2.2)

where x,y,xo € D, here D is an open subset of R,t € [0,+00),e € (0,e¢], f and h
are periodic with period T in t, and

T
rw =7 [ s (23)

We suppose that
(1) f, 0f/0x, 9*f/0x> and Oh/Ox are continuous and bounded by a constant
independent on e in [0,+00) x D and € € (0,&¢);
(2) T is independent on &; and
(3) y(t) belongs to D on the time-scale 1/¢.

Then the following statements hold.
(a) On the time-scale 1/, we have that
x(t) —yt) =0(e), ase—0.
(b) If p is an equilibrium point of the averaged system such that

(df®/dy)(p) # 0, (2.4)

then there exists a T-periodic solution ¢(t,e) of equation which is
close to p such that ¢(t,e) — p as e — 0.

(c) If is negative, then the corresponding periodic solution ¢(t,e) in the
plane (t,x) is asymptotically stable for any sufficiently small |e|. If
18 positive, then it is unstable.

Let us consider another integrable system of the form

&= P(z,y),

) (z:9) (2.5)

¥ =Q(z,y),
with a first integral H and a continuous family of ovals

{’yh} C {({E7y)‘H($,y> = h7h1 <h< h2}
We consider a perturbed system:
& = P(z,y) +ep(z,y),
(z,y) +ep(z,y) (2:6)

Y= Q(a:,y) + SQ(I’y)'

To study the number of limit cycles for any sufficiently small || by using the
above averaging theory, we need to transform system (2.6 to the canonical form
in Lemma The following lemma [4] provides us a useful transformation.

Lemma 2.2. For system (2.5)), assume xQ(z,y) — yP(x,y) # 0 for all (z,y) in
the period annulus formed by the ovals vn. Let

p: (\/av \/E) x [0,2m) — [0, +00)

be a continuous function such that

H(p(R, ¢) cos ¢, p(R, ) sinp) = R?,
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for all R € (Vh1,Vhe) and ¢ € [0,27). Then the differential equation which
describes the dependence between the square root of energy, R = v'h, and the angle
o for system ([2.6)) is

dR  p(z*+y°)(Qp — Pq) gz — py 3
&~ Py (i py) O

(2.7)

where © = p(R, p) cosp and y = p(R, @) sin ¢.

The following lemma presents the version of the formula of the first order Mel-
nikov integral associated with system (2.6) in the polar coordinates [4].

Lemma 2.3. Under the conditions of Lemma|2.4, we define

27 2 2
p(z” +y*)(Qp — Pq) 9z —py 3
dR,é‘:/ [e (1—€7>+O8 }d,
W=, 1 2RQe- Py Qz—py) T
27 2 2
z* 4+ - P
Mi(R) :/ pu(a® +y*)(Qp q)d%
0 2R(Qx — Py)
for system (2.6)), where p = u(x,y) is the integrating factor of system (2.5)) corre-
sponding to the first integral H, and x = pcosy andy = psiny. Then d(R,¢) and
M (R) expressed by (2.8)) are the displacement function and the first order Melnikov
integral of system (2.6)), respectively.

(2.8)

Based on Lemmas and we can obtain

Corollary 2.4. If d°(R) represents the averaged function of the first approximation
in € of the right side of system , then the following relation holds,

27d°(R) = My (R),

where My (R) is defined by ({2.8]).

Corollary provides a relation between the averaged function and the first
order Melnikov integral associated with the same differential system, which enables
us to explore the maximal number of limit cycles of system bifurcating from
the period annulus of system via the averaging method.

3. PROOF OF THEOREM [I.1]

For
1 T

H(z,y) = 3(x2 4 y42)3/2 N (22 + y2)1/2°

we choose the function

1
R,p) = .
PR, ¢) (R2 + 3cosp)l/3 (3.1)
such that H(pcosp, psinp) = R?/3. Let
z = p(R, p)cos e, -
y = p(R,)singp, (32)
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for ¢ € [0,27) and R > /3. By using Lemma we can transform system ([1.2))
as

2R a:2—|-y 5/2 € 2R(x2+y2)7/2
O(e”),

(5 3(Qp — Pq) 23(Qp — Pq)(qx — py)>

z=p(R,p) cos p,y=p(R,p) sin ¢

(3.3)
where
Qp — Pqg= —bsox"y + (as0 — b31)2°y> + (az1 — bao — bo2)z’y?
+ (a0 + a2 — bz — 613)x4y4 + (as1 + a1z — bap — 504)30395
+ (azz + aos — b13)z*y® + (a13 — boa)2y” + agay®
+ a107” + (az1 + bao)z*y + (az2 + b31)2y?
+ (a13 + ba2)2*y® + (aos + bis)zy" + boay®,
qr — py = bagz™ + (b31 — as0)z*y + (baz — az1)2*y® + (b1 — as2)z’y?
+ (boa — a13)zy* — aoay®.
The averaged equation corresponding to system ([3.3) is
R=cf'(R), (3.4)
where
L " 3(Qp— Pq)
fR) = o= / (2—25/2> e
27 Jo 2R(x2% + y?) z=p(R,p) cos ,y=p(R,p) sin ¢
1 ™ cosS o T costo
:7M/7d+M/7d 3.5
47TR|: ! 0 COS§0+7 90 2 0 COSQO+R?2 SD ( )
27 27
cos? ¢ 1
+M/ ——d M+M+M/7d},
*Jo COSSO+R2 v = ’ » 0 cossO+R72 7
and
My = —ayo + az2 — aps + b31 — b3,
M = aso — 2a22 + 3aos — b1 + 2b13, (3.6)
M3 = azs — 3ags — b13.
Straightforward computations give
/2” cos® <p d B 7R?> wR® 27xR! . 2rR1?
o cospt+ BT T4 T 21 T 243 T u3VRI=9
/27T cos? cp = nR?  27RS i 2m R8
0 cosp+ YTT3 27 27V/R* =9’

/2” cos? ¢ J 21 R? 2w R*
0

v —— + .
cosgo—i—l%2 4 3 3VRY—9
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From these expressions, we obtain

1 2M M, + 2M. 3My + 4M, + 8 M.
0 —_ _ 1 10 1 2 6 1 P 3 o
F(R) = 4R{[ 243 R 27 R 12 R}
2My 9 | 2Ms g 2M3 oy 1
R R RY — 6(My + My + My)| —
MR (My+Ms + 3)]\/m} (3.7)
,L{[72M1 57M1+2M25373M1+4M2+8M3S} :
4R 243 27 12
2M, 2M, oM, L
56 S4 52—6 M M M 1
where S = R2. Let
31+ w?)
S=T—w
For 0 < w < 1, formula (3.7) becomes
(w—1)
\/5(1—10)3/2 A
= N N- 3 N- 2 N. N
BT w2211 w2 V' Naw? + Now” + Now+ Vi,
where

g(w) = Niw* + Now? + Nyw? + Now + Ny,
Ny =15M1 + 12M5 + 8Ms, No = 42M; + 40M5 + 32M35,
N3 = 62M; + 56 My + 48Ms.

As a result of the symmetry of coefficients of g(w), we know that if wg # 0 is one
root of g(w) = 0, so is 1/wg. Hence, the fact that g(w) has at most two zeros in
w € (0,1) implies that there exist at most two zeros for fO(R) in R € (v/3,4+00). By
Lemma and Corollary we get that system has at most two periodic
solutions which tend to the corresponding hyperbolic equilibriums, respectively.
That is, for system with any sufficiently small ||, at most two limit cycles
bifurcate from the period annulus around the center (0,0) of system .

In fact, there exist many systems expressed like which have exactly two
limit cycles emerging from the period annulus of the unperturbed system. In the
following, we not only provide some examples satisfying this property, but also
introduce a method to construct such systems.

Suppose that

- 1 1
gw) = (w— E) (w— g)(w —10)(w — 5)
153 1363 153
4 3 2
B T B S )
TR T

Take the constants

153 1363
=1 - -
Cl 5 02 10 5 3 25 )
then we can choose
1089 2209 10273
M, = - = — 3.8
7000 P 1007 %7 7800’ (38)
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such that

15M; + 12Ms + 8M; = 1,

153
42M1 + 4OM2 + 32M3 = _ﬁ,
1363
From (3.6) and (3.8), we have
213 3167 1313
ag0 = b31 — azy = b3+ ——, ap =

160’ 400 800

Hence, for the sufficiently small |¢|, we obtain a family of systems

213
b= —y+ 2y +ayd + 6|:(b31 - ﬁ) 4y ag 2y
3167, , 4 , 1313 . (3.9)
+ (b1s + 100 )2?y? + arzay EE

y=x+c2y?+yt+ 5[b40x4 + b1 23y + bagx®y? + biszy® + b04y4],

where a3, az; and b;; (4,7 =0,1,2,3,4) are any real constants.
By using polar coordinates © = pcosy and y = psingp, system (3.9) can be
rewritten as

dR

2 eF 2 1

e eF(p, R) + O(e%), (3.10)
where

213
F(p,R) =p? [ — bygcos” psingp — —— cos® psin® p + (az; — by — baa) cos® psin® ¢

160
2
+ 580609 cos psin? ¢ + (as1 + a1s — bag — boa) cos® psin® ¢
1 1313
+ % cos? sin® ¢ 4 (a13 — bos) cos psin” ¢ — Wsin8<p]
213 .
+ {(631 — ﬁ) cos® ¢ + (az1 + bag) cos? psin o
3167 3 .2 2 3
+ (b31 + b1z + m) cos® psin® p + (a13 + b22> cos” ¢ sin® ¢
1313
+ (b13 — %) cos psin? ¢ + by sin® gp} .
The averaged equation of system (3.10]) is given by
dR
— =¢fJ(R) + O(e?), (3.11)

dp
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where

=5 [ e

_ 1 {1089 /2” cos® <pR2 do 2209 /2” cos? (p d(p
A4rR L1100 Jo  cosp+ £ 100 Jo cosp+ &
10273 [*™  cos? 1313 (27 1
+ / R2 d(ﬂ - / R2 d@]
800 0 COs ¢ + 5 800 0 Cos @ + =5

V3(1 —w)3/? 1
T R e A TG -2 G Dl

Apparently, fO(R) has exactly two positive zeros, denoted by

V29997 V1872
~ 1.749458791, Ro =
99 24
corresponding to w; = 1/10 and wy = 1/5 in R € (v/3, +00). Moreover, we have
dfP(Ry) 107163
dR 387200
df) (R2) 49
* = ——— ~ —0.07259259259 < 0.
dR 675
It follows from Lemma and Corollary that for the sufficiently small |¢],
system (3.9) has just two limit cycles emerging from the period annulus of the
corresponding unperturbed system: one is unstable and the other is stable. This
completes the proof of Theorem [I.1]
As a byproduct, we obtain

(3.12)

—5).

Ry = ~ 1.802775638,

~ 0.5260835926 > 0,

Theorem 3.1. For the sufficiently small ||, system (3.10) has ezactly two periodic
solutions, denoted by l1 and ly respectively, such that Iy shrinks to Ry and ly shrinks
to Ry as € goes to 0. Moreover, 11 is unstable while ls is stable.

4. PROOF OF THEOREM
After using the transformation (3.2)), system (1.3 can be re-expressed as

dR 3 Qp— Pq 2

— == + O(e?), 4.1

d(p (2R p5 ) T=p cos p,y=p sin @ ( ) ( )
where p is defined as (3.1)), and

Qp— Pq

= [a102® + (ao1 + bio)zy + bory?] + [(a11 + b2o)zy + bo2y”]
+ [(a21 + b3o)2’y + (aoz + b12)zy’] + [as0x” + (as1 + bao — bro)z'y

+ (a2 + a0 + bs1 — bor)2*y? + (a13 + agr + baz — big)z’y?

+ (aoa + a10 + b1z — bo1)zy* + (ao1 + boa)y’]
+ [—b20a®y + (a11 — bao — bo2)2’y® + (a11 — boz)zy”]
+ [=b302%y + (a21 — bso — b12)x'y® + (a21 + aos — b12)2*y” + aosy”]
+ [—baox"y + (as0 — b31)2®y> + (asy — bao — bao)x’y®
+(

g0 + Gz — bzy — biz)xty* 4 (az1 + a1z — bag — bosg)x3y°
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+ ((122 + ags — b13)x2y6 + (a13 - bo4)$y7 + ao4y8]-

The averaged equation associated with system (4.1)) is
dRr

T =o' (B) + 06, (42)
where
1 [*™ 3 Qp—Pq
0
R)=— — (——— d
g ( ) 2w /0 ZR( p5 ) T=p cos p,y=psin ¢ 14
3 2m {alo cos? @ + o1 sin? ¢
~ 47R 3
+ [a40 cos® o + (aga + a1o + b3y — bo1) cos® psin? @ (4.3)

+ (aos + a1p + byz — bo1) cos psin? (p}
3 6 ) 4 .4
+p [(a40 — b31) cos® psin® ¢ + (ago + aza — bs1 — by3) cos™ psin®

+ (a2 + ags — by3) cos? @ sin® ¢ + agy sin® gp} }dgp.

Using a similar transformation as in the preceding section to (4.3), the function
g°(R) can be simplified as

31 2M, M,y + 2M, 3M,y + AM, + 8Ms
0 10 6 2
g (F) 4R[ 720 1t 81 R+< 36 My )1
M M M
+(7291R12+ SRS 4 3R4—2(M1+M2+M3> }
31 2M M1 + 20, 3M,y + AM, + 8Ms
- 2| _ S5 S3 (_ My)S
4R[ 729 81 + 36 + 4)
2My o 2M2 L 2Ms 1
— oMy + My + M )7]
+(7295 S*+ 95 (My + My + Ms3) T
o \/3
o A8(1 — w2)V2(1 + w?)L/2(1 4 w)*
X [leﬁ + NQU)E) + ]\73@04 + N4w3 + N3’LU2 + NQw + Nﬂ,
(4.4)

where M; (i =1,2,3) are defined as (3.6, and
My = ay0 + bo1,
Ny = 15M; + 12M + 8M5 — 36 My,
Ny = 12M; + 16Ms + 16 M5 — 144M,,
Ni = —TM; — 12My — 8Ms — 252M,,
Ny = —40M; — 32M, — 32Ms5 — 288M,.
Similarly, from ([£.4)), we get that ¢°(R) has at most three zeros in R € (v/3, +00).
Using this fact together with Lemma [2.I] and Corollary [2.4] it follows that system
- ) has at most three periodic solutlons tending to the corresponding hyperbolic
equilibriums, respectively. This means that the maximal number of limit cycles of

system ([1.3)) emerging from the period annulus of the unperturbed one is three.
Moreover, the upper bound can be reached.
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As an example, we consider the system

. 9
b= —y+ 2y +ayd + 5{( — bo1 + 800)3: + ag1y + anzy + a1 x’y + agsy®
(b @) n n (b n 28279) 4 araz® — 1313 }
31— g )8 Faney + (b 4 o)ty +ansy’ — oy

y=z+2*P +y'+¢ {blox + bory + baox® + bozy® + bsox® + biaay® + byox”

+ b312%Y + bosz®y? + bizwy® + bo4y4} ;
(4.5)

where |e| is sufficiently small, a;; (¢ =0,1,2,3,5 =1,3) and b;; (4,7 =0,1,2,3,4)
are any real constants.
By polar coordinates in ([3.2)), system (4.5)) is equivalent to

dR

o= =¢eG(p, R) + O(e?), (4.6)
where
G(e, R)
(—bo1 + %) cos? @ 4 (agy + big) cos @ sin @ + bg; sin? ¢
= pe
(a11 + bag) cos? @ sin ¢ 4 by sin® ¢
T 2
P
" (az1 + b3o) cos® psin ¢ + (agz + b12) cos psin®
P
+ [ b31 Ty COS @ + (asy + bag — byo) cos psin @
5663 .
+ (bgl + b13 — 2bo1 + 640 ) cos® <psm2 %,
+ (@13 4 a1 + baa — big) cos? psin® o
6529 . )
+ (b13 — 2bo1 — %) COSQOSln4 @ + (ap1 + boa) sin® Sp:|

+ p{ — bog cos® @sin g + (a11 — boz) cos @ sin® ¢
+ (a11 — b20 — boz) COS3 gﬁ?Sin3 (pi|

2 6, o 4 3
+p [— bsg cos’ @ sin ¢ + (ag1 — byg — b12) cos™ @sin® ¢

+ (CL21 + ag3 — blg) cos? (pSiIl5 @+ ap3 sin” (p}

109
+ p3 [ — byg cos” psing — 30 cos® © sin? © + (as1 — bgg — ba2) cos® © sin® %)
23919
3200 cos psin® ¢ + (az1 + a1z — bao — boa) cos® psin® ¢

108570052 sin® o + (a13 — bog) cos psin” _ 1813
1600 ® ¥ 13 — Do4 ¥ ¥ 640

sin® (p} .
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The averaged equation of system (4.6) is

dR

T =B + 0, (47)

where

1 27!'
92(R) = ; / G(p, R)dy
v

/2“ L 23919 23919, .,
—_ COS SlIl COS S1n
~ R PRI T 3900 % P ¥

10857 5 g _1313
1600 peil e

+ [(bgl

sin® go]

5663 .
) COS 2] + (bgl + b13 — 2b01 + 640 ) COS3 (pSII’IQ )
(4.8)

6529 .4
— %) cos p sin gp}
) cos? ¢ + boy sin <p} }d(p
B V3
48(1 — w?)1/2(1 4+ w?)1/2(1 + w)4
1 1 1

X (w = 15)(w = £)(w = 3)(w = 10)(w - 5)(w —2)

Hence, ¢g%(R) has exactly three positive zeros, denoted by

~ V29997 ~ V1872
Ry = 99 ~ 1.749458791, Ry = 21

Rs = V5 ~ 2.236067977,

~ 1.802775638,

which correspond to
1 1

w:—, Wo = — Wa =
1 10 2 57 3

in R € (v/3, +00), respectively. Moreover, we have

o
dg(Fa) _ 25137 oco6707521 > 0,

dR 96800
dg?(Ry) 49
2 e 0.06125 < 0
dR 800 <5
dg?(Rs) _ 19
) 9 0.02375 > 0.
AR 800 o

According to Lemma T]and Corollary [2.4] we obtain that for the sufficiently small
|e|, system (4.5 has exactly three limit cycles emerging from the period annulus of
the unperturbed system. Hence, we completes the proof of Theorem [T.2}

Theorem 4.1. For the suﬁiczently small ||, system ) has just three periodic
solutions, denoted by Zl, 12 and respectively, such that 11 shrmks to Ry, Iy shrinks
to Ry and lg shrinks to R3 as € goes to 0. Moreover, I and lg are unstable while
l2 is stable.
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