Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 85, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

CONVERGENCE IN COMPARABLE ALMOST PERIODIC
REACTION-DIFFUSION SYSTEMS WITH DIRICHLET
BOUNDARY CONDITIONS

FENG CAO, YELAI FU

ABSTRACT. In this article, we study the asymptotic dynamics in nonmonotone
comparable almost periodic reaction-diffusion systems with Dirichlet bound-
ary condition, which are comparable with uniformly stable strongly order-
preserving system. By appealing to the theory of skew-product semiflows, we
obtain the asymptotic almost periodicity of uniformly stable solutions to the
comparable reaction-diffusion system.

1. INTRODUCTION

In the previous 50 years or so, many concepts from dynamical systems have been
applied to the study of partial differential equations (see [4} [5, 6} [7, 8, [T, T2} 19} [20],
etc.). In this paper, we shall study the long-term behaviour of the solutions of some
non-autonomous comparable reaction-diffusion equations.

We consider the almost periodic reaction-diffusion system with Dirichlet bound-
ary condition:

8vi
ot

:di(t)A’Ui+Fi(t,U1,...,’Un), 1’69, t>0,
vi(t,z) = 0, z€09,t>0, (1.1)
v (0,2) = voi(z), z€Q,1<i<n,

where 2 is a bounded domain in R™ with smooth boundary. d = (dy(-),...,d,(:)) €
C(R,R") is assumed to be an almost periodic vector-valued function bounded below
by a positive real vector. The nonlinearity F' = (Fy,..., F,) : R x R® — R" is C!-
admissible and uniformly almost periodic in ¢, and F' points into R} along the
boundary of R: F;(t,v) > 0 whenever v € R} with v; =0 and ¢ € RT. However,
F" has no monotonicity properties.

To study the properties of the solutions of such a non-monotone equation,
an effective approach is to exhibit and utilize certain comparison techniques (see
[O [T, 2, 22]). As pointed out in [2I), Section 4], the comparison technique involves
monotone systems in a natural way: the original non-monotone systems are com-
parable with certain monotone ones. Thus, we assume that there exists a function
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[ R xR} — R" with f(t,v) > F(t,v) (or f(t,v) < F(t,v)), ¥(t,v) € R x R.
Also, we assume that f satisfies (H1)—(H4) in section 2. Then we get a strongly
order-preserving system (see section 2 for details):
8ui
ot

=d;(t)Au; + fi(t,ur,...,u,), T€Q, t>0,
ui(t,x) =0, z€9Q, t>0, (1.2)
ui(0,2) =up(z), 2€Q, 1<i<n.

We want to know whether such a non-monotone system inherits certain
asymptotic behaviour from its strongly order-preserving partner . Note that
a unified framework to study nonautonomous equations is based on the so-called
skew-product semiflows (see [I8, [19]). Since even the strongly monotone (which
is a stronger notion than strongly order-preserving) skew-product semiflows can
possess very complicated chaotic attractors (see [19]), we hence assume that the
strongly order-preserving partner is ‘uniformly stable’, and to establish the asymp-
totic 1-cover property of the corresponding strongly order-preserving skew-product
semiflow.

As far as we know, there are only a few works on the related topics. Jiang
[14] proved the global convergence of the comparable discrete-time or continuous-
time system provided that all the equilibria of its monotone partner form a totally
ordered curve. Recently, Cao, Gyllenberg and Wang[3] established the asymptotic
1-cover property of the comparable skew-product semiflows, whose partner systems
are eventually strongly monotone and uniformly stable. Here we emphasize that
for reaction-diffusion system with Dirichlet boundary condition, the cone X has
empty interior in the state space X = I17Co({2) (see section 2 for details). Thus, the
skew-product semiflow generated by its partner is only strongly order-preserving,
but not eventually strongly monotone (see [I3] Chapter 6]). So we have to find
another way to get the corresponding asymptotic dynamics for Dirichlet problem.

Motivated by [15], to obtain the asymptotic behavior of solutions to comparable
almost periodic reaction-diffusion system , we first prove that every precom-
pact trajectory of the strongly order-preserving system is asymptotic to a
1-cover of the base flow (see Proposition [3.3). Based on this, for the uniformly
stable and strongly order-preserving skew-product semiflow generated by , we
can get the topological structure of the set of the union of all 1-covers similarly as
3] (see Lemma. With such tools, we are able to establish the 1-covering prop-
erty of uniformly stable omega-limit sets of comparable skew-product semiflow (see
Proposition , and thus obtain the asymptotic almost periodicity of uniformly
stable solutions to system .

This article is organized as follows. In section 2, we present some basic definitions
and our main result. In Section 3 we prove the main result.

2. PRELIMINARIES AND STATEMENT OF THE MAIN RESULT

A subset S of R is said to be relatively dense if there exists [ > 0 such that every
interval of length [ intersects S. A function f, defined and continuous on R, is almost
periodic if, for any € > 0, the set T(f,e) = {s e R: [f(t+s) — f(t)| <e, Vt € R} is
relatively dense. A continuous function f : R x R™ +— R" is said to be admissible
if, for every compact subset K C R™, f is bounded and uniformly continuous on
R x K. Besides, if f is of class C"(r > 1) in & € R™, and f and all its partial
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derivatives with respect to x up to order r are admissible, then we say that f is
C"-admissible. A function f € C(R x R™,R"™) is uniformly almost periodic in t, if
f is both admissible and almost periodic in ¢ € R.

Let f € C(R x R™ R™) be uniformly almost periodic, one can define the Fourier
series of f (see [19, 23]), and the frequency module M(f) of f as the smallest
Abelian group containing a Fourier spectrum. Let f,g € C(R x R™ R"™) be two
uniformly almost periodic functions in t. One has M(f) = M(g) if and only if the
flow (H(g),R) is isomorphic to the flow (H(f),R) (see, [10] or [19], Section 1.3.4]).
Here H(f) = cl{f -7 : 7 € R} is called the hull of f, where f-7(t,-) = f(t+T,-)
and the closure is taken under the compact open topology.

Let (Y,dy) be a compact metric space with metric dy. A continuous flow o :
RxY =Y, (t,y) — o(t,y) = oe(y) = y - t is called minimal if Y has no other
nonempty compact invariant subset but itself. Here a subset Y7 C Y is invariant if
0¢(Y1) =Y for every t € R.

Consider the almost periodic reaction-diffusion system with Dirichlet boundary
condition

8’[}1‘
ot

=d;(t)Av; + Fi(t,v1,...,0,), z€Q, t>0,
vi(t,z) =0, €0, t>0, (2.1)
v;(0,2) = vpi(z), €N, 1<i<n,
where € is a bounded domain in R™ with smooth boundary. A is the Laplacian
operator on R”.

Let d = (di(-),...,dn(:)) € C(R,R™) be an almost periodic vector-valued func-
tion and for some dy > 0, d;(t) > do, for all t € R, 1 < i < n. The nonlinearity
F=(F,...,F,) : R xR" - R" is Cl-admissible and uniformly almost periodic
in t. Let v = (vy,...,v,), we also assume that

(I1) F;(t,v) >0 whenever v € R} with v; =0 and t € RY.

Denote X = II7Cy(Q) (Co() := {¢ € C(Q,R) : lag = 0}) and the standard
cone Xy = {u € X :u(z) € R},z € Q}. Then the cone X, induces an ordering
on X via x1 < xg if o —x1 € X4, We write 21 < a9 if 29 —z1 € X4 \ {0}. Let
r € X and a subset U C X. We write z <,. U if x <, u for all u € U. Given two
subsets A, B C X, we write A <, B if a <,- b holds for each choice of a € A, b € B.
Here <, represents < or <. x >, U is similarly defined. Obviously, every compact
subset in X has both a greatest lower bound and a least upper bound.

Let H(d, F') be the hull of the function (d, F'). Then the time translation (i, G)-t
of (u,G) € H(d, F) induces a compact and minimal flow on H(d, F) (see [18] or
[19]). By the standard theory of reaction-diffusion systems (see [13, Chapter 6)), it
follows that for every vo € Xt and (i, G) € H(d, F), the system

(9’01'
ot

= () Av; + Gi(t,v), z€Q, t>0,
vi(t,2) =0, x€9Q, t>0, (2.2)
v(0,2) =wvo(z), z€Q, 1<i<n

admits a (locally) unique regular solution v(¢, -, vo; pt, G) in X . This solution also
continuously depends on (u,G) € H(d,F) and vg € X4 (see [12]). Thus, (2.2)
induces a (local) skew-product semiflow I" on X} x H(d, F) with

Ft(UOa (/J'aG)) = (’U(t, 'avo;,qu)a (/L,G) ' t)a V(Uo, (:u'aG)) € X+ X H(dv F)a t=>0.
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Now we assume that there exists a function f € C'(R x R, R"), which is C*-
admissible and uniformly almost periodic in ¢, satisfying
(H1) f(t,v) > F(t,v) for all (t,v) € R x R’. with its frequency module M(f) =
M(F) (thus H(d, f) =2 H(d, F));
(H2) fi(t,0) =0(1 <i<n);
(H3) gﬂ’; (t,z) > 0 for all 1 < i # j < n, and there is a § > 0 such that if two
nonempty subsets I, J of {1,2,...,n} form a partition of {1,2,...,n}, then
for any (t,2) € RxR"}, there exist i € I, j € J such that |8£J (t,z)| > 06 > 0;

d
(H4) Every nonnegative solution of ordinary differential system o = g(t,u),g €

H(f), is bounded.

It is easy to see that, for any (u,G) € H(d, F), there exists a (u,g) € H(d, f)
such that

g(t,v) > G(t,v) for all (t,v) € R x R.
Denote Y = H(d, f). Then we can consider the reaction-diffusion system

%1: = pi(O)Au; + gi(t,u), z=€Q, t>0,

ui(t,x) =0, x€9Q, t>0, (2.3)
u(va):U0($)€X+, 1’6@7 1§Z§7’L,

which induces the global skew-product semiflow
IT; :X—I- XY%X-‘- XY; (uo,y:(/L,g))»—>(U(t,o,uo,y),y-t), tG]RJrv (24)

where u(t, -, up,y) is the unique regular global solution of in X,. Without
any confusion, we also write u(t, -, ug, y) as u(t, ug,y).

Clearly, by the comparison principle and (H4), the forward orbit O (z,y) =
{¢(z,y) : t > 0} of any (z,y) € X4 x Y is precompact. Thus the omega-limit
set of (z,y), defined by w(z,y) = {(2,9) € X+ xY : I (z,y) — (&,9)(n —
o0) for some sequence t, — oo}, is a nonempty, compact and invariant subset in
X, xY. A forward orbit O (xq, yo) of II; is said to be uniformly stable if for every
e > 0 there is a 6 = §(e) > 0, called the modulus of uniform stability, such that for
every © € Xy, if s > 0 and |lu(s, zo,yo) — u(s,x,yo)|| < d(e) then

llu(t + s, 0, y0) — u(t + s, 2,90)|| < € for each t > 0.

Here we assume that every forward orbit of II; in is uniformly stable, which
can be guaranteed by the existence of invariant functional.

Let P: X, xY — Y be the natural projection. A compact positively invariant
set K C X, x Y is called a 1-cover of Y if P~!(y) N K contains a unique element
for every y € Y. If we write the 1-cover K = {(c(y),y) :y € Y}, thenc: Y — X
is continuous with II;(c(y),y) = (c(y - t),y - t), V& > 0. For the sake of brevity, we
hereafter also write ¢(-) as a 1-cover of Y.

For skew-product semiflows, we always use the order relation on each fiber
P~Y(y), and write (21,y) < (<) (w2,y) if ¥1 < z3 (1 < x2). Recall that the

skew-product semiflow II; is called monotone if

Ht(zla y) S Ht(z% y)

whenever (z1,y) < (x2,y) and ¢ > 0. Moreover, II; is strongly order-preserving if it
is monotone and there is a tg > 0 such that, whenever (z1,y) < (z2,y) there exist
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open subsets U, V of X with 21 € U, x9 € V satisfying
I, (U,y) < I (V,y) for all t > ¢.

II; is called fiber-compact if there exists a £ > 0 such that, for any y € Y and
bounded subset B C X, II;(B,y) has compact closure in P~1(y -t) for every t > t.
Then according to (H3), [I3, Chapter 6] and [I5} Section 6], one can obtain that
II; in is strongly order-preserving and fibre-compact.

By (H1), similarly as the proof of Lemma 5.2 in [3], we can get that T'; is upper-
comparable with respect to IT; in the sense that if T's(x1,y) < IT;(22,y) whenever
(.’131,y), (xQ’y) € Xy xY with (331,3/) < (J;?ay)'

Now we are in a position to state our main result.

Theorem 2.1. Any uniformly stable L>°-bounded solution of (2.1)) is asymptotic
to an almost periodic solution.

Remark 2.2. We note that for reaction-diffusion system with Dirichlet boundary
condition (2.1, the cone X has empty interior in the state space X = II7Co(€2).
Thus, the skew-product semiflow generated by its monotone partner is only
strongly order-preserving, but not eventually strongly monotone. Consequently,
the results in [3] can’t be used to study the asymptotic behavior of the solutions to

system ([2.1)).
3. PROOF OoF THEOREM [2.1]

To obtain the asymptotic almost periodicity of solutions to system (2.1, we
first investigate the asymptotic behavior of its strongly order-preserving partner.
Motivated by [15], we establish the 1-cover property of omega limit sets for the
strongly order-preserving and uniformly stable skew-product semiflows II;.

The following result is adopted from [I7, P. 19] or [19, P. 29], see also [16] P.
634].

Theorem 3.1. Let O, be a skew-product semiflow on Xy x Y. If a forward or-
bit Og(xo,yo) of Oy is precompact and uniformly stable, then its omega-limit set
wo (o, Yyo) admits a flow extension which is minimal.

Now fix (20,%0) € X4+ x Y and let K = w(xg,yo) be its omega-limit set with
respect to II;. For any given y € Y, we define

(p(y),y) = gLb. of KNP~} (y).
Then from [I5, Proposition 3.1], it follows that w(p(y),y) is 1-cover of Y. Denote
{(p«(y), )} = w(p(y),y) N P~L(y), by [15, Proposition 3.2] one has
u(t,p«(y),y) =p«(y-t) forany y €Y and t € R. (3.1)
So we can denote the 1-cover w(p(y),y) by p«(-).
Lemma 3.2. Assume that there exists a point (z,y) € K such that p.(y) < z.

Then for any t € R, there exist a neighborhood U of p.(y) and a neighborhood V' of
z such that

u(t,U,y) < u(t, V,y).

Proof. By the minimality of K, for any ¢t € R, there is 7,, — 400 such that 7,+t > 0
and
HTnOHt(Zvy)HHt(Zay% as n — o0.
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Note that the monotonicity implies that

HTn o Ht(p*(y)ay) < HTT,, © Ht(zay)
Letting n — oo, we then get IT;(p.(y),y) < I (z,y), thus,

u(t, pe(y),y) <ult,z,y), VteR. (3.2)

Suppose that the conclusion of the lemma does not hold. Then we claim that
there exists ro € R such that

u(t’p* (y)7 y) = u(ta 2, y)a vt < ro. (33)
Otherwise. By (3.2), one has that for any r € R, there exists some ¢ < r such that

u(t, p«(y),y) < ult, z,y).
Since 1I; is strongly order-preserving, it follows that there exist a neighborhood U
of u(t, p«(y),y) and a neighborhood V of u(t, z,y) such that
u(r —t+to, U,y 1) <ulr —t+ty,V,y-1t).

Note that by the continuity of II;, there exist a neighborhood U of p«(y) with
u(t,U,y) C U, and a neighborhood V of z with u(,V,y) C V. So we have

’LL("’ —{‘f' t07u(t_7U7y)ay : ﬂ < u(r - t_+t07u(£a V7y)7y E)
Thus,
u(r + to, U,y) < u(r + to, Vay)'

Since r is arbitrary, the conclusion of the lemma holds. A contradiction. So we
proved the claim.

By the minimality of K, we obtain that a(z,y) = K. Hence, (z,y) € a(z,y).
Then it follows that there exists a sequence 7,, — —oo such that 7, < r9 and

I, (2,y) — (z,y). Thus the 1-cover property of w(p«(y),y) and (3.1) imply that
Iz, (p<(y),y) = (P<(y),y). By (3.3), one has

(T, P (¥),y) = w(Tn, 2, 9).
By letting n — +o00, we get

(P«(v),y) = (2,9).

A contradiction to the assumption. This completes the proof. O
The following Proposition shows the 1-cover property of omega limit sets for IT;.
Proposition 3.3. For any (zo,y0) € X4+ XY, w(zo,y0) s a I-cover of Y.

Proof. Now fix (xg,y0) € X+ XY and set K = w(xg,yo). For any y € Y, by [15]
Proposition 3.1], we have (p.(y),y) < KNP~ 1(y).

We claim that {(p«(y),y)} = KNP~1(y) for ally € Y. Suppose not. Then there
exist some y € Y and a point (2,y) € K such that p.(y) < 2. By the minimality of
K, we get that

pely) <z, Y(z,y) € KNP (y).
Then it follows from Lemma that there exist a neighborhood U, of p.(y) and a
neighborhood V, of z such that
U, <V,. (3.4)
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Since {V. : (z,y) € KNP~(y)} is an open cover of KNP~!(y), we can find a finite
subcover, denoted by {V1,Va, ..., V,,}. Note that by (3.4) there exist neighborhoods
Uy, i=1,2,...,n of p.(y) such that
U<V, Us< Vo, ..., U, <V,.
Therefore, N, U; < U™, V;. Since K N P~1(y) C U, V;, we have
N, U; < KNP (y).

So we can take an e¢g > 0 such that

B*(p.(y),e0) < KNP~} (y), (3.5)

where BT (p.(y),e0) = {x € X1 : 2 > p.(y), ||z — p«(y)|| < €0}. By the uniform
stability of II;(p«(y), y), there exists dg = do(€9) < €p such that

lu—pe()]l < €0, Y(u,y) € wlz,y) NP~ (y)
whenever ||z — p.(y)|| < Jp. Combing with (3.5)), we get

(p«(y),y) Sw(z,y) NP (y) < KNP (y)

for any € BT (p.(y),dp). Since w(z,y) is minimal, using [15, Proposition 3.1(3)],
we obtain
w(@,y) =wp(y),y) =p(), Yo € B (p.(y),d)- (3.6)
Set
L={r€[0,1]:zr = p«(y) + 7(2 = p«(y)), w(z7,y) = P« ()}
By (3.6]), there exists a 7 > 0 such that [0,7] C L. It is easy to see that L is an
interval. Now we show that L is closed, that is, L = [0, 7] with 0 < 79 = sup{r :
7 € L} < 1. Note that I;(2,,,y) is uniformly stable. Let () be the modulus of
uniform stability for e > 0. Thus, we take 7 € [0,79) with ||z, — | < d(e) and
we get
lut,zr,y) — u(t, 2, y)|| <€ VE>0.

Since w(z,,y) = p.(-), there is a  such that

lu(t, zr,y) = puly - t)ll < VE=1.
Then, we deduce that

lut, 2z, y) = puly )| < 26, VE 21,

and hence w(Z.,,y) = p«(-). So L is closed.

Then by a similar argument in the proof of [I5, Theorem 4.1], we can get a
contradiction. Indeed, since L = [0, 79] with 0 < 79 < 1, for any 7 € (79, 1) we have
(p«(y),vy) ¢ w(zr,y). For eq defined in , by the uniform stability of the orbit,
we get

lu(t,zr,y) — u(t,zry, y)|| < €0, VE>0 (3.7)
whenever 0 < 7— 715 < 1. Let {¢,} be such that IT; (z,,,y) — (p«(v),y). Choosing
a subsequence if necessary, we may assume that II; (z,,y) — (Z,y) for 0 < 7 —
79 < 1. By 7 we obtain [|Z — p«(y)|| < €. Thus, from the monotonicity,
i € BY(p.(y),€). So by B5), & < KNP !(y). Using [15, Proposition 3.1 (3)]
again, we get w(Z,y) = w(p(y),y) = p«(-). Then the minimality of w(z,,y) implies
that w(z,,y) = w(&,y) = ps«(-), which is a contradiction to the definition of 7.
Thus, K N P~ (y) = {(p«(y),y)} for all y € Y. The minimality deduces that K is
a l-cover of Y. O
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Denote
A= Uc() is a 1-cover for II; C()
of all 1-covers of Y for II;. For each y € Y, set A(y) = AN P~!(y). Based on
Proposition 3.3} we obtain the following result.

Lemma 3.4. A is totally ordered with respect to ‘<’, and for each y € Y, A(y) is
homeomorphic to a closed interval in R.

The proof of the above lemma is similar to that of [3, Theorem 3.1], therefore it
is omitted.

For any (xo,yo) € X+ %Y, denote the forward orbit and the omega-limit set for I';
by Of (0, yo) and wr (o, yo), respectively. Now we will prove the 1-cover property
for the uniformly stable w-limit sets of the comparable skew-product semiflow I';.

Proposition 3.5. Assume that for point (xo,y0) € X1 xY, Off (w0, o) is uniformly
stable. Let K = wr(xo,y0). For any y € Y, if there exists some (b(y),y) € A(y)
such that K N P~Y(y) > (b(y),y), then K is a 1-cover of Y for Ty.

Proof. Let Cp = {c(+) : ¢(-) is a 1-cover for II;}. Then by a similar argument in
the proof of [3, Theorem 4.3], using Lemma we can define a nonempty totally
ordered set C C Cfy, for which

C={c()eCn:(c(y),y) > KNP (y) forall yeY},

and the greatest lower bound inf C € C exists.
Denote ¢(-) = inf C. Now we assert that K is a 1-cover of Y for T';, satisfying

KnP ' y) = (4(y),y), VyeYy.
Otherwise, there exist a y; € Y and some (¢,y1) € K N P~!(y;) such that
(a(y1), 1) > (e, 1)
According to our assumption, we have
(q(y1),y1) > (c;y1) = (b(y1), y1)-
Then by [3} Lemma 3.4], there is a strictly order-preserving continuous path
J:[0,1] — A(yr) with J(0) = (b(y1), y1) and J(1) = (q(y1), 91)- (3.8)

Since (q(y1),y1) > (¢, y1), by the strongly order-preserving property of II; and the
comparability of I'; with respect to II;, we have that there exists a neighborhood
U of q(y1) such that

Htl (Ua yl) > Ht1 (Ca yl) Z Ftl (Ca yl) = (U(tlvca yl)’yl : tl)
for some ¢; > ty. Denote ¢ = v(t1,¢,y1) and yo = y1 - t1. Then (¢,y2) € K and
(u(ts,U,y1),y2) > (¢,92)- (3.9)

Note that U is a neighborhood of ¢(y;). Then due to (3.8) we can find a point
¢1(y1) € UN A(y1) with q1(y1) < q(y1). Thus, by (3.9) we obtain

(q(y2),y2) > (q1(y2),y2) > (€, y2).

Since Of (0, yo) is uniformly stable, by Theorem K admits a flow extension
which is minimal. Thus for any ¢ € R, there is ¢,, — +o00 such that ¢, +t > 0 and

Ftn Ort(éa y2) i Ft(éa y?), n — oo.
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Then the monotonicity and the comparability of I'; with respect to II; imply that

I, o Me(q1(y2), y2) = 1L, o ILe(C,y2) > Ty, 0 T4(C, y2).
By letting n — oo in the above, we get I (q1(y2),y2) > T'(E,y2), thus,

u(t7QI(y2)ay2) Z ’U(t76a 92)7 vt eR. (310)
Note that Off (q1(y2), y2) is uniformly stable, by Theorem we obtain
u(t,q1(y),y) =q1(y-t) forany y €Y and t € R. (3.11)

So combining (3.10)), (3.11]) and the comparability of I'; with respect to II;, similarly
as the proof of Lemmal3.2] we can get that for any ¢ € R, there exist a neighborhood
U, of ¢1(y2) and a neighborhood V; of ¢ such that

U(t, Uta y2> > U(tu ‘/t? y2)

In particular, for ¢ = 0, there exist a neighborhood Uy of ¢1(y2) and a neighborhood
Vo of ¢ such that

(U07y2) > (‘/07 yZ) (312)
Recall that K is the omega-limit set of (zg, yo) for I'y, there exists some sequence
t, — +oo such that T'y (zo,y0) — (G,y2) € K, as n — oo. Also, since ¢;() is a

1-cover for II;, we get Il (¢1(y0), yo) — (q1(y2),y2), as n — oo. So by (3.12)) there
exists N > 1 such that

iy (q1(y0)s yo) > Tty (w0, Yo)- (3.13)

Then by a similar argument in the proof of [3, Theorem 4.3], we can get that
(1(y),y) > KNP '(y) forallyey.

For the sake of completeness, we include a detailed proof here. As a matter of fact,
by the monotonicity of II; and the comparability of I'; with respect to I, it follows

from (3.13) that
iy en (q1(%0), v0) = Lty (20, ¥0) > Tigty (To,90), Yt > 0. (3.14)

For any (z,y) € K, there exists s, — +oo such that T, (zo,y0) — (x,9), as
n — oo. Lett = s, —ty in for all n sufficiently large. Then we get
Hsn (Q1(y0)7yo) Z an (x()?y()); Letting n — +OO, Ope has ((]1(?4)73/) Z (.’E,y) By
the arbitrariness of (z,y) € K, we get (¢1(y),y) > KN P~1(y) for all y € Y. This
contradicts the definition of ¢(-). So we have proved the assertion, and K is a

1-cover of Y for I';. [l

Proof of Theorem[2.1. Let v(t,-,vo;d, F) be an L*°-bounded solution of in
X4. Then from the study in [I2] and a priori estimates for parabolic equations, it
follows that v is a globally defined classical solution in X, and {v(¢,-,vg;d, F) :
t > 7} is precompact in X for some 7 > 0. So K := wr (v, (d, F)) is a nonempty
compact set in Xy x H(d, F'). Since 0(-) € Cy by (H2),

KNP ' (y) > (0,y) € Aly), WyeY.

If vw(t, -, vo; d, F) is uniformly stable, then by Proposition we get that Kisal-
cover of Q) for T';, and thus the uniformly stable L*>*-bounded solution v(t, -, vo; d, F)
is asymptotic to an almost periodic solution. ([
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