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EXISTENCE AND STABILITY OF SOLUTIONS TO
NONLINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

IN β-NORMED SPACES

JINRONG WANG, YURUO ZHANG

Abstract. In this article, we consider nonlinear impulsive differential equa-

tions in β-normed spaces. We give new concepts of β-Ulam’s type stability.

Also we present sufficient conditions for the existence of solutions for impulsive
Cauchy problems. Then we obtain generalized β-Ulam-Hyers-Rassias stabil-

ity results for the impulsive problems on a compact interval. An example

illustrates our main results.

1. Introduction

In the past decades, many researchers studied differential equations with instan-
taneous impulses of the type

x′(t) = f(t, x(t)), t ∈ J ′ := J \ {t1, . . . , tm}, J := [0, T ],

x(t+k ) = x(t−k ) + Ik(x(t−k )), k = 1, 2, . . . ,m.
(1.1)

where f : J × R → R and Ik : R → R and tk satisfy 0 = t0 < t1 < · · · < tm <
tm+1 = T , x(t+k ) = limε→0+ x(tk + ε) and x(t−k ) = limε→0− x(tk + ε) represent the
right and left limits of x(t) at t = tk respectively. Here, Ik is a sequence of instan-
taneously impulse operators and have been used to describe abrupt changes such
as shocks, harvesting, and natural disasters. For more existence, stability and pe-
riodic solutions on (1.1) and other impulsive models, one can read the monographs
of [3, 6, 29].

In pharmacotherapy, the above instantaneous impulses can not describe the cer-
tain dynamics of evolution processes. For example, one considers the hemodynamic
equilibrium of a person, the introduction of the drugs in the bloodstream and the
consequent absorption for the body are gradual and continuous process. So we
do not expect to use (1.1) to describe such process. In fact, the above situation
should be shown by a new case of impulsive action, which starts at an arbitrary
fixed point and stays active on a finite time interval. From the viewpoint of general
theories, Hernández and O’Regan [12] initially offered to study a new class of ab-
stract semilinear impulsive differential equations with not instantaneous impulses
in a PC-normed Banach space. Meanwhile, Pierri et al. [24] continue the work in
a PCα-normed Banach space and develop the results in [12].
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Motivated by [12, 24, 27, 28, 31], we continue to study existence and uniqueness of
solutions to differential equations with not instantaneous impulses in a Pβ-normed
Banach space (see Section 2) of the form

x′(t) = f(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
(1.2)

where ti, si are pre-fixed numbers satisfying 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < sm−1 ≤
tm ≤ sm ≤ tm+1 = T , f : [0, T ] × R → R is continuous and gi : [ti, si] × R → R is
continuous for all i = 1, 2, . . . ,m. An improved existence and uniqueness result is
obtained.

It is remarkable that Ulam type stability problems [30] have attracted many
famous researchers. The readers can refer to monographs of Cădariu [7], Hyers
[13, 14], Jung [17, 18], Rassias [26] and other recent works [1, 2, 9, 10, 11, 15, 16,
19, 20, 21, 22, 23, 25] in standard normed spaces and [8, 32] in β-normed spaces.

We introduce some auxiliary facts and offer four new concepts of β-Ulam’s type
stability for (1.2) (see Definitions 2.3–2.6). This is our main original contribution of
this paper. It is quite useful in many applications such as numerical analysis, opti-
mization, biology and economics, where finding the exact solution is quite difficult.
As a result, existence and uniqueness and a generalized β-Ulam’s type stability
result on a compact interval are established. An example is given to illustrate our
main results.

2. Preliminaries

Definition 2.1. (see Jung et al. [16] or Balachandran [4]) Suppose E is a vector
space over K. A function ‖ · ‖β (0 < β ≤ 1) : E → [0,∞) is called a β-norm if and
only if it satisfies (i) ‖x‖β = 0 if and only if x = 0; (ii) ‖λx‖β = |λ|β‖x‖β for all
λ ∈ K and all x ∈ E; (iii) ‖x+ y‖β ≤ ‖x‖β + ‖y‖β . The pair (E, ‖ · ‖β) is called a
β-normed space. A β-Banach space is a complete β-normed space.

Throughout this paper, let J = [0, T ], β ∈ (0, 1) be a fixed constant and C(J,R)
be the Banach space of all continuous functions from J into R with the new norm
‖x‖β := max{|x(t)|β : t ∈ J} for x ∈ C(J,R). For example, ‖z‖ 1

2
=
√
e for

z = t, t ∈ [0, e]. We need the Pβ-Banach space PC(J,R) := {x : J → R : x ∈
C((tk, tk+1],R), k = 0, 1, . . . ,m and there exist x(t−k ) and x(t+k ), k = 1, . . . ,m,
with x(t−k ) = x(tk)} with the norm ‖x‖Pβ := sup{|x(t)|β : t ∈ J}. For example,
‖z‖P 1

2
= e for z = t, t ∈ [0, 1] and z = et, t ∈ (1, 2]. Meanwhile, we set PC1(J,R) :=

{x ∈ PC(J,R) : x′ ∈ PC(J,R)} with ‖x‖Pβ1 := max{‖x‖β , ‖x′‖β}. Clearly,
PC1(J,R) endowed with the norm ‖ · ‖Pβ1 is a Pβ-Banach space.

Definition 2.2 ([12]). A function x ∈ PC1(J,R) is called a solution of the problem

x′(t) = f(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,

x(0) = x0, x0 ∈ R,
(2.1)

if x satisfies

x(0) = x0;

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m;
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x(t) = x0 +
∫ t

0

f(s, x(s))ds, t ∈ [0, t1];

x(t) = gi(si, x(si)) +
∫ t

si

f(s, x(s))ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

In general, we do not expect to get a precise solution of (2.1). However, we can
try to get a function which satisfies some suitable approximation inequalities.

Let 0 < β < 1, ε > 0, ψ ≥ 0 and ϕ ∈ PC(J,R+). We consider the following
inequalities:

|y′(t)− f(t, y(t))| ≤ ε, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|y(t)− gi(t, y(t))| ≤ ε, t ∈ (ti, si], i = 1, 2, . . . ,m,
(2.2)

and
|y′(t)− f(t, y(t))| ≤ ϕ(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|y(t)− gi(t, y(t))| ≤ ψ, t ∈ (ti, si], i = 1, 2, . . . ,m,
(2.3)

and
|y′(t)− f(t, y(t))| ≤ εϕ(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|y(t)− gi(t, y(t))| ≤ εψ, t ∈ (ti, si], i = 1, 2, . . . ,m.
(2.4)

Next, our aim is to find a solution y(·) close to the measured output x(·) and
whose closeness is defined in the sense of β-Ulam’s type stabilities.

Definition 2.3. Equation (1.2) is β-Ulam-Hyers stable if there exists a real number
cf,β,gi,ϕ > 0 such that for each ε > 0 and for each solution y ∈ PC1(J,R) of (2.2)
there exists a solution x ∈ PC1(J,R) of (1.2) with

|y(t)− x(t)|β ≤ cf,β,gi,ϕε
β , t ∈ J.

Definition 2.4. Equation (1.2) is generalized β-Ulam-Hyers stable if there exists
θf,β,gi,ϕ ∈ C(R+,R+), θf,β,gi,ϕ(0) = 0 such that for each solution y ∈ PC1(J,R)
of (2.2) there exists a solution x ∈ PC1(J,R) of (1.2) with

|y(t)− x(t)|β ≤ θf,β,gi,ϕ(εβ), t ∈ J.

Definition 2.5. Equation (1.2) is β-Ulam-Hyers-Rassias stable with respect to
(ϕ,ψ) if there exists cf,β,gi,ϕ > 0 such that for each ε > 0 and for each solution
y ∈ PC1(J,R) of (2.4) there exists a solution x ∈ PC1(J,R) of (1.2) with

|y(t)− x(t)|β ≤ cf,β,gi,ϕε
β(ψβ + ϕβ(t)), t ∈ J.

Definition 2.6. Equation (1.2) is generalized β-Ulam-Hyers-Rassias stable with re-
spect to (ϕ,ψ) if there exists cf,β,gi,ϕ > 0 such that for each solution y ∈ PC1(J,R)
of (2.3) there exists a solution x ∈ PC1(J,R) of (1.2) with

|y(t)− x(t)|β ≤ cf,β,gi,ϕ(ψβ + ϕβ(t)), t ∈ J.

Obviously, (i) Definition 2.3 implies Definition 2.4; (ii) Definition 2.5 implies
Definition 2.6; (iii) Definition 2.5 for ϕ(·) = ψ = 1 implies Definition 2.3; (iv)
Definitions 2.3-2.6 become to Ulam’s stability concepts in Wang et al. [31] when
β = 1 and si = ti.

Remark 2.7. A function y ∈ PC1(J,R) is a solution of (2.3) if and only if there
is G ∈ PC(J,R) and a sequence Gi, i = 1, 2, . . . ,m (which depend on y) such that

(i) |G(t)| ≤ ϕ(t), t ∈ J and |Gi| ≤ ψ, i = 1, 2, . . . ,m;
(ii) y′(t) = f(t, y(t)) +G(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m;
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(iii) y(t) = gi(t, y(t)) +Gi, t ∈ (ti, si], i = 1, 2, . . . ,m.

By Remark 2.7 we get the following results.

Remark 2.8. If y ∈ PC1(J,R) is a solution of (2.3) then y is a solution of the
integral inequality

|y(t)− gi(t, y(t))| ≤ ψ, t ∈ (ti, si], i = 1, 2, . . . ,m;∣∣y(t)− y(0)−
∫ t

0

f(s, y(s))ds
∣∣ ≤ ∫ t

0

ϕ(s)ds, t ∈ [0, t1];

∣∣y(t)− gi(si, y(si))−
∫ t

si

f(s, y(s))ds
∣∣ ≤ ψ +

∫ t

si

ϕ(s)ds,

t ∈ [si, ti+1], i = 1, 2, . . . ,m.

(2.5)

We can give similar remarks for the solutions of the inequalities (2.2) and (2.4).
To study Ulam’s type stability, we need the following integral inequality results (see
[5, Theorem 16.4]).

Lemma 2.9. (i) Let the following inequality holds

u(t) ≤ a(t) +
∫ t

0

b(s)u(s)ds, t ≥ 0,

where u, a,∈ PC(R+,R+), a is nondecreasing and b(t) > 0. Then, for t ∈ R+,

u(t) ≤ a(t) exp
(∫ t

0

b(s)ds
)
.

(ii) Assume

u(t) ≤ a(t) +
∫ t

0

b(s)u(s)ds+
∑

0<tk<t

βku(t−k ), t ≥ 0,

where u, a, b ∈ PC(R+,R+), a is nondecreasing and b(t) > 0, βk > 0, k ∈
{1, . . . ,m}. Then, for t ∈ R+,

u(t) ≤ a(t)(1 + β)k exp
(∫ t

0

b(s)ds
)
, t ∈ (tk, tk+1], k ∈ {1, . . . ,m},

where β = supk∈{1,...,m}{βk}.

3. Main results

We use the following assumptions:
(H1) f ∈ C(J × R,R).
(H2) There exists a positive constant Lf such that

|f(t, u1)− f(t, u2)| ≤ Lf |u1 − u2|,

for each t ∈ J and all u1, u2 ∈ R.
(H3) gi ∈ C([ti, si] × R,R) and there are positive constants Lgi

, i = 1, 2, . . . ,m
such that

|gi(t, u1)− gi(t, u2)| ≤ Lgi
|u1 − u2|,

for each t ∈ [ti, si] and all u1, u2 ∈ R.
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(H4) : Let ϕ ∈ C(J,R+) be a nondecreasing function. There exists cϕ > 0 such
that ∫ t

0

ϕ(s)ds ≤ cϕϕ(t),

for each t ∈ J .
Concerning the existence and uniqueness result for the solutions to (2.1), we give

the following theorem.

Theorem 3.1. Assume that (H1)–(H3) are satisfied. Then (2.1) has a unique
solution x provided that

% := max{Lβgi
+ Lβf (ti+1 − si)β , Lβf t

β
1 : i = 1, 2, . . . ,m} < 1. (3.1)

Proof. Consider a mapping F : PC(J,R)→ PC(J,R) defined by

(Fx)(0) = x0;

(Fx)(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m;

(Fx)(t) = x0 +
∫ t

0

f(s, x(s))ds, t ∈ [0, t1];

(Fx)(t) = gi(si, x(si)) +
∫ t

si

f(s, x(s))ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

Obviously, F is well defined.
For any x, y ∈ PC(J,R) and t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have

|(Fx)(t)− (Fy)(t)| ≤ Lgi |x(si)− y(si)|+ Lf

∫ t

si

|x(s)− y(s)|ds

≤ Lgi
‖x− y‖C + Lf

∫ t

si

max
t∈[si,ti+1]

|x(s)− y(s)|ds

≤ Lgi‖x− y‖C + Lf (ti+1 − si)‖x− y‖PC ,
which implies

|(Fx)(t)− (Fy)(t)|β ≤ Lβgi
‖x− y‖Pβ + Lβf (ti+1 − si)β‖x− y‖Pβ .

This reduces to

‖Fx− Fy‖Pβ ≤
(
Lβgi

+ Lβf (ti+1 − si)β
)
‖x− y‖Pβ , t ∈ (si, ti+1].

Proceeding as above, we obtain that

‖Fx− Fy‖Pβ ≤ Lβf t
β
1‖x− y‖Pβ , t ∈ [0, t1],

‖Fx− Fy‖Pβ ≤ Lβgi
‖x− y‖Pβ , t ∈ (ti, si], i = 1, 2, . . . ,m.

From the above facts, we have

‖Fx− Fy‖Pβ ≤ %‖x− y‖Pβ ,
where % is defined in (3.1). Finally, we can deduce that F is a contraction mapping.
Then, one can derive the result immediately. �

Next, we discuss hte stability of (1.2) by using the concept of generalized β-
Ulam-Hyers-Rassias in the above section.

Theorem 3.2. Assume that (H1)-(H4) and (3.1) are satisfied. Then (1.2) is gen-
eralized β-Ulam-Hyers-Rassias stable with respect to (ϕ,ψ).
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Proof. Let y ∈ PC1(J,R) be a solution of (2.3). Denote by x the unique solution
of the impulsive Cauchy problem

x′(t) = f(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,

x(0) = y(0).
(3.2)

Then we obtain

x(t) =


gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . ,m;
y(0) +

∫ t
0
f(s, x(s))ds, t ∈ [0, t1];

gi(si, x(si)) +
∫ t
si
f(s, x(s))ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

Keeping in mind (2.5), for each t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have

∣∣y(t)− gi(si, y(si))−
∫ t

si

f(s, y(s))ds
∣∣ ≤ ψ +

∫ t

si

ϕ(s)ds ≤ ψ + cϕϕ(t),

and for t ∈ (ti, si], i = 1, 2, . . . ,m, we have

|y(t)− gi(t, y(t))| ≤ ψ,

and for t ∈ [0, t1], we have

∣∣y(t)− y(0)−
∫ t

0

f(s, y(s))ds
∣∣ ≤ cϕϕ(t).

Hence, for each t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have

|y(t)− x(t)|

=
∣∣y(t)− gi(si, x(si))−

∫ t

si

f(s, x(s))ds
∣∣

≤
∣∣y(t)− gi(si, y(si))−

∫ t

si

f(s, y(s))ds
∣∣∣

+
∣∣gi(si, y(si))− gi(si, x(si))

∣∣∣+
(∫ t

si

|f(s, y(s))− f(s, x(s))|ds
)

≤ (1 + cϕ)[ψ + ϕ(t)] + Lgi |y(si)− x(si)|+
∫ t

si

Lf |y(s)− x(s)|ds

≤ (1 + cϕ)[ψ + ϕ(t)] +
∑

0<si<t

Lgi
|y(si)− x(si)|+

∫ t

0

Lf |y(s)− x(s)|ds.

Clearly, a(t) := (1 + cϕ)[ψ + ϕ(t)], t ∈ (si, ti+1], is nondecreasing and a ∈
PC(R+,R+). By Lemma 2.9 (ii), we obtain

|y(t)− x(t)| ≤ (1 + cϕ)[ψ + ϕ(t)](1 + Lg)i exp
(∫ t

0

Lfds
)

≤ (1 + cϕ)[ψ + ϕ(t)](1 + Lg)i exp
(
Lf ti+1

)
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where Lg = max{Lg1 , Lg2 , . . . , Lgm
}. Thus,

|y(t)− x(t)|β ≤
[
(1 + cϕ)[ψ + ϕ(t)](1 + Lg)i exp

(
Lf ti+1

)]β
≤
[
(1 + cϕ)(1 + Lg)i exp

(
Lf ti+1

)]β [ψ + ϕ(t)]β

≤
[
(1 + cϕ)(1 + Lg)i exp

(
Lf ti+1

)]β(ψβ + ϕ(t)β),

(3.3)

for t ∈ (si, ti+1], i = 1, 2, . . . ,m.
Further, for t ∈ (ti, si], i = 1, 2, . . . ,m, we have

|y(t)− x(t)|β ≤ |y(t)− gi(t, x(t))|β

≤ |y(t)− gi(t, y(t))|β + |gi(t, y(t))− gi(t, x(t))|β

≤ ψβ + Lβgi
|y(t)− x(t)|β ,

which yields

|y(t)− x(t)|β ≤ 1

1− Lβgi

ψβ . ((3.1) implies Lβgi
< 1) (3.4)

Moreover, for t ∈ [0, t1], we have

|y(t)− x(t)| =
∣∣y(t)− y(0)−

∫ t

0

f(s, x(s))ds
∣∣

≤
∣∣y(t)− y(0)−

∫ t

0

f(s, y(s))ds
∣∣+
(∫ t

0

|f(s, y(s))− f(s, x(s))|ds
)

≤ cϕϕ(t) +
∫ t

0

Lf |y(s)− x(s)|ds.

By Lemma 2.9 (i), we obtain

|y(t)− x(t)| ≤ cϕϕ(t) exp
(∫ t

0

Lfds
)

≤ cϕϕ(t) exp
(
Lf t1

)
.

Thus, we obtain

|y(t)− x(t)|β ≤
[
cϕϕ(t) exp

(
Lf t1

)]β
≤
[
cϕ exp

(
Lf t1

)]β
ϕ(t)β , t ∈ [0, t1].

(3.5)

Summarizing, we combine (3.3), (3.4) and (3.5) and derive that

|y(t)− x(t)|β ≤
([

(1 + cϕ)(1 + Lg)i exp
(
Lf ti+1

)]β
+

1

1− Lβgi

+
[
cϕ exp

(
Lf t1

)]β)(ψβ + ϕβ(t))

:= cf,β,gi,ϕ(ψβ + ϕβ(t)), t ∈ J,

which implies that (1.2) is generalized β-Ulam-Hyers-Rassias stable with respect to
(ϕ,ψ). The proof is complete. �
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4. An example

Consider the nonlinear differential equation, without instantaneous impulses,

x′(t) =
1

1 + 15et
arctan(t2 + x(t)), t ∈ (0, 1],

x(t) =
1

15 + t2
ln(x(t) + 1), t ∈ (1, 2],

(4.1)

and inequalities∣∣y′(t)− 1
1 + 15et

arctan(t2 + y(t))
∣∣ ≤ et, t ∈ (0, 1],∣∣y(t)− 1

15 + t2
ln(y(t) + 1)

∣∣ ≤ 1, t ∈ (1, 2].
(4.2)

Set J = [0, 2], 0 = s0 < t1 = 1 < s1 = 2 and β = 1
2 . Denote f(t, x(t)) =

1
(1+15et) arctan(t2+x(t)) with Lf = 1/16 for t ∈ (0, 1] and g1(t, x(t)) = 1

15+t2 ln(x(t)+
1) with Lg1 = 1/16 for t ∈ (1, 2]. We put ϕ(t) = et and ψ = 1.

Let y ∈ PC1([0, 2],R) be a solution of the inequality (4.2). Then there exist
G(·) ∈ PC1([0, 2],R) and G1 ∈ R such that |G(t)| ≤ et, t ∈ (0, 1], |G1| ≤ 1,
t ∈ (1, 2], and

y′(t) =
1

1 + 15et
arctan(t2 + y(t)) +G(t), t ∈ (0, 1],

y(t) =
1

15 + t2
ln(y(t) + 1) +G1, t ∈ (1, 2].

(4.3)

For t ∈ [0, 1], integrating (4.3) from 0 to t, we have

y(t) = y(0) +
∫ t

0

( 1
1 + 15es

arctan(s2 + y(s)) +G(s)
)
ds.

For t ∈ (1, 2], we have

y(t) =
1

15 + t2
ln(y(t) + 1) +G1.

For
x′(t) =

1
1 + 15et

arctan(t2 + x(t)), t ∈ (0, 1],

x(t) =
1

15 + t2
ln(x(t) + 1), t ∈ (1, 2],

x(0) = y(0),

(4.4)

all the conditions in Theorem 3.1 are satisified. Thus, (4.4) has a unique solution.
Let us take the solution x of (4.4) given by

x(t) = y(0) +
∫ t

0

1
1 + 15es

arctan(s2 + x(s))ds, t ∈ (0, 1],

x(t) =
1

15 + t2
ln(x(t) + 1), t ∈ (1, 2].

For t ∈ (0, 1], we have

|y(t)− x(t)|1/2 ≤ [cϕ exp
(
Lf t1

)
]βϕ(t)β

≤ [cϕ exp
(
Lf t1

)
]1/2et/2

= e1/32et/2.



EJDE-2014/83 EXISTENCE AND STABILITY OF SOLUTIONS 9

For t ∈ (1, 2], we have

|y(t)− x(t)|1/2 ≤ 1
4
|y(t)− x(t)|1/2 + 1,

which yields

|y(t)− x(t)|1/2 ≤ 4
3
.

Summarizing, we have

|y(t)− x(t)|1/2 ≤ 4
3

(1 + et/2), t ∈ J.

So the equation (4.1) is generalized 1
2 -Ulam-Hyers-Rassias stable with respect to

(et/2, 1).
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[7] L. Cădariu; Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Ed. Univ. Vest
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[25] D. Popa, I. Raşa; On the Hyers-Ulam stability of the linear differential equation, J. Math.

Anal. Appl., 381(2011), 530-537.

[26] Th. M. Rassias; On the stability of linear mappings in Banach spaces, Proc. Amer. Math.
Soc., 72(1978), 297-300.

[27] I. A. Rus; Ulam stability of ordinary differential equations, Studia Univ. “Babeş Bolyai”
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