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DYNAMICS OF LOGISTIC SYSTEMS DRIVEN BY LÉVY NOISE
UNDER REGIME SWITCHING

RUIHUA WU, XIAOLING ZOU, KE WANG

Abstract. This article concerns the stochastic logistic models under regime

switching with Lévy noise. In the model, the color noise and Lévy noise are

taken into account at the same time. This model is new and more feasible and
more accordance with the actual. Some dynamical behaviors are investigated

and sufficient conditions for stochastic permanence, extinction, non-persistence
in the mean and weak persistence are established. The critical value among the

extinction, non-persistence in the mean and weak persistence is obtained. Our

results demonstrate that the asymptotic properties of the model have close
relations with the Lévy noise and stationary distribution of the color noise.

1. Introduction

Due to the importance in both ecology and mathematical ecology, the logistic
model has been studied a lot, and many results have been reported, see [9, 10, 12,
15, 16, 17, 18, 19, 20, 21] and the references cited therein. The classical autonomous
logistic equation is expressed by

ẋ(t) = x(t)
[
b− ax(t)

]
(1.1)

for t ≥ 0 with initial value x(0) > 0. In this model, x(t) is the population size at
time t, b denotes the intrinsic growth rate and b/a is the carrying capacity. How-
ever, in the real world the population systems are inevitably subject to stochastic
environmental noise which is important in ecosystem (see e.g. Gard [7, 8]). If
environmental noise is taken into account, the system will change significantly.

In practice, population systems may suffer from sudden environmental shocks,
e.g., ocean red tide, soaring, tsunami, earthquakes, hurricanes, epidemics and so
on, see [3, 4]. These events are so abrupt that they break the continuity of the
solution. So models with only white noise can not explain these phenomena. In
this case, introducing Lévy noise into the underlying population models may be a
reasonable way to describe these phenomena, see [3, 4, 22]. Incorporating the effect
of Lévy noise, model (1.1) changes into

dx(t) = x(t−)
[(
b− ax(t−)

)
dt+ σx(t−)dB(t) +

∫
Y
γ(u)N(dt,du)

]
. (1.2)
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In the model, x(t−) denotes the left limit of x(t). B(t) is a standard Brownian
motion defined on a complete probability space (Ω,F , {Ft}t≥0,P) with a filtration
{Ft}t≥0 satisfying the usual conditions, σ2 denotes the intensity of the noise. N is
a Poisson counting measure with characteristic measure λ on a measurable subset
Y of (0,∞) with λ(Y) <∞, Ñ(dt, du) = N(dt,du)− λ(du)dt is the corresponding
martingale measure. The pair (B,N) is called a Lévy noise.

Models with Lévy noise have received considerable attention in recent years.
Many scholars have examined the effects of Lévy noise on the population model.
The famous result is that Mao, Marion, Renshaw [25] showed the environmental
Brownian noise suppresses explosion in population dynamics. Bao et al. [3, 4]
studied Lotka-Voterra population dynamics with Lévy noise, and analyzed the im-
pacts of Lévy noise on the population dynamics. Since then, Liu and Wang [22]
investigated the Leslie-Gower Holling-type II predator-prey system with Lévy noise.
About the knowledge of Lévy noise, Situ [28], Applebaum [2] and Kunita [11] are
all good references.

Now let us take a further step by considering another important type of environ-
mental noise, the color noise, also called telegraph noise [24, 30]. The color noise
can be regarded as a switching between two or more regimes of environment, which
differ by factors such as rain falls or nutrition [5, 29]. Since the switching among the
different environments is memoryless and the waiting time for the next switch has
an exponential distribution, we can make use of a right-continuous Markov chain
r(t) with finite state space S = {1, . . . , N} to model the regime switching. So far
as our knowledge is concerned, the models which consider Lévy noise and the color
noise at the same time have not been reported, not to mention the properties of
the solution.

Inspired by the above discussions, we impose the color noise into model (1.2)
and obtain the model

dx(t) = x(t−)
[(
b(r(t))− a(r(t))x(t−)

)
dt+ σ(r(t))x(t−)dB(t)

+
∫

Y
γ(r(t), u)N(dt, du)

]
.

(1.3)

As pointed out in [20], the mechanism of the ecosystem described by (1.3) can be
explained by follows. If the initial state r(0) = i ∈ S, then (1.3) obeys

dx(t) = x(t−)
[(
b(i)− a(i)x(t−)

)
dt+ σ(i)x(t−)dB(t) +

∫
Y
γ(i, u)N(dt, du)

]
till time τ1 when the Markov chain switches to r(1) = j ∈ S from r(0); then the
system obeys

dx(t) = x(t−)
[(
b(j)− a(j)x(t−)

)
dt+ σ(j)x(t−)dB(t) +

∫
Y
γ(j, u)N(dt,du)

]
until the next switching. The system will continue to switch as long as the Markov
chain switches. The Markov chain has significant impacts on the population dynam-
ics. Takeuchi et al. [30] considered a two-dimensional autonomous Lotka-Volterra
predator-prey system with regime switching and showed that the stochastic popu-
lation system is neither permanent nor dissipative (see [6]) which is an important
result because it reveals the significant effect of the environmental noise to the pop-
ulation system: both its subsystems develop periodically but switching between
them makes them become neither permanent nor dissipative.
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In this article, we attempt to explore the effects of the color noise and Lévy
noise on the dynamical properties of system (1.3). As we know that, the extinction
and stochastic permanence are two important and interesting properties in the
biomathematics, and the threshold value of extinction and survival is valuable in
practice. So in this paper we consider the extinction and stochastic permanence of
system (1.3), and try to give the threshold value of extinction and survival.

2. Global positive solutions

Throughout this paper, we assume mink∈S a(k) > 0. For the biological back-
ground, (see [34]), we assume γ(k, u) > −1, for all k ∈ S, u ∈ Y. Write R+ = [0,∞).
Moreover, for a matrix or vector G, G� 0 means all elements of G are positive.

Let r(t) be a right-continuous Markov chain taking values in a finite state space
S = {1, 2, . . . , N} with the generator Q = (qij)N×N given by

P = {r(t+ ∆t) = j|r(t) = i} =

{
qij∆t+ o(∆t), if j 6= i;
1 + qii∆t+ o(∆t), if j = i,

where ∆t > 0, qij ≥ 0 is transition rate from i to j if i 6= j while
∑N
j=1 qij = 0.

Further assume that Markov chain r(t) is irreducible which means that the system
can switch from any regime to any other regime. It is known that (see [1]) the
irreducibility implies that the Markov chain has a unique stationary distribution
π = (π1, π2, . . . , πN ) ∈ R1×N satisfying

πQ = 0 (2.1)

and
N∑
i=1

πi = 1 and πi > 0, ∀i ∈ S.

In the sequel, for convenience and simplicity, we adopt the following symbols:

f̂ = min
k∈S

f(k), f̌ = max
k∈S

f(k), f(t) = t−1

∫ t

0

f(s)ds,

f∗ = lim sup
t→+∞

f(t), f∗ = lim inf
t→+∞

f(t).

Due to biology, for model (1.3), we are only interested in positive solutions.
For the jump-diffusion coefficient, we assume
(A1) There exists a positive constant c such that∫

Y

[
ln(1 + γ(i, u))

]2
λ(du) < c, for all i ∈ S.

About the rationality and biological significance of this assumption, the readers can
refer to [34].

Before we consider the properties of the solutions, first we should guarantee the
existence of positive solutions. We have the following result.

Theorem 2.1. Under Assumption (A1), for any initial value r(0) ∈ S and x(0) >
0, Equation (1.3) admits a unique positive solution x(t) on t ≥ 0.

Proof. Our proof is motivated by Bao and Yuan [4]. Since the coefficients of the
equation are local Lipschitz continuous, then for any initial data x(0) > 0, Equation
(1.3) has a unique local solution x(t) on [0, τe), where τe is the explosion time [2].
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To show this solution is global, we only need to show that τe =∞. Let k0 > 0 be so
large that x(0) ∈ [1/k0, k0]. For each integer k > k0, define a sequence of stopping
time expressed by

τk = inf{t ∈ [0, τe) : x(t) /∈ (1/k, k)}.

So τk is increasing as k →∞. Let τ∞ = lim
k→∞

τk, then τ∞ ≤ τe a.s. If we can show

τ∞ = ∞, then τe = ∞. Namely, if we have τ∞ = ∞, then we complete the proof.
For any p ∈ (0, 1), define a C2-function V : R+ → R+ by

V (x) = xp. (2.2)

Let T > 0 be arbitrary, for any 0 ≤ t ≤ τk ∧ T , applying generalized Itô formula
with jumps results in

dV (x(t))

= pxp−1
[
x(b(r(t))− a(r(t))x)dt+ σ(r(t))x2dB(t)

]
+

1
2
p(p− 1)xp−2σ2(r(t))x4dt+

∫
Y

[
(x+ xγ(r(t), u))p − xp

]
N(dt, du)

= xp
[1

2
p(p− 1)σ2(r(t))x2 − pa(r(t))x+ pb(r(t))

+
∫

Y

[
(1 + γ(r(t), u))p − 1

]
λ(du)

]
dt

+ xp
∫

Y

[
(1 + γ(r(t), u))p − 1

]
Ñ(dt,du) + pσ(r(t))xp+1dB(t)

= LV (x(t))dt+ xp
∫

Y

[
(1 + γ(r(t), u))p − 1

]
Ñ(dt, du) + pσ(r(t))xp+1dB(t),

(2.3)
where

LV (x) = xp
[1

2
p(p− 1)σ2(r(t))x2 − pa(r(t))x+ pb(r(t))

+
∫

Y

[
(1 + γ(r(t), u))p − 1

]
λ(du)

]
≤ xp

[1
2
p(p− 1)(σ̂)2x2 − pâx+ pb̌+

∫
Y

[
(1 + γ̌(u))p − 1

]
λ(du)

]
.

(2.4)

Here, for simplicity, we omit t− in x(t−). By the value p ∈ (0, 1), there exists a
constant M such that

LV (x) ≤M. (2.5)

For each u > 0, define
µ(u) = inf{V (x), |x| ≥ u}.

It is easy to see that
lim
u→∞

µ(u) =∞. (2.6)

Using (2.5) it follows that

µ(k)P(τk ≤ T ) ≤ E
(
V
(
x(τk)

)
Iτk≤T

)
≤ EV

(
x(τk ∧ T )

)
≤MT.

Letting k →∞ and using (2.6), it results that P(τ∞ ≤ T ) = 0. By the arbitrariness
of T , we must have P(τ∞ =∞) = 1. This completes the proof. �



EJDE-2014/76 DYNAMICS OF LOGISTIC SYSTEMS 5

Now, it follows that system (1.3) admits a unique global positive solution. From
the biological point of view, the nonexplosion property and positivity in a popu-
lation dynamical system are often not good enough. Further, in the next we will
investigate asymptotic properties of the solutions.

3. Critical value between extinction and persistence

In the next we present a lemma which plays important roles in our paper.

Lemma 3.1 ([14]). Suppose that M(t), t ≥ 0, is a local martingale with M(0) = 0.
Then

lim
t→+∞

ρM (t) <∞ ⇒ lim
t→+∞

M(t)
t

= 0 a.s.,

where

ρM (t) =
∫ t

0

d〈M〉(s)
(1 + s)2

, t ≥ 0

and 〈M〉(t) is Meyer’s angle bracket process (see e.g. [11])

In the sequel, we will consider long time behaviors of the positive solutions which
are important in applications, because they can predict the future properties of the
solutions. First, we give several definitions, then we will try to illustrate sufficient
conditions for them.

Definition 3.2 ([17]). Let x(t) be the solution of (1.3),
(a) if limt→+∞ x(t) = 0, we call the species modeled by (1.3) is extinction.
(b) if limt→+∞ x(t) = limt→+∞ t−1

∫ t
0
x(s)ds = 0, species modeled by (1.3) is

called non-persistence in the mean.
(c) if x∗ = lim supt→+∞ x(t) > 0, we call species modeled by (1.3) is weakly

persistence.

Definition 3.3 ([12]). The solutions x(t) of (1.3) are called stochastically ultimate
bounded, if for any initial value x(0) > 0, and for all ε ∈ (0, 1), there exists
H = Hε > 0, such that the solutions x(t) of (1.3) satisfy

lim sup
t→+∞

P[|x(t)| > H] < ε.

Definition 3.4 ([17]). The solution x(t) of (1.3) is said to be stochastically per-
manent, if for any ε ∈ (0, 1), there is a pair of positive constants H1 = H1(ε) and
H2 = H2(ε) such that

lim inf
t→+∞

P
[
|x(t)| ≤ H1

]
≥ 1− ε, lim inf

t→+∞
P
[
|x(t)| ≥ H2

]
≥ 1− ε.

where x(t) is an arbitrary solution of the equation with initial value x(0) > 0,
r(0) ∈ S.

From the above definitions we can see that extinction implies non-persistence in
the mean, stochastically ultimate boundedness means the solution will be ultimately
bounded with the large probability, and the stochastic permanence is the strongest
property, we will consider them one by one.

Theorem 3.5. Let Assumption (A1) hold, then for the initial value x(0) > 0 and
r(0) ∈ S, the solution x(t) of (1.3) satisfies

lim sup
t→∞

lnx(t)
t
≤

N∑
i=1

h(i)πi.
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Particularly, if
∑N
i=1 h(i)πi < 0, then species x(t) will go to extinction a.s., where

h(i) = b(i) +
∫

Y
(

ln(1 + γ(i, u))
)
λ(du).

Proof. For (1.3), applying generalized Itô’s formula with jumps to lnx yields

d lnx(t) =
1
x

[
x
(
b(r(t))− a(r(t))x

)
dt+ σ(r(t))x2dB(t)

]
+

1
2
· − 1

x2
σ2(r(t))x4dt

+
∫

Y

[
ln
(
x+ xγ(r(t), u)

)
− lnx

]
N(dt,du)

=
[
b(r(t))− a(r(t))x− 1

2
σ2(r(t))x2 +

∫
Y

(
ln(1 + γ(r(t), u))λ(du)

)]
dt

+ σ(r(t))xdB(t) +
∫

Y
ln
(
1 + γ(r(t), u)

)
Ñ(dt,du).

In other words,

lnx(t)− lnx(0)

=
∫ t

0

h(r(s))ds−
∫ t

0

a(r(s))x(s)ds− 1
2

∫ t

0

σ2(r(s))x2(s)ds

+
∫ t

0

σ(r(s))x(s)dB(s) +
∫ t

0

∫
Y

ln
(
1 + γ(r(s), u)

)
Ñ(ds,du)

=
∫ t

0

h(r(s))ds−
∫ t

0

a(r(s))x(s)ds− 1
2

∫ t

0

σ2(r(s))x2(s)ds+M(t) +Q(t).

(3.1)
Where M(t) =

∫ t
0
σ(r(s))x(s)dB(s), Q(t) =

∫ t
0

∫
Y ln

(
1 + γ(r(s), u)

)
Ñ(ds,du). The

quadratic variation of M(t) is

〈M(t),M(t)〉 =
∫ t

0

σ2(r(s))x2(s)ds.

By the exponential martingale inequality [27], for any positive numbers T, α and
β, we have

P
(

sup
0≤t≤T

[M(t)− α

2
〈M(t),M(t)〉] > β

)
≤ e−αβ .

Choose T = n, α = 1, β = 2 lnn, we have

P
(

sup
0≤t≤n

[M(t)− 1
2
〈M(t),M(t)〉] > 2 lnn

)
≤ 1
n2
.

Since
∑∞
n=1 1/n2 <∞, making using of Borel-Cantelli lemma [27] follows that for

almost all ω ∈ Ω, there is a random integer n0 = n0(ω) such that for n ≥ n0

sup
0≤t≤n

[
M(t)− 1

2
〈M(t),M(t)〉

]
≤ 2 lnn.

This is equivalent to

M(t) ≤ 2 lnn+
1
2
〈M(t),M(t)〉 = 2 lnn+

1
2

∫ t

0

σ2(r(s))x2(s)ds, (3.2)

for all 0 ≤ t ≤ n, n ≥ n0. Substituting (3.2) into (3.1) results in

lnx(t)− lnx(0) ≤
∫ t

0

h(r(s))ds−
∫ t

0

a(r(s))x(s)ds+ 2 lnn+Q(t). (3.3)
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On the other hand, by Assumption (A1),

〈Q(t), Q(t)〉 =
∫ t

0

∫
Y

[
ln(1 + γ((r(s)), u))

]2
λ(du)ds ≤ ct.

In view of Lemma 2, we obtain

lim
t→+∞

Q(t)
t

= 0 a.s. (3.4)

Dividing (3.3) by t, for n− 1 ≤ t ≤ n, n ≥ n0, we obtain

t−1
[

lnx(t)− lnx(0)
]
≤ 1
t

∫ t

0

h(r(s))ds− 1
t

∫ t

0

a(r(s))x(s)ds+
2 lnn
n− 1

+
Q(t)
t

≤ 1
t

∫ t

0

h(r(s))ds+
2 lnn
n− 1

+
Q(t)
t
.

Taking the superior limit and using (3.4) and the ergodic property of the Markov
chain, we follow our desired assertion. This completes the proof. �

Remark 3.6. It is evident that x(t) ≡ 0 is the trivial solution of (1.3), by Theorem
3.5, we conclude that if

∑N
i=1 h(i)πi < 0, the trivial solution of system (1.3) is almost

surely exponentially stable.

Theorem 3.7. If
∑N
i=1 h(i)πi = 0, then species modeled by (1.3) will be non-

persistence in the mean a.s.

Proof. By the fact that limt→+∞ t−1
∫ t
0
h(r(s))ds =

∑N
i=1 h(i)πi and (3.4), for all

ε > 0, there exists a positive constant T1, for t > T1 we have

t−1

∫ t

0

h(r(s))ds ≤
N∑
i=1

h(i)πi + ε/4 = ε/4, Q(t)/t ≤ ε/4.

Then, for T1 < t ≤ n, n ≥ n0, (3.3) changes into

lnx(t)− lnx(0) ≤ εt/2− â
∫ t

0

x(s)ds+ 2 lnn.

Note that for sufficiently large t with T1 < T < n − 1 ≤ t ≤ n, n ≥ n0, we have
(lnn)/t ≤ ε/4. So we follow that

lnx(t)− lnx(0) ≤ εt− â
∫ t

0

x(s)ds, t > T.

Using Lemma 2 [23], we have x∗ ≤ ε/â, by the arbitrariness of ε, we get our required
assertion. This completes the proof. �

Lemma 3.8. For any initial value x(0) > 0 and α(0) ∈ S, the solution x(t) of
(1.3) has the property

lim sup
t→+∞

lnx(t)
t
≤ 0 a.s. (3.5)

The proof of the above lemma is similar to that of [33, Theorem 3.3]; we omit it
here.

Theorem 3.9. If
∑N
i=1 h(i)πi > 0, then species modeled by (1.3) will be weak

persistence a.s.
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Proof. Suppose that the result is not true, then P(E) > 0, where E = {x∗ = 0}.
By (3.1), we find

t−1[lnx(t)−lnx(0)] = h(r(t))−a(r(t))x(t)− 1
2
σ2(r(t))x(t)+M(t)/t+Q(t)/t. (3.6)

Note that limt→+∞ x(t, ω) = 0 for all ω ∈ E. Since σ is bounded, by Lemma 3.1, we
have limt→+∞M(t)/t = 0. Substituting (3.4) in (3.6), we obtain [t−1 lnx(t, ω)]∗ =
h(r(t))

∗
=
∑N
i=1 h(i)πi > 0, then P{[t−1 lnx(t)]∗ > 0} > 0 which contradicts with

(3.5). This completes the proof. �

Remark 3.10. Theorems 3.5–3.9 have an obvious and interesting biological inter-
pretation. It is evident that the extinction and persistence of species x(t) mod-
eled by (1.3) depend only on the value

∑N
i=1 h(i)πi. By h(i) = b(i) +

∫
Y
(

ln(1 +
γ(i, u))

)
λ(du), we can see that the white noise σ(t) imposed on the intraspecific

competition coefficient has no impact on the extinction and persistence of the
species, which coincides with the special case (see [17]) when γ(i, u) ≡ 0.

Remark 3.11. Let us consider the effect of jump-diffusion coefficient γ(i, u) on
the extinction and persistence of species. If γ(i, u) < 0, which means that the
jumping noise is always disadvantage for a ecosystem, e.g. tsunami, earthquakes,
then h(i) < b(i), so the jump noise can make the species extinctive; if γ(i, u) > 0,
which implies that the jumping noise is always advantage for a ecosystem, e.g.
ocean red tide, soaring, then h(i) > b(i) > 0, so the jump noise guarantees the
population of (1.3) will be weak persistence.

Remark 3.12. Let us consider the subsystem

dx(t) = x(t−)
[(
b(i)− a(i)x(t−)

)
dt+ σ(i)x(t−)dB(t) +

∫
Y
γ(i, u)N(dt,du)

]
. (3.7)

Similarly, we can prove that if h(i) < 0, then species x(t) of (3.7) will go to
extinction, h(i) = 0, then species x(t) of (3.7) will non-persistence in the mean, if
h(i) > 0, then species x(t) of (3.7) will weak persistence.

Remark 3.13. Let us turn to see the impact on the model of the Markov switching.
If for some i ∈ S, h(i) < 0, then the corresponding subsystem (3.7) is extinctive.
Theorem 3.5 tells us that if every individual of (1.3) is extinctive, then as a result
of Markovian switching, the overall behavior of (1.3) remains extinctive. However,
Theorem 3.5-3.9 imply an interesting result that if some individual subsystem is
extinction, again as a result of Markovian switching, the value

∑N
i=1 h(i)πi may

be equal to zero or large than zero, then the overall behavior of (1.3) may be
non-persistence in the mean or weak persistence.

4. Stochastic permanence

Stochastic permanence is an important asymptotic behavior, it implies that the
population will survive forever, so it is interesting in the biomathematics. In the
following, we strengthen the condition to get the stochastic permanence. We use
the assumptions

(A2) For some u ∈ S, qiu > 0, for all i 6= u.
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Lemma 4.1. Let Assumption (A2) hold. If h̄ =
∑N
i=1 πih̄(i) > 0, then there exists

a constant θ > 0 such that the matrix

A(θ) := diag(ξ1(θ), ξ2(θ), . . . , ξN (θ))−Q (4.1)

is a nonsingular M -matrix, where h̄(i) = 2b(i) −
∫

Y( 1
(1+γ(i,u))2 − 1)λ(du), ξi(θ) =

θh̄(i).

Proof. This proof is motivated by [13]. It is known that a determinant will not
change its value if we switch the ith row with the jth row and then switch the ith
column with the jth column. It is also known that given a nonsingular M-matrix,
if we switch the ith row with the jth row and then switch the ith column with the
jth column, then the new matrix is still a nonsingular M-matrix. Without loss of
generality, we assume u = N in Assumption (A2), namely

qiN > 0, 1 ≤ i ≤ N − 1.

Using
∑N
i=1 qij = 0, i = 1, 2, . . . , N it follows that

detA(θ) =

∣∣∣∣∣∣∣∣∣
ξ1(θ) −q12 . . . −q1N
ξ2(θ) ξ2(θ)− q22 . . . −q2N

...
... . . . −qN−1,N

ξN (θ) −qN2 . . . ξN (θ)− qNN

∣∣∣∣∣∣∣∣∣ =
N∑
k=1

ξk(θ)Mk(θ),

where Mk(θ) is the corresponding minor of ξk(θ) in the first column; i.e.,

M1(θ) = (−1)1+1

∣∣∣∣∣∣∣∣∣
ξ2(θ)− q22 . . . −q2N

... . . .
...

−qN−1,2 . . . −qN−1,N

−qN,2 . . . ξN (θ)− qNN

∣∣∣∣∣∣∣∣∣ ,
. . .

MN (θ) = (−1)N+1

∣∣∣∣∣∣∣∣∣
−q12 . . . −q1N

ξ2(θ)− q22 . . . −q2N
... . . .

...
−qN−1,2 . . . −qN−1,N

∣∣∣∣∣∣∣∣∣ .
Note that

ξk(0) = 0,
d
dθ
ξk(0) = h̄(k);

so we have

d
dθ

detA(0) =
N∑
k=1

h̄(k)Mk(0).

This means that

d
dθ

detA(0) =

∣∣∣∣∣∣∣∣∣
h̄(1) −q12 . . . −q1N
h̄(2) −q22 . . . −q2N

...
... . . .

...
h̄(N) −qN2 . . . −qNN

∣∣∣∣∣∣∣∣∣ . (4.2)
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According to [26, Appendix A], the condition
∑N
k=1 πk b̄(k) > 0 is equivalent to∣∣∣∣∣∣∣∣∣

h̄(1) −q12 . . . −q1N
h̄(2) −q22 . . . −q2N

...
... . . .

...
h̄(N) −qN2 . . . −qNN

∣∣∣∣∣∣∣∣∣ > 0.

Together with (4.2), we see that
d
dθ

detA(0) > 0.

By detA(0) = 0, we can find a sufficiently small θ > 0 such that detA(θ) > 0 and

ξk(θ) = θ
[
2b(k)−

∫
Y

( 1
(1 + γ(k, u))2

− 1
)
λ(du)

]
> −qkN , 1 ≤ k ≤ N − 1. (4.3)

For every 1 ≤ k ≤ N − 1, we consider the leading principle sub-matrix

Ak(θ) :=

∣∣∣∣∣∣∣∣∣
ξ1(θ)− q11 −q12 . . . −q1k
−q21 ξ2(θ)− q22 . . . −q2k

... . . .
...

−qk1 −qk2 . . . ξk(θ)− qkk

∣∣∣∣∣∣∣∣∣
of A(θ). Clearly, Ak(θ) ∈ ZN×N := {A = (aij)N×N : aij ≤ 0, i 6= j}. By (4.3) we
follow that each row of this sun-matrix has the sum

ξk(θ)−
k∑
j=1

qkj ≥ ξk(θ) + qkN > 0.

By [27, Lemma 5.3], we have detAk(θ) > 0. In other words, we reach that all the
leading principle minors of A(θ) are positive. According to Theorem 2.10 [27], we
obtain the desired assertion. �

Theorem 4.2. For any p ∈ (0, 1), there exists a constant K(p) such that the
solution of (1.3) has the property

lim sup
t→+∞

E|x(t)|p ≤ K(p).

Proof. For any p ∈ (0, 1), let V be defined by (2.2). For any |x(0)| < k, define a
stopping time

σk = inf{t ≥ 0, |x(t)| > k}.
Then σk ↑ ∞ a.s. as k →∞. Applying Itô’s formula yields

E
[
et∧σkV

(
x(t ∧ σk)

)]
= V (x(0)) + E

∫ t∧σk

0

es
[
V (x(s)) + LV (x(s))

]
ds,

where LV (x) is defined as (2.4). Since the leading term of V (x)+LV (x) is less than
zero, then there exists a constant K(p) > 0 such that V (x)+LV (x) ≤ K(p). Hence
E
[
etV (x(t))

]
≤ V (x(0))+K(p)et. Taking the superior limit for both sides, we have

lim supt→+∞ E|x(t)|p ≤ K(p) which is our desired assertion. This completes the
proof. �

As an application of Theorem 4.2 together with Chebyshev’s inequality, we get
the following result.

Theorem 4.3. Equation (1.3) us stochastically ultimate bounded.
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We are now in position to present our main result of this section.

Theorem 4.4. Under Assumption (A2), if h̄ =
∑N
i=1 πih̄(i) > 0, then species x(t)

modeled by (1.3) will be stochastic permanence.

Proof. As applications of Chebyshev’s inequality and Theorem 4.2, we can get

lim inf
t→+∞

P[x(t) ≤ H1] ≥ 1− ε.

In the following, we will prove the another inequality lim inft→+∞ P[x(t) ≥ H2] ≥
1− ε. Define V1(x) = 1

x2 , using generalized Itô formula results in

dV1(x) = 2V1

[
a(k)x− b(k)

]
dt+ 3σ2(k)dt− 2σ(k)x−1dB(t)

+ V1

∫
Y

[ 1
(1 + γ(k, u))2

− 1
]
N(dt,du),

where we drop t from x(t) and r(k(t)) etc. again. For θ given in Lemma 4.1,
by Theorem 2.10 [27], there exists a vector ~p = (p1, p2, . . . , pN )T � 0 such that
A(θ)~p� 0 which is equivalent to

pkθ
(

2b(k)−
∫

Y
(

1
(1 + γ(k, u))2

− 1)λ(du)
)
−

N∑
j=1

qkjpj > 0, for 1 ≤ k ≤ N. (4.4)

Define function V2 : Rn+ × S→ R+ by

V2(x, k) = pk(1 + V1)θ.

Making use of the generalized Itô formula follows that

EV2(x(t), r(t)) = V2(x(0), α(0)) + E
∫ t

0

LV2(x(s), r(s))ds,

where

LV2(x, k) = θpk(1 + V1)θ−2
{

2V1(1 + V1)
(
a(k)x− b(k)

)
+ 3σ2(k)(1 + V1)

+ 2(θ − 1)σ2(k)V1

}
+

N∑
j=1

qkjpj(1 + V1)θ

+
∫

Z
pk

[(
1 + V1 + V1(

1
(1 + γ(k, u))2

− 1)
)θ − (1 + V1)θ

]
λ(du).

Note that

(
1 +V1 +V1(

1
(1 + γ(k, u))2

− 1)
)θ− (1 +V1)θ ≤ (1 +V1)θ−1θV1(

1
(1 + γ(k, u))2

− 1).
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Here, we use the fundamental inequality xr ≤ 1 + r(x − 1), x ≥ 0, 1 ≥ r ≥ 0.
Further, we have
LV2(x, k)

≤ (1 + V1)θ−2
{
− V 2

1

(
2θpkb(k)− θpk

∫
Y
(

1
(1 + γ(k, u))2

− 1)λ(du)

−
N∑
j=1

qkjpj
)

+ 2θpka(k)V 1.5
1 + V1

(
− 2θpkb(k) + (2θ + 1)θpkσ2(k) + 2

N∑
j=1

qkjpj

+
∫

Y
θpk(

1
(1 + γ(k, u))2

− 1)λ(du)
)

+ 2θpka(k)V 0.5
1 + 3θpkσ2(k) +

N∑
j=1

qkjpj

}
.

(4.5)
Now, by (4.4) we can choose a sufficiently small η to satisfy

pkθ
(

2b(k)−
∫

Y
(

1
(1 + γ(k, u))2

− 1)λ(du)
)
−

N∑
j=1

qkjpj − ηpk > 0, (4.6)

for 1 ≤ k ≤ N . Using generalized Itô formula again, we obtain

E[eηtV2(x(t), r(t))] = V2(x(0), r(0)) + E
∫ t

0

eηs[LV2(x(s), r(s)) + ηV2(x(s))]ds.

(4.7)
By (4.5) it follows that

LV2(x, k) + ηV2

≤ (1 + V1)θ−2
{
− V 2

1

(
2θpkb(k)− θpk

∫
Y

(
1

(1 + γ(k, u))2
− 1)λ(du)

−
N∑
j=1

qkjpj − ηpk
)

+ 2θpka(k)V 1.5
1 + V1

(
− 2θpkb(k) + (2θ + 1)θpkσ2(k)

+ 2
N∑
j=1

qkjpj + 2ηpk +
∫

Y
θpk(

1
(1 + γ(k, u))2

− 1)λ(du)
)

+ 2θpka(k)V 0.5
1 + 3θpkσ2(k) + ηpk +

N∑
j=1

qkjpj

}
.

According to (4.6), LV2 + ηV2 is bounded, namely, there exists a constant M such
that LV2 + ηV2 ≤M . Therefore, (4.7) changes into

E[V2(x, k)] ≤ e−ηtV2(x(0), r(0)) +M/η.

Further we have

lim sup
t→+∞

E[V θ1 (x(t))] ≤ lim sup
t→+∞

E[(1 + V1(x(t)))θ] ≤M/(ηp̂).

Namely,
lim sup
t→+∞

E[|x(t)|−2θ] ≤M/(ηp̂) := K.

For any given ε > 0, let H2 = (ε/K)
1
2θ , by Chebyshev inequality, we see that

P{|x(t)| ≤ H2} = P{|x(t)|−2θ ≥ H−2θ
2 } ≤ E(|x(t)|−2θ)

H−2θ
2

.
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So, lim supt→+∞ P{|x(t)| ≤ H2} ≤ ε. Therefore, lim inft→+∞ P{|x(t)| ≥ H2} ≥
1− ε is obtained. �

Remark 4.5. If the jump-diffusion coefficient γ(k, u) ≡ 0, then our result coincides
with Theorem 5 in [21] without jumps, this demonstrates that our result is a strictly
generalization of [21].

Remark 4.6. For the subsystem (3.7), similarly, we have if h̄(i) > 0, then species
x(t) of (3.7) will be stochastic permanence. That is to say, if every individual equa-
tion in (1.3) is stochastically permanent, then as the result of Markovian switching,
the overall behavior of (1.3) remains stochastically permanent. However, Theo-
rem 4.4 reveals a more interesting result. If some individual equations in (1.3) are
extinctive, some are stochastically permanent, again as the result of Markovian
switching, the overall behavior of (1.3) may be stochastically persistent, depending
on the value of h̄ =

∑N
i=1 πih̄(i) > 0.

5. Numerical simulations

In this section, we give two numerical simulations to support the results obtained.
In our examples, we assume the Markov chain r(t) takes values in the state space

S = {1, 2}. Let the generator Q be expressed by Q =
(
−7 7
5 −5

)
, then the unique

stationary distribution π of r(t) is expressed by π = (π1, π2) = (5/12, 7/12).

Example 5.1. The parameters of system (1.3) are chosen as follows: b(1) = 0.3,
a(1) = 0.5, σ(1) = 0.5, γ(1, u) ≡ −0.3; b(2) = 0.2, a(2) = 0.4, σ(2) = 0.1,
γ(2, u) ≡ −0.2. The initial values are x(0) = 0.6, r(0) = 2 and λ(Y) = 1.

By computation, we have h(1) = −0.06, h(2) = −0.02, so π1h(1) + π2h(2) < 0.
By Theorem 3.5, the species will go to extinction. Figure 1 shows this.

Example 5.2. let λ(Y) = 1, the initial data x(0) = 0.6, r(0) = 2 and the coeffi-
cients be b(1) = 0.8, a(1) = 0.5, σ(1) = 0.5, γ(1, u) ≡ −0.3; b(2) = 0.5, a(2) = 0.4,
σ(2) = 0.1, γ(2, u) ≡ −0.2. By simple calculation, we get h̄(1) = 0.56, h̄(2) = 0.44,
so π1h̄(1)+π2h̄(2) > 0. By Theorem 4.4, the species will be stochastic permanence.
Figure 2 shows this.

Concluding remarks. This article concerns the stochastic logistic models under
Markovian switching driven by Lévy noise. We establish sufficient conditions for
stochastic permanence, extinction, non-persistence in the mean and weak persis-
tence. Our key contributions are as follows.

(A) The model is new. By now, as our knowledge is concerned, the extinction
and permanence of the model with three noise at the same time has not been
reported.

(B) The critical value among the extinction, non-persistence in the mean and
weak persistence is obtained.

(C) Our results show that the asymptotic properties of the model have close
relations with the Lévy noise and stationary distribution of the color noise.

(D) From our results we can see that the Markovian switching plays important
roles in the model, it can switch the overall property of the system.

Some interesting topics deserve further consideration. One may investigate some
realistic but complex systems, for example, some n-species models or the general
regime whose generator depend on x(t), see [32, 31].
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Figure 1. For Example 5.1, the first figure shows the numerical
simulation of the Markov chain, while the second figure shows the
numerical simulation of system (1.3). We can see that the species
of (1.3) will go to extinction.
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Figure 2. For Example 5.2, the first figure shows the numerical
simulation of the Markov chain, while the second figure shows the
solution of system (1.3). We can see that the species of (1.3) will
be stochastic permanence.
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