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PULLBACK ATTRACTOR FOR NON-AUTONOMOUS
p-LAPLACIAN EQUATIONS WITH DYNAMIC FLUX

BOUNDARY CONDITIONS

BO YOU, FANG LI

Abstract. This article studies the long-time asymptotic behavior of solutions

for the non-autonomous p-Laplacian equation

ut −∆pu+ |u|p−2u+ f(u) = g(x, t)

with dynamic flux boundary conditions

ut + |∇u|p−2 ∂u

∂ν
+ f(u) = 0

in a n-dimensional bounded smooth domain Ω under some suitable assump-
tions. We prove the existence of a pullback attractor in

`
W 1,p(Ω)∩Lq(Ω)

´
×

Lq(Γ) by asymptotic a priori estimate.

1. Introduction

We are concerned with the existence of a pullback attractor in
(
W 1,p(Ω) ∩

Lq(Ω)
)
×Lq(Γ) for the process {U(t, τ)}t≥τ associated with solutions of the follow-

ing non-autonomous p-Laplacian equation

ut −∆pu+ |u|p−2u+ f(u) = g(x, t), (x, t) ∈ Ω× Rτ . (1.1)

This equation is subject to the dynamic flux boundary condition

ut + |∇u|p−2 ∂u

∂ν
+ f(u) = 0, (x, t) ∈ Γ× Rτ (1.2)

and the initial conditions

u(x, τ) = uτ (x), x ∈ Ω, (1.3)

u(x, τ) = θτ (x), x ∈ Γ, (1.4)

where Ω ⊂ Rn (n ≥ 3) is a bounded domain with smooth boundary Γ, ν denotes the
outer unit normal on Γ, p ≥ 2, Rτ = [τ,+∞), the nonlinearity f and the external
force g satisfy some conditions, specified later.

To study problem (1.1)-(1.4), we assume the following conditions:
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(H1) the function f ∈ C1(R,R) and satisfies

f ′(u) ≥ −l (1.5)

for some l ≥ 0, and

c1|u|q − k ≤ f(u)u ≤ c2|u|q + k, (1.6)

where ci > 0 (i = 1, 2), q ≥ 2, k > 0.
(H2) The external force g : Ω×R→ R is locally Lipschitz continuous, g belongs

to H1
loc(R, L2(Ω)), and satisfies∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+

∫ t

−∞
ec1s‖gt(s)‖2L2(Ω) ds <∞ (1.7)

for all t ∈ R.

Dynamic boundary conditions are very natural in many mathematical models
such as heat transfer in a solid in contact with a moving fluid, thermoelasticity,
diffusion phenomena, heat transfer in two medium, problems in fluid dynamics (see
[1, 2, 3, 6, 7, 14, 22, 23, 28, 29]). The understanding of the asymptotic behavior of
dynamical systems is one of the most important problems of modern mathematical
physics. One way to treat this problem for a dissipative system is to analyze the ex-
istence and structure of its attractor. Generally speaking, the attractor has a very
complicated geometry which reflects the complexity of the long-time behavior of the
system. There are many authors who have considered the long-time behavior of so-
lutions for the problems of dynamic boundary conditions. For example, the authors
considered the existence of global attractors, respectively, in L2(Ω̄, dµ), Lq(Ω̄, dµ)
and

(
H1(Ω)∩Lq(Ω)

)
×Lq(Γ) for the reaction-diffusion equation with dynamic flux

boundary conditions in [14]. The existence of uniform attractors in L2(Ω̄, dµ) and(
H1(Ω) ∩ Lq(Ω)

)
× Lq(Γ) for the reaction-diffusion equation with dynamic flux

boundary conditions was proved in [28]. In [27], the authors proved the existence
of global attractors for the autonomous p-Laplacian equation with dynamic flux
boundary conditions in L2(Ω̄, dµ), Lq(Ω̄, dµ) by the Sobolev compactness embed-
ding theorem and the existence of a global attractor for the autonomous p-Laplacian
equation with dynamic flux boundary conditions in

(
W 1,p(Ω)∩Lq(Ω)

)
×Lq(Γ) by

asymptotical a priori estimate. Recently, the existence of uniform attractors in
L2(Ω̄, dµ) and

(
W 1,p(Ω) ∩ Lq(Ω)

)
× Lq(Γ) for the non-autonomous p-Laplacian

equation with dynamic flux boundary conditions was obtained in [18].
Non-autonomous equations appear in many applications in natural sciences, so

they are of great importance and interest. The long-time behavior of solutions for
the non-autonomous equations has been studied extensively in recent years (see
[8, 9, 10, 11, 16, 17, 19, 24, 28]). For instance, the existence of a pullback attractor
in L2(Ω) was studied in [12]. The authors obtained the existence of a pullback
attractor in H1

0 (Ω) in [25]. The existence of a pullback attractor in H1
0 (Ω) was

considered in [20]. The authors proved the existence of a pullback attractor in
Lp(Ω) for a reaction-diffusion equation in [21] under the assumption

‖g(s)‖22 ≤Meα|s|

for all s ∈ R and 0 ≤ α < λ1, where λ1 is the first eigenvalue of −∆ with Dirichlet
boundary condition. In [29], the authors used a new type of uniform Gronwall
inequality and proved the existence of a pullback attractor in Lr1(Ω)× Lr2(Γ) for
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the equation

ut −∆pu+ |u|p−2u+ f(u) = h(t), (x, t) ∈ Ω× Rτ ,

ut + |∇u|p−2 ∂u

∂ν
+ g(u) = 0, (x, t) ∈ Γ× Rτ ,

u(x, τ) = u0(x), x ∈ Ω̄

under the assumptions that f , g satisfy the polynomial growth condition with orders
r1, r2 and ‖h(t)‖L2(Ω) satisfies some weak assumption

∫ t

−∞
eθs‖h(s)‖2L2(Ω) ds <∞

for all t ∈ R, where θ is some positive constant. By using their main result, we can
get the following result.

Corollary 1.1. Let Ω be a bounded domain in Rn with smooth boundary Γ, let f
and g satisfy (H1)–(H2). Then the process {U(t, τ)}t≥τ corresponding to (1.1)-(1.4)
has a pullback D-attractor Aq in Lq(Ω̄, dµ), which is pullback D-attracting in the
topology of Lq(Ω̄, dµ)-norm.

The study of non-autonomous dynamical systems is an important subject, it is
necessary to study the existence of pullback attractors for the non-autonomous p-
Laplacian equation with dynamic flux boundary conditions. Nevertheless, there are
few results about the existence of a pullback attractor in (W 1,p(Ω)∩Lq(Ω))×Lq(Γ)
for the non-autonomous p-Laplacian equation with dynamic flux boundary condi-
tions. The main difficulty is that in our case of the equation with p-Laplacian
operator for p > 2, we cannot use −∆u2 as the test function to verify pullback
D-condition, which increases the difficulty in getting an appropriate form of com-
pactness. To overcome this difficulty, we combine the idea of norm-to-weak process
with asymptotic a priori estimates to prove the existence of a pullback attractor for
the non-autonomous p-Laplacian equation with dynamic flux boundary conditions
in
(
W 1,p(Ω) ∩ Lq(Ω)

)
× Lq(Γ).

The main purpose of this paper is to study the existence of a pullback attractor
in (W 1,p(Ω) ∩ Lq(Ω)) × Lq(Γ) for the non-autonomous p-Laplacian evolutionary
equation (1.1)-(1.4) under quite general assumptions (1.5)-(1.7). Here, we state
our main result as follows.

Theorem 1.2. Assume that (H1)–(H2) hold. Then the process {U(t, τ)}t≥τ corre-
sponding to problem (1.1)-(1.4) has a pullback D-attractor A in (W 1,p(Ω)∩Lq(Ω))×
Lq(Γ).

This article is organized as follows: In the next section, we give some notation
and lemmas used in the sequel. Section 3 is devoted to proving the existence of a
pullback absorbing set in

(
L2(Ω) ∩W 1,p(Ω) ∩ Lq(Ω)

)
×
(
L2(Γ) ∩ Lq(Γ)

)
and the

existence of a pullback attractor in
(
Lq(Ω) ∩W 1,p(Ω)

)
× Lq(Γ).

Throughout this paper, let C be a positive constant, which may be different from
line to line (and even in the same line), we denote the trace of u by v.
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2. Preliminaries

To study (1.1)-(1.4), we recall the Sobolev space W 1,p(Ω) defined as the closure
of C∞(Ω) ∩W 1,p(Ω) in the norm

‖u‖1,p =
(∫

Ω

|∇u|p + |u|p dx
)1/p

and denote by X∗ the dual space of X. We also define the Lebesgue spaces as
follows

Lr(Γ) = {v : ‖v‖Lr(Γ) <∞},
where

‖v‖Lr(Γ) =
(∫

Γ

|v|r dS
)1/r

for r ∈ [1,∞). Moreover, we have

Ls(Ω)⊕ Ls(Γ) = Ls(Ω̄, dµ), s ∈ [1,∞),

‖U‖Ls(Ω̄,dµ) =
(∫

Ω

|u|s dx
)1/s

+
(∫

Γ

|v|s dS
)1/s

for any U =
(
u
v

)
∈ Ls(Ω̄, dµ), where the measure dµ = dx|Ω⊕dS|Γ on Ω̄ is defined

for any measurable set A ⊂ Ω̄ by µ(A) = |A∩Ω|+S(A∩Γ). In general, any vector

θ ∈ Ls(Ω̄, dµ) will be of the form
(
θ1

θ2

)
with θ1 ∈ Ls(Ω, dx) and θ2 ∈ Ls(Γ, dS),

and there need not be any connection between θ1 and θ2.

Remark 2.1 ([15]). C(Ω̄) is a dense subspace of L2(Ω̄, dµ) and a closed subspace
of L∞(Ω̄, dµ).

Next, we recall briefly some lemmas used to prove the existence of pullback
absorbing sets for (1.1)-(1.4) under some suitable assumptions.

Lemma 2.2 ([5]). Let x, y ∈ Rn and let 〈·, ·〉 be the standard scalar product in Rn.
Then for any p ≥ 2, there exist two positive constants C1, C2 which depend on p
such that

〈|x|p−2x− |y|p−2y, x− y〉 ≥ C1|x− y|p,∣∣ |x|p−2x− |y|p−2y
∣∣ ≤ C2(|x|+ |y|)p−2|x− y|.

3. Existence of pullback attractors

In this section, we prove the existence of pullback attractors of solutions for
problem (1.1)-(1.4).

3.1. Well-posedness of solutions for problem (1.1)-(1.4). In this subsection,
we give the well-posedness of solutions for problem (1.1)-(1.4) which can be obtained
by the Faedo-Galerkin method (see [26]). Here, we only state it as follows.

Theorem 3.1. Under the assumptions (H1)–(H2), for any initial data (uτ , θτ ) ∈
L2(Ω̄, dµ), there exists a unique weak solution u(x, t) ∈ C(Rτ ;L2(Ω̄, dµ)) of problem
(1.1)-(1.4) and the mapping

(uτ , θτ )→ (u(t), v(t))

is continuous on L2(Ω̄, dµ).
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By Theorem 3.1, we can define a family of continuous processes {U(t, τ) : −∞ <
τ ≤ t <∞} in L2(Ω̄, dµ) as follows: for all t ≥ τ ,

U(t, τ)(uτ , θτ ) = (u(t), v(t)) := (u(t; τ, (uτ , θτ )), v(t; τ, (uτ , θτ ))),

where u(t) is the solution of problem (1.1)-(1.4) with initial data (u(τ), v(τ)) =
(uτ , θτ ) ∈ L2(Ω̄, dµ). That is, a family of mappings U(t, τ) : L2(Ω̄, dµ)→ L2(Ω̄, dµ)
satisfies

U(τ, τ) = id (identity),

U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t.

3.2. Existence of a pullback absorbing set. In this subsection, we recall some
basic definitions and abstract results about pullback attractors.

Definition 3.2 ([20, 28]). Let X be a Banach space. A process {U(t, τ)}t≥τ is
said to be norm-to-weak continuous on X, if for any t, τ ∈ R with t ≥ τ and for
every sequence xn ∈ X, from the condition xn → x strongly in X, it follows that
U(t, τ)xn → U(t, τ)x weakly in X.

Lemma 3.3 ([20, 28]). Let X and Y be two Banach spaces, and let X∗ and Y ∗

be the dual spaces of X and Y , respectively. If X is dense in Y , the injection
i : X → Y is continuous and its adjoint i∗ : Y ∗ → X∗ is dense. In addition,
assume that {U(t, τ)}t≥τ is a continuous or weak continuous process on Y . Then
{U(t, τ)}t≥τ is a norm-to-weak continuous process on X if and only if {U(t, τ)}t≥τ
maps compact sets of X into bounded sets of X for any t, τ ∈ R, t ≥ τ .

Let D be a nonempty class of families D̂ = {D(t) : t ∈ R} of nonempty subsets
of X.

Definition 3.4 ([11]). The process {U(t, τ)}t≥τ is said to be pullback D-asymp-
totically compact, if for any t ∈ R and any D̂ ∈ D, any sequence τn → −∞ and any
sequence xn ∈ D(τn), the sequence {U(t, τn)xn}∞n=1 is relatively compact in X.

Definition 3.5 ([28]). A family Â = {A(t) : t ∈ R} of nonempty subsets of X is
said to be a pullback D-attractor for the process {U(t, τ)}t≥τ in X, if

(i) A(t) is compact in X for any t ∈ R,
(ii) Â is invariant, i.e., U(t, τ)A(τ) = A(t) for any τ ≤ t,
(iii) Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0

for any t ∈ R and any D̂ = {D(t) : t ∈ R} ∈ D.
Such a family Â is called minimal if A(t) ⊂ C(t) for any family Ĉ = {C(t) : t ∈ R}
of closed subsets of X such that limτ→−∞ dist(U(t, τ)B(τ), C(t)) = 0 for any B̂ =
{B(t) : t ∈ R} ∈ D.

Definition 3.6 ([11, 28]). It is said that B̂ ∈ D is pullback D-absorbing for the
process {U(t, τ)}t≥τ , if for any D̂ ∈ D and any t ∈ R, there exists a τ0(t, D̂) ≤ t

such that U(t, τ)D(τ) ⊂ B(t) for any τ ≤ τ0(t, D̂).

Lemma 3.7 ([11, 20, 28]). Let {U(t, τ)}t≥τ be a process in X satisfying the fol-
lowing conditions:

(1) {U(t, τ)}t≥τ be norm-to-weak continuous in X.
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(2) There exists a family B̂ of pullback D-absorbing sets {B(t) : t ∈ R} in X.
(3) {U(t, τ)}t≥τ is pullback D-asymptotically compact.

Then there exists a minimal pullback D-attractor Â = {A(t) : t ∈ R} in X given by

A(t) = ∩s≤t∪τ≤sU(t, τ)B(τ).

Lemma 3.8 ([28]). Suppose that

y′(s) + δy(s) ≤ b(s)

for some δ > 0, t0 ∈ R and for any s ≥ t0, where the functions y, y′, b are assumed
to be locally integrable and y, b are nonnegative on the interval t < s < t + r for
some t ≥ t0. Then

y(t+ r) ≤ e− δr2 2
r

∫ t+ r
2

t

y(s) ds+ e−δ(t+r)
∫ t+r

t

eδsb(s) ds

for all t ≥ t0.

In the following, let D be the class of all families {D(t) : t ∈ R} of nonempty
subsets of L2(Ω̄, dµ) such that

lim
t→−∞

ec1t[D(t)] = 0,

where [D(t)] = sup{‖(u, v)‖L2(Ω̄,dµ) : (u, v) ∈ D(t)}. We prove the existence of
a pullback absorbing set for the process {U(t, τ)}t≥τ corresponding to problem
(1.1)-(1.4).

Theorem 3.9. Under assumptions (H1)–(H2). Let {U(t, τ)}t≥τ be a process as-
sociated with problem (1.1)-(1.4). Then there exists a pullback D-absorbing set in(
L2(Ω) ∩W 1,p(Ω) ∩ Lq(Ω)

)
×
(
L2(Γ) ∩ Lq(Γ)

)
.

Proof. Taking the inner product of (1.1) with u, we deduce that

1
2
d

dt

(
‖u‖2L2(Ω) + ‖v‖2L2(Γ)

)
+ ‖u‖pW 1,p +

∫
Ω

f(u)u dx+
∫

Γ

f(v)v dS

=
∫

Ω

g(t)u dx.
(3.1)

By (1.6), Hölder inequality and Young inequality, we obtain

1
2
d

dt

(
‖u‖2L2(Ω) + ‖v‖2L2(Γ)

)
+ ‖u‖pW 1,p(Ω) + c1‖u‖qLq(Ω) + c1‖v‖qLq(Γ)

≤ 1
2
‖g(t)‖2L2(Ω) +

1
2
‖u‖2L2(Ω) + k|Ω|+ k|Γ|

≤ 1
2
‖g(t)‖2L2(Ω) +

1
2
‖u‖2L2(Ω) +

1
2
‖v‖2L2(Γ) + k|Ω|+ k|Γ|.

Therefore,

d

dt

(
‖u‖2L2(Ω) + ‖v‖2L2(Γ)

)
+ 2‖u‖pW 1,p(Ω) + 2c1‖u‖qLq(Ω) + 2c1‖v‖qLq(Γ)

≤ ‖g(t)‖2L2(Ω) + ‖u‖2L2(Ω) + ‖v‖2L2(Γ) + 2k|Ω|+ 2k|Γ|.
(3.2)
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It follows from (3.2) that
d

dt

(
‖u‖2L2(Ω) + ‖v‖2L2(Γ)

)
+ c1

(
‖u‖2L2(Ω) + ‖v‖2L2(Γ)

)
+ 2‖u‖pW 1,p(Ω) + c1‖u‖qLq(Ω) + c1‖v‖qLq(Γ)

≤ ‖g(t)‖2L2(Ω) + C.

(3.3)

From the classical Gronwall inequality, we find that

‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Γ)

≤
(
‖uτ‖2L2(Ω) + ‖θτ‖2L2(Γ)

)
ec1(τ−t) + e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ C,

(3.4)

which implies

‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Γ) ≤ C0
(
e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1

)
(3.5)

uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C0 is a positive constant.

Let F (s) =
∫ s

0
f(θ) dθ, we deduce from (1.6) that there exist three positive

constants α1, α2, β such that

α1|u|q − β ≤ F (u) ≤ α2|u|q + β,

α1|u|qLq(Ω) − β|Ω| ≤
∫

Ω

F (u) dx ≤ α2|u|qLq(Ω) + β|Ω|, (3.6)

α1|v|qLq(Γ) − β|Γ| ≤
∫

Γ

F (v) dS ≤ α2|v|qLq(Γ) + β|Γ|. (3.7)

Integrating (3.3) from t to t+ 1 and combining (3.4) with (3.6)-(3.7), we obtain

2
∫ t+1

t

‖u(s)‖pW 1,p(Ω) ds+
c1
α2

∫ t+1

t

∫
Ω

F (u(s)) dx ds+
c1
α2

∫ t+1

t

∫
Γ

F (v(s)) dS ds

≤ C0
(
e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1

)
+
∫ t+1

t

‖g(s)‖2L2(Ω) ds+ C

≤ C1
(
e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1

)
uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C1 is a positive constant.

Taking the inner product of (1.1) with ut, we obtain

‖ut‖2L2(Ω) + ‖vt‖2L2(Γ) +
d

dt

(1
p
‖u‖pW 1,p(Ω) +

∫
Ω

F (u) dx+
∫

Γ

F (v) dS
)

=
∫

Ω

g(x, t)ut dx

≤ 1
2
‖g(t)‖2L2(Ω) +

1
2
‖ut‖2L2(Ω),

which implies

‖ut‖2L2(Ω) + ‖vt‖2L2(Γ) +
d

dt

(2
p
‖u‖pW 1,p(Ω) + 2

∫
Ω

F (u) dx+ 2
∫

Γ

F (v) dS
)

≤ ‖g(t)‖2L2(Ω).

(3.8)
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It follows from the uniform Gronwall inequality that

‖u(t+ 1)‖pW 1,p(Ω) +
∫

Ω

F (u(t+ 1)) dx+
∫

Γ

F (v(t+ 1)) dS

≤ C2
(
e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1

) (3.9)

uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C2 is a positive constant.

We infer from (3.6)-(3.7) and (3.9) that

‖u(t+ 1)‖pW 1,p(Ω) + ‖u(t+ 1)‖qLq(Ω) + ‖v(t+ 1)‖qLq(Γ)

≤ C3
(
e−c1t

∫ t

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1

) (3.10)

uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C3 is a positive constant. �

Since W 1,p(Ω) ↪→ L2(Ω) and W 1,p(Ω) ↪→ L2(Γ) is compact, we obtain the
following result.

Theorem 3.10. Under the assumptions (H1)–(H2), the process {U(t, τ)}t≥τ cor-
responding to problem (1.1)-(1.4) has a pullback D-attractor A2 in L2(Ω̄, dµ), which
is compact, connected and invariant.

3.3. Existence of a pullback attractor in (W 1,p(Ω) ∩ Lq(Ω)) × Lq(Γ). From
Lemma 3.3 and Theorem 3.9, we know that the process {U(t, τ)}t≥τ corresponding
to problem (1.1)-(1.4) is norm-to-weak continuous in (W 1,p(Ω) ∩ Lq(Ω)) × Lq(Γ).
In this subsection, we prove the existence of a pullback D-attractor in (W 1,p(Ω) ∩
Lq(Ω))× Lq(Γ) by verifying asymptotic a priori estimates.

Next, we give an auxiliary theorem to prove the pullback D-asymptotical com-
pactness of the process {U(t, τ)}t≥τ in (W 1,p(Ω) ∩ Lq(Ω))× Lq(Γ).

Theorem 3.11. Under assumptions (H1)–(H2), for any D̂ ∈ D and t ∈ R, there
exists a family of positive constants {ρ(t) : t ∈ R} and τ1(t, D̂) ≤ t such that

‖ut(t)‖2L2(Ω) + ‖vt(t)‖2L2(Γ) ≤ ρ(t)

for any (uτ , θτ ) ∈ D(t) and τ ≤ τ1(t, D̂), where

(ut(s), vt(s)) =
d

dt
(U(t, τ)(uτ , θτ ))

∣∣
t=s

and ρ(t) is a positive constant which is independent of the initial data.

Proof. Differentiating (1.1) and (1.2) with respect to t, and denoting by ζ = ut,
η = vt, we obtain

ζt − div(|∇u|p−2∇ζ)− (p− 2) div
(
|∇u|p−4(∇u · ∇ζ)∇u

)
+ (p− 1)|u|p−2ζ + f ′(u)ζ =

dg

dt
,

(3.11)

ηt + (p− 2)|∇v|p−4(∇v · ∇η)
∂v

∂ν
+ |∇v|p−2 ∂η

∂ν
+ f ′(v)η = 0, (3.12)

where “·” denotes the dot product in Rn.
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Multiplying (3.11) by ζ and integrating over Ω, and combining (1.5) with (3.12),
we obtain

1
2
d

dt

(
‖ζ‖2L2(Ω) + ‖η‖2L2(Γ)

)
+
∫

Ω

|∇u|p−2|∇ζ|2 dx

+ (p− 2)
∫

Ω

|∇u|p−4(∇u · ∇ζ)2 dx+ (p− 1)
∫

Ω

|u|p−2|ζ|2 dx

≤ l
(
‖ζ‖2L2(Ω) + ‖η‖2L2(Γ)

)
+ ‖dg

dt
(t)‖L2(Ω)‖ζ‖L2(Ω).

Integrating (3.8) from t to t+ 1 and using (3.9), we find that∫ t+1

t

‖ζ(s)‖2L2(Ω) ds+
∫ t+1

t

‖η(s)‖2L2(Γ) ds

≤ C4(e−c1t
∫ t+1

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1)

uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C4 is a positive constant.

Therefore, we deduce from the uniform Gronwall inequality that

‖ut(t+ 2)‖2L2(Ω) + ‖vt(t+ 2)‖2L2(Γ)

≤ C5
(
e−c1t

∫ t+1

−∞
ec1s‖g(s)‖2L2(Ω) ds+ 1 +

∫ t

t−1

‖dg
dt

(t)‖2L2(Ω) ds
)
,

uniformly with respect to all initial conditions (uτ , vτ ) ∈ D(τ) for τ ≤ τ0(t, D̂),
where C5 is a positive constant. �

Next, we prove the process {U(t, τ)}t≥τ is pullback D-asymptotically compact
in (W 1,p(Ω) ∩ Lq(Ω))× Lq(Γ).

Theorem 3.12. Assume that f and g satisfy conditions (H1)–(H2). Then the pro-
cess {U(t, τ)}t≥τ corresponding to problem (1.1)-(1.4) is pullback D-asymptotically
compact in (W 1,p(Ω) ∩ Lq(Ω))× Lq(Γ).

Proof. Let B0 = {B(t) : t ∈ R} be a pullback D-absorbing set in (W 1,p(Ω) ∩
Lq(Ω)) × Lq(Γ) obtained in Theorem 3.9, then we need only to show that for any
t ∈ R, any τn → −∞ and (uτn , vτn) ∈ B(τn), {(un(τn), vn(τn))}∞n=0 is pre-compact
in (W 1,p(Ω) ∩ Lq(Ω))× Lq(Γ), where

(un(τn), vn(τn)) = (u(t; τn, (uτn , vτn)), v(t; τn, (uτn , vτn))) = U(t, τn)(uτn , vτn).

Note that for Corollary 1.1, it remains to prove that for any (uτn , vτn) ∈ B(τn) and
τn → −∞, {un(τn)}∞n=0 is pre-compact in W 1,p(Ω).

From Theorem 3.10 and Corollary 1.1, we know that {(un(τn), vn(τn))}∞n=0 is
pre-compact in L2(Ω̄, dµ) and Lq(Ω̄, dµ). Without loss of generality, we assume
that {(un(τn), vn(τn))}∞n=0 is a Cauchy sequence in L2(Ω̄, dµ) and Lq(Ω̄, dµ).

In the following, we prove that {un(τn)}∞n=0 is a Cauchy sequence in W 1,p(Ω).
Then, by simply calculations, we deduce from Lemma 2.2 that

‖unk(τnk)− unj (τnj )‖
p
W 1,p(Ω)

≤ (− d

dt
unk(τnk)− f(unk(τnk)) +

d

dt
unj (τnj ) + f(unj (τnj )), unk(τnk)− unj (τnj ))
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+ (− d

dt
vnk(τnk)− f(vnk(τnk)) +

d

dt
vnj (τnj ) + f(vnj (τnj )), vnk(τnk)− vnj (τnj ))

= I1 + I2.

We now estimate separately the two terms I1 and I2. By simply calculations and
Hölder’s inequality, we deduce that

I1 ≤ ‖
d

dt
unk(τnk)− d

dt
unj (τnj )‖L2(Ω)‖unk(τnk)− unj (τnj )‖L2(Ω)

+ C(1 + ‖unk(τnk)‖q−1
Lq(Ω) + ‖unj (τnj )‖

q−1
Lq(Ω))‖unk(τnk)− unj (τnj )‖Lq(Ω)

and

I2 ≤ ‖
d

dt
unk(τnk)− d

dt
unj (τnj )‖L2(Γ)‖unk(τnk)− unj (τnj )‖L2(Γ)

+ C(1 + ‖unk(τnk)‖q−1
Lq(Γ) + ‖unj (τnj )‖

q−1
Lq(Γ))‖unk(τnk)− unj (τnj )‖Lq(Γ).

Combining Theorem 3.10, Corollary 1.1 with Theorem 3.11, yields Theorem 3.12
immediately. �

From Lemma 3.7 and Theorems 3.9, 3.12, we immediately obtain Theorem 1.2.
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