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OSCILLATION OF MEROMORPHIC SOLUTIONS TO LINEAR
DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF
[p,q-ORDER

HONG-YAN XU, JIN TU

ABSTRACT. We study the relationship between “small functions” and the de-
rivative of solutions to the higher order linear differential equation

P+ A f O 4 p Aof =0, (k22)
Here Aj(z) (j =0,1,...,k —1) are entire functions or meromorphic functions
of [p, q]-order.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The study of oscillation theory for linear differential equations in the complex
plane C was started by Bank and Laine [2] B]. After their well-known work, many
important results have been obtained, see for example [19, [20].

We assume that the reader knows the standard notations and the fundamental
results of the Nevanlinna value distribution theory of meromorphic functions [12]
15]. In addition, we use o(f), A(f) and A(f) to denote the order, the exponent of
convergence of the zero-sequence, and the exponent of convergence of the nonzero
zero sequence of a meromorphic function f(z), respectively. We also denote by 7(f)
the type of an entire function f(z) with 0 < o(f) =0 < 400 (see [19]).

We use mE = f B dt and mE = f P % to denote the linear measure and the
logarithmic measure of a set £ C [1,+00), respectively. We denote by S(r, f) any
quantity satisfying S(r, f) = o(T'(r, f)), as r — +00, possibly outside of a set with
finite linear measure. A meromorphic function t(z) is called a small function with
respect to f if T(r,¢p) = S(r, f).

For results on the growth of solutions to equations of the form

"+ AR)f +B(z)f =0, (1.1)

with A(z) and B(z)(# 0) are entire functions, the reader is referred to [11 [7, 8, [11]
14].

In 1996, Kwon [18] investigated the hyper-order of the solutions of (1.1} and
obtained the following result.
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Theorem 1.1 ([I8]). Let A(z) and B(z) be entire functions such that c(A) < o(B)
or o(B) < o(A) < 1/2. Then every solution f # 0 of satisfies oo(f) >
max{o(A),o(B)}.

In 2006, Chen and Shon [J] investigated the zeros concerning small functions and
fixed points of solutions of second order linear differential equations and obtained
the following results.

Theorem 1.2 ([9]). Let Aj(z) #0 (j = 1,2) be entire functions with o(A;) < 1,
suppose that a,b are complex numbers that satisfy ab # 0 and arga #* argb or
a=cb (0<ec<l). If o(z) £ 0 is an entire function of finite order, then every
non-trivial solution f of equation

"4+ Al(2)e® f' + Ay(2)eP* f =0
satisfies A(f — ) = A" — @) = A(f” — ¢) = oo.
Theorem 1.3. [9] Let A1(z) £ 0, ¢(2) £0, Q(2) be entire functions with (A1) <
1, 1 <0(Q) < 0o and o(p) < 00, then every non-trivial solution f of equation
"+ A(z)e” f'+ Q) f =0
satisfies A\(f —¢) = M(f' — ) = Af"" — ) = 0o, where a # 0 is a complex number.
In 2012, Wu and Chen [24] investigate the problem on the fixed-points of solu-

tions of some second order differential equation with transcendental entire function
coefficients and obtained the following theorems.

Theorem 1.4 (|24, Theorem 1]). Let A;(z) # 0(j = 0,1) be entire functions,
P(z) be a polynomial satisfying o(A1) < deg P(z) and 0 < o(Ap) < 1/2, and let
©(2)(#£ 0) be an entire function of finite order. Then every non-trivial solution f
of equation

"+ AL(2)ePE 4 Ag(2)f =0
satisfies A(f — ) = co.

Theorem 1.5 ([24, Theorem 2]). Under the assumptions of Theorem [1.4), every
non-trivial solution f of the equation

"+ A (2)eP @ 4 Ag(2)f =0

satisfies

(i) Af —2) =Af' —2) = A(f" —2) = o(f) = o0;
(ii) g(z) has infinitely many fized points and Mg — z) = oo, where g(z) =
dof(2) + dif'(z) + da f"(z), dodz # 0.

An interesting subject arises naturally about the problems of the zeros concerning
small function and fixed points of solutions of differential equations

O+ Ay fE D 4+ Agf =0, (k>2) (1.2)

where A;(z) (j =0,1,...,k — 1) are entire functions.
In 2000s, Belaidi [4], Belaidi and El Farissi [6] (see also [10} 22] 23]) investigated
the fixed points and the relationship between small functions and differential poly-

nomials of solutions of (1.2 and obtained some results which improve Theorem
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Recently, the growth of solutions of higher order linear differential equation with
meromorphic coefficients of [p, g]-order was studied and some results were obtained
n 5] 21].

In this article, we study the zeros of small functions and the fixed points of
solutions to equation with entire or meromorphic coefficients of [p, g]-order
and obtain some results that extend the work of Chen and Belaidi.

Before stating our theorems, we introduce the concepts of entire functions of
[p, g]-order (see [16], 17, [21]). Juneja and co-authors [I6] [I7] introduced the con-
cept of entire functions of [p, g]-order, and studied some of their properties for p, g
integers satisfying p > ¢ > 1.

Definition 1.6. If f(z) is a transcendental entire function, the [p, g]-order of f(z)
is defined by

lo M(r, log, T'(r,
Tlp,q)(f) = limsup W — limsup gi)g(rf)7
ree q T—00 q

where p, ¢ are two integers and p > ¢ > 1.

Remark 1.7. For sufficiently large r € [1,00), we define log; ,r = log;(logr)
(i € N) and exp, , r = exp(exp; r) (i € N) and expyr =1 =logyr, exp_, 7 = logr.

Definition 1.8. The [p, ¢]-type of an entire function f of [p, gJ-order o (0 < o < o0)
is defined by

log, M (r, f)
Tip.g] = T| f) = limsup —2—""~
[p,d] p.q) () oo (log,_17)7
And the [p, g] exponent of convergence of the zero sequence of f is defined by
log, n(r, % log, N(r, %
Apal = Aip.gl () = lim sup M = lim sup M

r—o0 logq r r—oo logq r

and the [p, q] exponent of convergence of the distinct zero sequence of f is defined
by

_ _ log, 7(r, +) log, N(r, 1)
. ' f . P ' f
Apigl = A (f) = hiri)s;lp 710&1 = llﬂsgp 710&7 —
Let ¢(z) be an entire function with oy, o(¢) < 0p,,4(f), the [p,q] exponent of
convergence of zeros and distinct zeros of f (z) (z) are defined to be
_ log,, N (r, ff) _ _ log,, N (r, f%)
App.d) (f = ) = lim sup T = Apa) (f = ) = limsup log,r .

especially if ¢(z) = z, we use Ay, 4 (f — 2) and A, o(f — 2) to denote the [p, q] ex-
ponent of convergence of fixed points and distinct fixed points of f(z), respectively.
Next we state our main results.

Theorem 1.9. It Aj(z) (j =0,1,...,k — 1) are entire functions and satisfy one
of the following two conditions:
(1) max{op q(45):j=1,2,. — 1} < opp,q(Ao) < 005
(i) max{op, q(A5) 15 =1,2,. =1} < opp.q(Ao) <00 and
max{T[pﬂ ( )|0[p7q] (A ) = 0[;07!1] (AO) > 0} =T1 < Tp,q] (AO) =T,
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then for every solution f #£ 0 of (1.2) and for any entire function ¢(z) Z 0 satisfying
Olp+1,q) () < O[p,q(Ao). Moreover

X[;DJrl,q](f - (P) = X[p+1,q](f/ - 90) = X[p+1,q](fl/ - 90)
= X[p-&-l,q](f(z) —¥) = pr1,q(f)
=0(4p), (ieN).
Throughout this paper we assume that Ag does not vanish identically.

Theorem 1.10. If A;(z), j = O 1,...,k—1 are meromorphic functions satisfying
max{op,q (A;):j=1,2,. — 1} < Ofp,q(Ao) and d(00, Ag) > 0, then for every
meromorphic solution f ;{ O of and for any meromorphic function ¢(z) # 0
satisfying opp41,4(0) < Op.q] (AO) we have

X[p-&-l,q](f(i) —p) = /\[p+1,q](f(i) —¢) > 0pq(A0)(i=0,1,...),
where f(O) = f.
Example 1.11. For the equation

2z z 2z
,  eF+ef—-1, —e
=0, 1.3
e ] (1.3)
we can easily see that this equation has a solution f(z) = e¢” + e*. The func-
tions %, :Zi are meromorphic and satisfy U(e2zl+i;_1) _ U(l_pez) — 1 and

2z

§(o00, £52) = 1. Taking ¢(z) = €7, then op2,11(¢) < op1,1)(T%= ez) Thus, we get that
_ — 2 _e27
A1) (f' = ¢) = Apay(e e?) =0# 1 = oy 1)(75=)-

For p > g > 1, we have the following example.

Example 1.12. Consider the equation
"+ Af + Aof =0,

where
14e% — 2662 + e?ez _ 266262 + eSezez 6362 622 _ 6262622
Al = - z ) AO = z
(I—e)? (1 —ec)?
Obviously, A, A; are meromorphic functions, o7z1)(A1) = op21(A0) = 1 and

6(00 Ap) > 0. By calculating, the equation ([1.12) has a solution f(z) = e+
Taking ¢(2) = e® e, then o[31)(¢) < op21](Ag). Thus, we can get that

e
X[3 1](f —¢)= X[S,l](eee eezez) =0#£1= 012,1] (Ap).
From Theorems and we obtain the following corollaries.

Corollary 1.13. Under the assumptions of Theorem 1.9, if p(z) = z, for every
solution f Z0 of -, we have

X[p+1,q](f —z)= X[p-%l,q}(f/ —z)= X[P-‘rlﬂl](f” - z)
= X[p+1,q (f(i) —2) =01, (f)
Tp.q] (Ag), (i€N).

Corollary 1.14. Under the assumptions of Zheor@m if o(z) = z, for every
meromorphic solution f # 0 of (1.2), we have Ap11 4 (fD—2) = Ap+1,q] (fD—2) >
T[p+1,q] (Ag), (i =0,1,...), where f(o) =f.
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2. PRELIMINARY RESULTS
To prove our theorems, we require the following lemmas.
Lemma 2.1 ([25, Lemma 2.1]). Assume f % 0 is a solution of (1.2)), set g = f—¢,
then g satisfies the equation
) 4 Ap_1g®* D 4o+ Agg = 7[50(’6) + Ap_1o® D 44 Aol (2.1)
Lemma 2.2 ([25, Lemma 2.2]). Assume f % 0 is a solution of equation (1.2)), set
= f'— ¢ , then g1 satisfies the equation
k k—1 _
at” + U9 L%~+%m=—W“+W4¢k”+~+%ﬂ, (2.2)

whererleJH—l—A A]+1,j—0, 2,....k—1and Ay = 1.

Lemma 2.3 ([25] Lemma 2.5]). Assume f % 0 is a solution of equation (1.2]), set
gi = f — @, then g; satisfies the equation

QM+W4£”U+~+W9=—M“+%4¢“”+~+%ﬂ, (2:3)

where UZ . + U;_l

) Ullj:QLzuwk—LU51£1MMieN

U‘ e
Lemma 2.4 ([2I, Lemma 3.9]). Let f(z) be an entire function of [p, q]-order, then
Ip.q)(f) = Tp.q) ()

Lemma 2.5 ([2I, Lemma 3.10]). Let f(z) be an entire function of [p, q]-order sat-

isfying o q(f) = 02, then there exists a set £ C [1,+400) with infinite logarithmic

measure such that for all v € E, we have
log, T'(r,

T (r, f)

= 02, re k.
r—o00 loqu

Lemma 2.6. Let Ay(z), A1(2),. Ak_l(z) be entire functions with [p, q]-order and

satisfy max{op, q(Aj) 1 j =1, 2 =1} =01 < opq)(Ao) < 00, and set
A/
Ul = Ajy + A — ;&H
and
o UM
U; = UJrl + U — T Uﬁ_l,

where j =0,1,2,... ) k—1, Ay, =1, U,i_l =1 and i € N. Then there exists a set E
with infinite logarithmic measure such that for r € E, we have

log, m(r, Ug)

Ap) = li
Zipal(4o) = 0 g (2.4)
. maXlngk,_l{Ing m(r, sz)} ’
> limsup = 0.
r—00 log, r
Proof. We will use the inductive method to prove it
First, when i = 1, it follows that Uj = A}, | +A;— Ag+1 forj =0,1,2,...,k—1
and Ay = 1. When j = 0, that is, U} = A} + Ag — A—OAl. Then, we have
A A}
m(r,Uy) < m(r, A1) + m(r, Ag) + m(r, == ) + m(r, =2) + O(1). (2.5)

Ay Ay
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From Ay = —A} + U + ’:—éAl, we have

A/
m (r, Ujl) <m(r,Aji1) +m(r, A;) + m(r, A—O)
, 0 (2.7)
Aji .
+m(r, ) +0(1), j=1,2,... k-1
Aj
Since Ag(2), ..., Ax_1(2) are entire functions with max{op, (A4;) : j =1,2,...,k—

1} < opp,q(Ao) < 00 and (2.7), we have
1
) Srjr_lggfl{m(n Uj)t}h

< max {m(r, 4;) + o(m(r. Ao) + Olog(rT(r. f)))} + O(1).

(2.8)

holds for all r € F1 — Es (where E; is a set of infinite logarithmic measure and

E, is a set of finite linear measure). From (2.5), (2.6), (2.8) and Lemma[2.5] there

exists a set £ C [1,+00) with infinite logarithmic measure such that

_ log, m(r,Ug)
O-[p’q](AO) = lim pio

r—00 log, 7

maxj<;<k—1 {1ng m(r, AJ)}

> 07 = limsup (2.9)
r—oo logq r
max <j<x_1{log, m(r, U}
> lim sup 1Sj<k i{ &p ( J )}, re k.
r—00 log, 7

Now, suppose that (2.4) holds for i < n(n € N), thus, there exists a set E with
infinite logarithmic measure such that

. log, m(r,Ug')
U[p’q](AO) = lim —op_ 70/

r—00 logq r . (210)
. maxlgjgk_l{logpm(r, Uj )}
> lim sup log. =o01.
T — 00 q

Next, we prove that (2.4)) holds for i = n+ 1. From the assumptions of this lemma,

we have UMt = Un,/ + UP — %U;ﬂﬂ, (j=0,1,2,....k—1) and U? = 1 for

i =n+1. Thus, when j = 0, it follows that Uj*" = U7 + U — Y8.U». Then, we
0
have

Uy up'
m (r, U61+1) <m(r,U§) +m(r,U7") + m(r, U?” ) + m(r, Uln )+ 0(1). (2.11)
0 1
And since U} = —UP' + Uyt + %U{L, we have

n/ n/

m(r,Ug) < m(r, USTY) + m(r,UT) + m(r, ((]]Ln) + m(r, [U;,—ln) +0(1). (2.12)
0 1
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When j # 0, it follows from the definitions of UJ."'H (j=12,...,k—1l)and U =1
that

ur,' ur'
m(r, UMY < m(r,Ulyy) + m(r,UR) + m(r, =252) + m(r, =2-) + O(1).  (2.13)
4 Ul oy
From (2.10)—(2.13)), there exists a set E with infinite logarithmic measure such that
log, m (r, UL logm (r, U}
i O (R UCT) o logym (n UG) Olp.q) (Ao)
r—oo logq r r—o0 logq T ’

max; <j<k—1{10g, m (r, U]")}

> 01 = limsup (2.14)
r—oo logq r
max < i<k_1{log, m(r, U1
= lim sup 1Sk al &p ( J )}, re k.
r—o00 logq T
Thus, the proof is complete. O

Lemma 2.7. Let Hij(z) (j = 0,1,...,k — 1) be meromorphic functions of finite

[p, q]-order. If
_ max <;j<k—1{log, m(r, H;)}
lim sup

r—oo logq r

=M

and there exists a set Ey with infinite logarithmic measure such that
i log,, m(r, Hp) B> B
r—00 log, r
holds for all v € Ey, then every meromorphic solution f # 0 of
FO L H o f* Y o Hif - Hof =0 (2.15)
satisfies (11,4 (f) = P

Proof. Assume that f(z) # 0 is a meromorphic solution of (2.15)). From (2.15), we

have

f(k) f, k—1
m(r, Hy) < m(r, T) + -+ mr 7) + Zm(r, H;)+0(1). (2.16)

By the logarithmic derivative lemma and (2.16[), we have
k—1
m(r, Ho) < O{logrT(r, )} + Y _m(r, H;), r¢ Ea, (2.17)
j=1

where Ey C [1,4+00) is a set with finite linear measure. From the assumptions of
Lemma [2.7] there exists a set F; with infinite logarithmic measure such that for all
|z| = r € Eq — Ey, we have

exp,{(f2 —¢)log, r} < OflogrT(r, f)} + (k — 1) exp { (51 + &) log, 7},  (2.18)
where 0 < 2e < 8 — 1. From (20), we have o[,11,4(f) > B2. O
Lemma 2.8 ([I3]). Let f(z) be a transcendental meromorphic function and o > 1

be a given constant. Then for any given € > 0, there exists a set Er C [1,00)
that has finite logarithmic measure and a constant M > 0 that depends only on «
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and (m,n)(m,n € {0,...,k} with m < n) such that for all z satisfying |z| = r &
[0,1] U E7, we have

fM(2) Tlar, f) . . nem
] = M (=5 g g T(ar, 1))

Lemma 2.9 (21, Lemma 3.13]). Let f(z) be an entire function of [p,q]-order
satisfying op.q(f) = 0, Tp,q(f) =7, 0 < 0 <00, 0 < T < 00, then for any given
B < 7, there exists a set B4 C [1,400) that has infinite logarithmic measure such
that for all r € E4, we have

log, M(r, f) > B(log, 1 7).

Lemma 2.10. Let Ag(z), A1(2),..., Ax_1(2) be entire functions with finite [p, q|-
order and satisfy max{op, g(A;) : j = 1,2,...,k = 1} < opp g(Ao) = 02 < 00 and
maX{T[p,q] (Aj) |U[p7q] (AJ) = O[p,q] (A(]) > 0} =1 < Tlp.q] (Ao) =T, and let Ujl,U;»
be as stated in Lemma . Then for any given e(0 < 2e < 7 — 71), there exists a
set E5 with infinite logarithmic measure such that

|U;| < exp,{(m1 +¢)(log,_17)7*}, |U¢| > exp,{(7 —¢)(log,_1 )7}, (2.19)
wheret € N and j =1,2,...,k— 1.

Proof. We will use the induction method for this proof.

(i) First, we prove that U/(j = 0,1,...,k — 1) satisfy (2.19) when ¢ = 1. From
the definition U} = A, + A; — 404, (j # 0) and U3 = A} + Ay — 424y, we
have
Ay

1 A,
> A (15 4+ |50
0312 ~Iu] (11 + 12

> + | Ao| (2.20)

and

A Al )
|Uj1|S|Aj+1|(|Aj.+1|+|A70‘)+|Aj|’ i=12... k-1, A, = 1. (2.21)
j+1 0

From Lemma Lemma and (2.20)—(2.21)), for any £(0 < 4e < 7 — 71), there

exists a set F5 with infinite logarithmic measure such that
€ (o
Ug| = —2M exp,{(11 + 3/ (ogg 1 1) H(T(2r, Ag))®
E g
+exp,{(r = 2)(log, -, 1)}

> —2M exp,{(m1 + %)(logq_1 r)”z}(expp{(ag + g)(logq 270)})2 (2.22)

+ expp{<r - Z) (log,_17)7}

> exp,{ (7 - 5 ) (log, 17)"}
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and

9
Uj| < 2M exp, {(r1 + ) (log,_ )7 (T (2r, 49))*

+ expp{(n + Z)(logq_l r)72}
< 2M expy{(r1 + 7)(log, 1 1) H(exp,{(o2 + T)(log, 2)})*  (2:23)
+exp,{(n + )(10gq )7}
< expp{(m+ 5 “)log,_1 1)}, J#0,
where M > 0 is a constant, not necessarily the same at each occurrence.

(ii) Next, we show that U} (j=0,1,2,...,k—1) satisfy (2.19) when ¢ = 2. From

U3 =1 + U3 = Bevl and U2 = UL, + U} = S5 UL, (5 =0,1,...,k—1) and

Ul =1, we have

Ui Us
20 77— it .
U] = 03] |U1|(|U1|+| 0|) (2.24)
and
U'1+1
U3 < U} + 10l (1 + 155 \), J=1,2. k-1 (2.25)
Jj+1 0

By the conclusions in (i), Lemma and Lemma (2.22)—(2.23)), for all |z| =

r € E5, we have
€ - € 2
UG| > —2M exp,, { (11 + 5)(10&14 )72} (exp,, { (02 + g)(logq 2r)})

+ expp{ (7’ — %) (loqu 7«)‘72} (2.26)
> exp,{(7 —¢)(log,_ 1)}
and

5) (108, 1 7)) exp, {(0 + 2)(log, 2r)}

+ exp,{(r1 + 2)(log, 1 )7} (2:27)

< expy {(71 +)(log, 1)}, £0.

(iii) Now, suppose that (2.19) holds for i < n(n € N). Thus, for any given
e(0 < 4e < 7 — 711), there exists a set E5 with infinite logarithmic measure such
that

|U;| < epr{(Tl + E)(logqfl T)UZ}7 |Ué‘ > epr{(’T - E)(logq,1 T)02}7 (228)

|UJ2| < 2M exp,{(m1 +

where i < n and j = 1,2,...,k—1. From UM = UM + Uy — %’U{% and
U;LH U+1 + U — Jn+1(j=0,1,...,k—1)andU,?El,wehave
n+1 n n U
UG |z\Uo\—|U1|( |+| \) (2.29)
and
e, ur'
U < O 0l (1o I l), =12, k=1 (2:30)
Uy, Uy
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Then, from Lemma 2.8 Lemma[2.9)and (2.28)-(2.30), for all |z| = r € Es5, we have
n - € 2
|Uj +1| <2M expp{(ﬁ + 5)(logq_1 ) 2}(€pr{(0'2 + f)(logq 27“)})

+ exp,{(11 +¢)(log,_, )7} ° (2.31)
< expp{(m1 +2¢)(log, 1 7)7},  j #0,
and
Ug ™| = —2M exp{(m + ¢)(log,_; 7)7*}(exp, { (02 + %)(logq 2r)})?
+exp,{(r —)(log,_, )72} (2.32)
> exp,{(7 — 2¢)(log,_1 7)7?}.
Thus, the proof is complete. O

Lemma 2.11. Let B;(z) (j =0,1,...,k — 1) be meromorphic functions such that
max{op, ,(B;) 1 j = 1,2,...,k =1} = 04 < 01, 4/(Bo) = 03 and § := 6(oc0, By) =

limr—=sc Zf((:gg)) > 0. Then every meromorphic solution f # 0 of equation

f(k) + Bk_lf(kfl) + 4+ B f +Byf=0 (2.33)
satisfies oppi1,q/(f) > 03.

Proof. Let f # 0 be a meromorphic solution of equation (2.33). Then from (2.33)),

we have

(k) (k=1) roo kol
m(r,BO)<m(r,ff)+m(r,ffl + ..+m(r,f7)+Zm(T,Bj)+O(1)
Jj=1

k—1
< O{logrT(r, f)} + Y _T(r,By), 7 ¢ Ee,
j=1
(2.34)
where Eg C [1,400) is a set with finite linear measure. By Lemma [2.5] there exists

a set F with infinite logarithmic measure such that for all |z| = r € E, we have
log,, T'(r, Bo)
m —p =\

r—00 log,, r

= 03. (2.35)

Since § := d(o0, By) > 0, then for any given £(0 < 2e < min{d, o3 —04}) and for all
r € E, by (37), we have
m(r, Bo) > (6 — €) exp,{(03 —¢)log, 7}. (2.36)
From and (2.36]), we have
(6—¢)exp,{(o3—¢)log,r} < O{logrT(r, f)}+(k—1)exp,{(os+c)log, r}, (2.37)
where r € E — Eg. From (2.37), we obtain o[, 1,4(f) = 03 = 0,4 /(Bo). O

Lemma 2.12. Let B;(z), j = 0,1,...,k — 1 be meromorphic functions of finite
[p, q] order. If there exist positive constants os, 3, 34(0 < B3 < B4) and a set Eg
with infinite logarithmic measure such that
max{|B;(z)| : j =1,2,...,k — 1} < exp,{fs(log,_; )7},
and
|Bo(z)| = exp,{fa(log, ,7)7"}
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hold for all |z| = r € Eg, then every meromorphic solution f Z 0 of (2.33) satisfies
0[p+1,q](f) Z 0s5.

Proof. Suppose that f # 0 is a meromorphic function of (2.33). Then it follows
that

ﬂ
I (2.38)

(k) k—1
Bo(a) <171+ 3 1B, (2)
7j=1

By Lemma [2:8] there exists a set E7 with finite logarithmic measure such that for
all |z| = r € E;, we have

(7) )
|f7| <M[T2r, )%, j=1,2,...,k (2.39)
By (2.38)), (2.39) and the assumptions of Lemma for all |z| =r € Eg — E7, we
have
expp{@;(logqfl r)75} < ME[T(2r, f)]QlC epr{ﬂg(Iquil )75} (2.40)
Since 0 < 33 < 34 and by (2.40)), we have op,11,4(f) > 0. O

Lemma 2.13 ([2I, Lemma 3.12]). Let Ao, A1,...,Ar—1, F # 0 be meromorphic
functions, if f is a meromorphic solution of the equation

fE LA fED 4 4 Agf = F,
satisfying max{op, (F),0p.q(A5);5 = 0,1,...,k — 1} < 0p,4(f), then we have

U[P#Z](f) = )‘[lhq](f) = A[p,q} (f)

Lemma 2.14 (|21, Theorem 2.3]). Let Aj(z) (j = 0,1,...,k—1) be entire functions
satisfying max{op, (A;) 1 j=1,2,...,k — 1} < oy, q(Ao) < 00 and

max{7yy,q (A4))|07p,q1 (A;) = T1p,g) (o) > O} < 71,4 (Ao)-
Then every nontrivial solution f of satisfies oppi1,q/(f) = O[p,q(Ao)-

3. PROOFS OF THEOREMS

Proof of Theorem[I.g We will consider two cases as follows.
Case 1. Suppose that max{op, 4(4;) 17 =1,2,...,k — 1} < 0}, 4/(A0) < 0.
(i) First, we prove that Aj,41,/(f—¢) = 0[p41,g(f). Assume that f is a nontrivial
solution of (L.2), from [2I, Theorem 2.2], we have oj,11,4(f) = 0[pq(Ao). Set
9= f = Since 97p11,¢)(9) < 01p,q)(Ao), then o1p11,41(9) = Op+1,6)(f) = 01y, (Ao)

and Ajp11,4(9) = Ap+1,q(f—¢). By Lemma we get that g satisfies the equation
@3). Set F =" + Ay 10D ... Agp. If F =0, then from [21], we have
Olp+1,q](P) = O[p,q(Ao), a contradiction. Then F' # 0. From Lemma and

assumption of Case 1, we have

J[p+1,q](F) < max{a[p—&-l,q](@)a O[p+1.q] (Ao)} = maX{U[p+l,q] (), 0}.
Since op,11,4 () < Opp,q(Ao), we have

max{opy1,q(F), Ofpt1,9(45) 17 =0,1,2,....k =1} <oppi1,g(f).
By Lemma we have Api1,61(9) = Ap+1,g1(9) = Tlpt1,9)(9) = O[p,q)(Ao). Thus,

we have

Ap+1,q (f =€) = Aps1,q(f =€) = 0ps1,q(f) = 0pp,q(Ao)-
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(i) Second, we prove that Api1,4(f — @) = Opi1,q(f)- Set g1 = f' — o,
then ojp11,4(91) = Opt1,q(f) = Opp,g(Ao). From Lemma we get that g;

satisfies the equation . Set Fy = o) 4 U,iflcp(k’l) +- -+ Uly, where UL(j =
0,1,...,k — 1) are stated as in Lemma If /4 = 0, from Lemma and
Lemma we have op,11,4(¢) > 0pp,q(Ao), a contradiction with op,41,4(¢) <
Olp.q(Ao). Hence Fi # 0. From the definition of Uj(j = 0,1,...,k — 1), we
have o(p11,4(U}) < 0ppy1,)(4;) 5 =0,1,...,k—1. Thus, we can get op,41,4(F1) <
max{o(,41,4 (), Opr1,q(U}) 1 5 =0,1,...,k=1}. Since 0p41,)(¢) < 07, (Ao), we
have max{o(,11,4(F1), 0ps1,q(U}) : 5 =0,1,...,k=1} < 0ppq(Ao) = Tppy1,(91)-
By Lemma we obtain

X[erl,q](f/ —p)= )‘[zﬂrl,q} (f/ —p) = Olp+1,q] (f)-

(iii) We will prove that X[]H_l,q](f(i) — @) = Opt1,q(f), (¢ > 1,i € N). Set
gi = f9 — ¢, then op11,9(9) = Oppi1.q(f) = 0p.g(Ao). From Lemma we
have g; satisfies equation . Set F; = o) + Uli_lgo(k_l) + - + Ulp, where
U;(j =0,1,...,k—1;i € N) are stated as in Lemma If F; = 0, from Lemma
and Lemma we have oj,11,4(¢) > 07p,q(Ao), a contradiction with op,11 4(¢) <
Op,q(Ao). Hence F; # 0. By using the same argument as in Case 1(ii), we can get

X[p-iqu](f(i) — %) = Aptig] (S~ o) = Tp+1.q) (f)-
Case 2. Suppose that max{op, ,(4;) :j =1,2,...,k =1} < oy, g(Ao) < 00 and
max{7yp ) (45)[0p.q) (4;) = 01p.g)(A0) > 0} < 7, (Ao)-

(i) We first prove that Aj,11,¢(f—¢) = 0p+1,4(f). Since f is a nontrivial solution

of (1.2), by Lemma we have o7,41,g(f) = Opp,q(A0) > 0. Set g = f — o.
Since ¢ # 0 is an entire function satisfying op,11,4(0) < 0p,q(Ao), then we have

Tp+1,4)(9) = Olpr1,0)(f) = 01p.q1(Ao) and Ajps1,41(9) = Api1,4(f —¢). From Lemma
we get that g satisfies equation (2.1). We will affirm F # 0. If ' = 0, by

Lemma we get O[pi1,q/(¢) = Opp,q(Ao), a contradiction. Hence F' # 0. From
the assumptions of Case 2, we get

max{a[erl’q](F), U[erl’q](Aj) . j = 0, 1, ey k — 1} < Olp+1,q] (g) = O[p,q] (AO).

From Lemma |2.13] we have

Ap+1,q (f =€) = Aps1,q(f =€) = 01,9 (f) = 0pp,q(Ao)-

(ii) Now we prove that Api1,4(f" — @) = 0jpt1,q(f). Let g1 = f — ¢. Since

I[p+1,4) () < Olp,q1(Ao), We have o7p1141(91) = Oppt1,4)(f) = O[p,q1(Ao). By Lemma
we get that g satisfies equation (2.2). If F; = 0, from Lemma and

Lemma we have o7,41,4(0) > 0,4/(Ao). Then we can get a contradiction
with o,41,4(0) < 0p.q(A0). Therefore, we have F; # 0. By (2.2) and Lemma
we have
Apt1,a(f = ©) = Api1,g (f = ©) = i1, (f) = 0pp.q1(Ao)-
Similar to the arguments as in Case 1 (iii) and by using Lemmas and
we obtain

o1, (FD = 0) = Api1.g (FD = 9) = 0ppy1,9(f) = 0pg(Ao), (i €N).
Thus, the proof is complete. (I
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Proof of Theorem[I.10} According to the conditions of Theorem 1.2, we can easily
obtain the conclusions by using the similar argument as in Theorem 1.9/ and Lemma
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