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TRAVELING WAVE SOLUTIONS OF NONLOCAL DELAY
REACTION-DIFFUSION EQUATIONS WITHOUT LOCAL

QUASIMONOTONICITY

SHUXIA PAN

Abstract. This article concerns the traveling wave solutions of nonlocal delay
reaction-diffusion equations without local quasimonotonicity. The existence of

traveling wave solutions is obtained by constructing upper-lower solutions and

passing to a limit function. The nonexistence of traveling wave solutions is also
established by the theory of asymptotic spreading. The results are applied to

a food limit model with nonlocal delays, which completes and improves some

known results.

1. Introduction

Reaction-diffusion systems with nonlocal delays are important models reflecting
the random walk as well as the history behavior of individuals in population dy-
namics, and provide more precise description in some evolutionary processes. This
kind of model was earlier proposed by Britton [3, 4] in population dynamics, and
we refer to Gourley et al. [9], Gourley and Wu [10] for more biological background
and literature results of reaction-diffusion systems with nonlocal delays. A typi-
cal example of reaction-diffusion equations with nonlocal delays takes the form as
follows
∂u(x, t)
∂t

= ∆u(x, t) + u(x, t)g
(
u(x, t),

∫ ∞
0

∫
R
u(x− y, t− s)J(y, s) dy ds

)
, (1.1)

in which x ∈ R, t > 0, u(x, t) denotes the population density in population dynam-
ics, g : R2 → R is a continuous function, and J(y, s) : R× R+ → R+ is a probability
function formulating the random walk of individuals in history, and is the so-called
kernel function in literature.

In particular, the traveling wave solutions of (1.1) have been widely studied. For
some special forms of J , the existence of traveling wave solutions was obtained by
employing linear chain techniques and geometric singular perturbation theory, see
[2, 8, 25]. Wang et al. [31] developed the monotone iteration in [34] and established
an abstract scheme to prove the existence of traveling wave solutions of nonlocal
delayed reaction-diffusion systems admitting proper monotone conditions, and the
results were applied to a food limit model in [30, 37]. Ou and Wu [23] proved the
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persistence of traveling wave solutions with respect to the small (average) delays.
In particular, if an equation is (local) quasimonotone (i.e., g(u, v) is monotone
increasing in v near the unstable steady state), then the existence of traveling wave
solutions can be obtained by the monotonicity of semiflows (see Smith [26]) or by
constructing auxiliary monotone equations, see [12, 17, 18, 28, 29, 36]. Besides
the existence of traveling wave solutions, another important topic is the stability
of traveling wave solutions, and much attention has been paid to it by different
methods including squeezing technique, spectral theory and energy method, see
[14, 15, 19, 20, 21, 22, 27, 32, 33] and the references cited therein. Moreover, some
other results on spatial-temporal propagation of (1.1) can be found in Zhao [38].

In this paper, we shall consider the minimal wave speed of traveling wave solu-
tions of (1.1) if g(u, v) is monotone decreasing in v, and (1.1) does not satisfy the
monotone conditions in the known results. In particular, let

g(u, v) = r
[ 1− u− av
1 + du+ dav

]
, (1.2)

in which r > 0, d ≥ 0, a ≥ 0 are constants. Then (1.1) with (1.2) is the food
limit model in [7, 30, 37], and the authors obtained the existence of traveling wave
solutions for several special J if the (average) time delay is small enough. For more
results with special J and d in (1.1) with (1.2), we also refer to [5, 6, 10, 11, 16].
In particular, if (1.1) with (1.2) takes the discrete delay and d = 0, then Lin [13]
and Pan [24] investigated the asymptotic speed of spreading, which implies the
persistence of asymptotic speed of spreading.

In what follows, we shall further develop the corresponding theory of traveling
wave solutions such that we can obtain the minimal wave speed of (1.1), which
at least contains (1.1) with (1.2) as an example and completes some well known
results. The existence and nonexistence of traveling wave solutions are proved by
the idea in Lin and Ruan [16], which implies the minimal wave speed of traveling
wave solutions of (1.1) is the same as that in

∂u(x, t)
∂t

= ∆u(x, t) + u(x, t)g
(
u(x, t), u(x, t)

)
with some additional assumptions. These results indicate that even if the (large)
delay leads to the failure of local quasimonotonicity, it is also possible to obtain the
persistence of traveling wave solutions with respect to the (large) delay.

The rest of this paper is organized as follows. In Section 2, we list some prelim-
inaries including notation and the theory of asymptotic spreading. By Schauder’s
fixed point theorem, the existence of traveling wave solutions is established in Sec-
tion 3. The minimal wave speed is obtained in Section 4 by passing to a limit
function and applying the theory of asymptotic spreading. Finally, the traveling
wave solutions of (1.1) with (1.2) are studied in the last section.

2. Preliminaries

In this article, we define

C(R,R) = {u : R→ R : u is uniformly continuous and bounded}.

Then C is a Banach space equipped with the standard supremum norm. When
a < b is true, denote

C[a,b] = {u ∈ C : a ≤ u ≤ b}.
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If u ∈ C2(R,R), then u ∈ C, u′ ∈ C, u′′ ∈ C. For µ > 0, define

Bµ(R,R) =
{
u ∈ C(R,R) : sup

t∈R
|u(t)|e−µ|t| <∞

}
,

then Bµ(R,R) is a Banach space when it is equipped with the norm | · |µ defined
by

|u|µ = sup
t∈R
|u(t)|e−µ|t| for u ∈ Bµ(R,R).

For (1.1), we give the following assumptions:
(A1) g(0, 0) > 0, g(0, 1) > 0 and g(1, 0) = 0;
(A2) g(u, v) is strictly monotone decreasing and Lipschitz continuous in u, v ∈

[0,∞), we also suppose that L > 0 is the Lipschitz constant and g(u, v)→
−∞ if u+ v →∞;

(A3) there exists E ∈ (0, 1) such that g(E,E) = 0;
(A4) J(y, s) = J(−y, s) ≥ 0, y ∈ R, s ≥ 0,

∫∞
0

∫
R J(y, s) dy ds = 1;

(A5) for some λ0 >
√
g(0, 0),∫ ∞

0

∫
R
J(y, s)eλy+(λ2+g(0,0))s dy ds <∞ for all λ ∈ (0, λ0);

(A6) if 1 ≥ E1 ≥ E2 > 0 such that

g(E1, E2) ≥ 0, g(E2, E1) ≤ 0,

then E1 = E2 = E.
Clearly, (1.1) with (1.2) satisfies (A1)-(A3) if d = 0 and (A6) is true if d ≥ 0, a ∈
(0, 1). Although (1.2) does not satisfy (A2), we will illustrate that our results
remain true for (1.1) with (1.2) by introducing an auxiliary equation in the last
section. Therefore, our results can be applied to (1.1) with (1.2) by adding proper
conditions satisfied by J .

Definition 2.1. A traveling wave solution of (1.1) is a special solution with the
form u(x, t) = φ(x+ ct), in which c > 0 is the wave speed and φ ∈ C2(R,R) is the
wave profile that propagates in R.

Then φ, c must satisfy

cφ′(ξ) = φ′′(ξ) + φ(ξ)g
(
φ(ξ),

∫ ∞
0

∫
R
φ(ξ − y − cs)J(y, s) dy ds

)
. (2.1)

To reflect transition processes between different states, we also require

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = E. (2.2)

Then a traveling wave solution satisfying (2.1)-(2.2) can reflect the successful bio-
logical invasion in the population dynamics.

For all v ∈ [0, 1], let β > 0 be a constant such that

βu+ ug(u, v)

is monotone increasing in u ∈ [0, 1]. If φ(ξ) ∈ C[0,1], we define

H(φ)(ξ) = φ(ξ) + φ(ξ)g
(
φ(ξ),

∫ ∞
0

∫
R
φ(ξ − y − cs)J(y, s) dy ds

)
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and F (φ)(ξ) as follows

F (φ)(ξ) =
1

λ2(c)− λ1(c)

∫ ∞
−∞

min{eλ1(c)(ξ−s), eλ2(c)(ξ−s)}H(φ)(s)ds,

in which

λ1(c) =
c−

√
c2 + 4β
2

, λ2(c) =
c+

√
c2 + 4β
2

.

Then a fixed point of F in C[0,1] is a solution to (2.1).
Consider the initial value problem

∂w(x, t)
∂t

= ∆w(x, t) + w(x, t)g(w(x, t), δ),

w(x, 0) = ϕ(x) ∈ C[0,1]

(2.3)

with δ ∈ [0, 1], then the following result is true by Aronson and Weinberger [1], Ye
et al. [35].

Lemma 2.2. Equation (2.3) admits a unique solution such that u(·, t) ∈ C[0,1] for
all t > 0. If z(·, t) ∈ C with t > 0 such that

∂z(x, t)
∂t

≥ (≤)∆z(x, t) + w(x, t)g(w(x, t), δ),

z(x, 0) ≥ (≤)ϕ(x),

then z(x, t) ≥ (≤)w(x, t) for all x ∈ R, t > 0. Moreover, if ϕ(x) admits a nonempty
support, then w(x, t) satisfies

lim inf
t→∞

inf
|x|<ct

w(x, t) = lim sup
t→∞

sup
|x|<ct

w(x, t) = κ

with any c < c′ =: 2
√
g(0, δ) and unique κ ∈ (0, 1] such that g(κ, δ) = 0. In particu-

lar, if ϕ(x) admits a nonempty compact support, then lim supt→∞ sup|x|>ct w(x, t) =
0 with any c > c′.

3. Existence of traveling wave solutions

In this section, we shall prove the existence of traveling wave solutions of (1.1),
which is motivated by Lin and Ruan [16]. For c > c∗ =: 2

√
g(0, 0), define

γ1(c) =
c−

√
c2 − 4g(0, 0)

2
, γ2(c) =

c+
√
c2 − 4g(0, 0)

2
,

φ(ξ) = min{eγ1(c)ξ, 1}, φ(ξ) = max{eγ1(c)ξ − qeηγ1(c)ξ, 0}

with 1 < η < min{2, γ2(c)/γ1(c)} and q > 1.

Lemma 3.1. Assume that c > c∗ and (A1)–(A5) hold. If

q = 1−
g(0, 0)(1 + 2L

∫∞
0

∫
R J(y, s)eγ1(c)y+(γ2

1(c)+g(0,0))s dy ds)
(ηγ1(c))2 − cηγ1(c) + g(0, 0)

,

then for ξ 6= 0 and ξ 6= ln q
(1−η)γ1(c) , we have

cφ
′
(ξ) ≥ φ′′(ξ) + φ(ξ)g(φ(ξ),

∫ ∞
0

∫
R
φ(ξ − y − cs)J(y, s) dy ds),

cφ′(ξ) ≤ φ′′(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds).

(3.1)
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The proof of the above lemma is trivial and we omit it here.

Lemma 3.2. Assume that c > c∗ and (A1)–(A5) hold. Let

Γ = {φ ∈ C : φ(ξ) ≤ φ(ξ) ≤ φ(ξ), ξ ∈ R}.
Then Γ is convex and nonempty. Moreover, for any µ > 0, it is bounded and closed
with respect to the norm | · |µ. In particular, F : Γ→ Γ.

Proof. The properties of Γ in Theorem 3.2 are clear and we omit the proof here.
Now it suffices to verify F : Γ→ Γ. By (A2) and the definition of β, H admits the
following nice conclusions

βφ(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds)

≥ βφ(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds)

≥ βφ(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds)

= H(φ)(ξ)

≥ βφ(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds)

≥ βφ(ξ) + φ(ξ)g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds)

for any φ ∈ Γ, ξ ∈ R.
If ξ 6= 0, then

F (φ)(ξ) =
1

λ2 − λ1

[ ∫ ξ

−∞
eλ1(ξ−s) +

∫ ∞
ξ

eλ2(ξ−s)
]
H(φ)(s)ds

=
1

λ2 − λ1

[ ∫ 0

−∞
+
∫ ∞

0

]
min{eλ1(ξ−s), eλ2(ξ−s)}H(φ)(s)ds

≤ 1
λ2 − λ1

[ ∫ 0

−∞
+
∫ ∞

0

]
min{eλ1(ξ−s), eλ2(ξ−s)}

×
(
βφ(s) + φ(s)g(φ(s),

∫ ∞
0

∫
R
φ(s− y − cz)J(y, z)dydz)

)
ds

≤ 1
λ2 − λ1

[ ∫ 0

−∞
+
∫ ∞

0

]
min{eλ1(ξ−s), eλ2(ξ−s)}

×
(
βφ(s) + cφ

′
(s)− φ′′(s)

)
ds

= φ(ξ) +
1

λ2 − λ1

[
min{eλ2ξ, eλ1ξ}(φ′(0+)− φ′(0−))

]
≤ φ(ξ)

by (3.1). Since F (φ)(ξ), φ(ξ) are continuous for all ξ ∈ R, then

F (φ)(ξ) ≤ φ(ξ), ξ ∈ R.
Similarly, we have

F (φ)(ξ) ≥ φ(ξ), ξ ∈ R.
The proof is complete. �
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Lemma 3.3. Assume that c > c∗ and (A1)–(A5) hold. If cµ < β and µ ∈
(0,
√
g(0, 0)), then F : Γ→ Γ is complete continuous in the sense of | · |µ.

The proof of the complete continuity is independent of the monotone condition,
and we omit it here. For the complete discussion, we refer to Lin et al. [15, Theorem
2.4] and Ma [17, Theorem 1.1].

Theorem 3.4. Assume that (A1)–(A5) hold. Then for each c > c∗, (2.1) has a
positive solution φ(ξ) such that

0 < φ(ξ) < 1, lim
ξ→−∞

φ(ξ) = 0, 1 ≥ lim sup
ξ→∞

φ(ξ) ≥ lim inf
ξ→∞

φ(ξ) > 0. (3.2)

Further suppose that (A6) holds, then φ(ξ) satisfies (2.2).

Proof. Using Schauder’s fixed point theorem, the existence of φ(ξ) is confirmed.
Moreover,

0 < φ(ξ) < 1, lim
ξ→−∞

φ(ξ)e−γ1(c)ξ = 1

are clear by the asymptotic behavior of φ(ξ) and φ(ξ). Note that φ(ξ) = u(x, t) is
a special solution to (2.1), then

∂u(x, t)
∂t

≥ ∆u(x, t) + u(x, t)g(u(x, t), 1),

∂u(x, t)
∂t

≤ ∆u(x, t) + u(x, t)g(u(x, t), 0),

u(x, 0) = φ(x) > 0.

(3.3)

Combining Lemma 2.2 with (3.3), we see that

0 < lim inf
t→∞

u(0, t) ≤ lim sup
t→∞

u(0, t) ≤ 1,

which completes the proof of (3.2). Let

E1 = lim sup
ξ→∞

φ(ξ), E2 = lim inf
ξ→∞

φ(ξ),

then 0 < E2 ≤ E1 ≤ 1. Using the dominated convergence theorem in F when
ξ →∞, we obtain

g(E1, E2) ≥ 0, g(E2, E1) ≤ 0,

and (2.2) is true by (A6). The proof is complete. �

4. Minimal wave speed

By what we have done, we have obtained the existence of traveling wave solutions
of (1.1) if c > c∗. In this section, we shall confirm the existence of traveling wave
solutions of (1.1) if c = c∗ and the nonexistence of traveling wave solutions of (1.1)
if c < c∗ by the idea in Lin and Ruan [16]. To continue our discussion, we first
present the following nice property of any bounded solutions of (2.1).

Lemma 4.1. Assume that φ(ξ) is a bounded solution of (2.1) or a bounded fixed
point of F . Then φ(ξ) ∈ C[0,1] holds and φ′(ξ) is uniformly bounded for ξ ∈ R, c ∈
(c∗, 4c∗].

The above result is evident and we omit its verification.
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Theorem 4.2. Assume that (A1)–(A5) hold. If c = c∗, then (2.1) has a positive
solution φ(ξ) satisfying (3.2). Further suppose that (A6) holds, then φ(ξ) also
satisfies (2.2).

Proof. Let {cn} be a strictly decreasing sequence satisfying

cn → c∗, n→∞, c∗ < cn ≤ 2c∗, n ∈ N.

Then for each cn, F with c = cn has a fixed point φn(ξ) such that (3.2) is true.
Since φn(ξ) is invariant in the sense of phase shift, we assume that

φn(0) = ε, φn(ξ) < ε, ξ < 0 for n ∈ N

with g(4ε, 1) > 0. Clearly, {φn(ξ)} are equicontinuity (see Lemma 4.1), then we
can choose a subsequence of {φn(ξ)}, still denoted by {φn(ξ)} such that {φn(ξ)}
convergence to a function φ(ξ) ∈ C[0,1], and the convergence is pointwise and locally
uniform on any bounded interval of ξ ∈ R. Moreover, if cn → c∗, then

min{eλ1(cn)(ξ−s), eλ2(cn)(ξ−s)}
λ2(cn)− λ1(cn)

→ min{eλ1(c
∗)(ξ−s), eλ2(c

∗)(ξ−s)}
λ2(c∗)− λ1(c∗)

,

and the convergence is uniform in ξ, s ∈ R. Applying the dominated convergence
theorem in F with c = cn, we see that φ(ξ) is a fixed point of F with c = c∗ and
φ(ξ) is uniformly continuous in ξ ∈ R. Therefore, (2.1) with c = c∗ has a solution
φ(ξ) such that

φ(0) = ε, φ(ξ) ≤ ε, ξ < 0.

Since φ(0) > 0, then the proof of limit behavior for ξ → ∞ is similar to that in
Theorem 3.4. If lim supξ→−∞ φ(ξ) > 0, then there exist constants δ ∈ (0, ε], η > 0
and a sequence ξm → −∞,m→∞ such that

φ(ξm)→ δ, φ(ξm − x) > δ/2, m ∈ N, |x| ≤ η

by the uniform continuity. At the same time, Lemma 2.2 implies that φ(ξm) ≥ 4ε
for ξm < 0,m ∈ N, and a contradiction occurs. Therefore, we obtain (3.2), and the
proof is complete. �

Remark 4.3. If g(u, v) is monotone increasing in v, then the limit behavior can
be proved by the monotonicity of traveling wave solutions, see Thieme and Zhao
[28].

Theorem 4.4. Assume that (A1)–(A5) hold. If c < c∗, then (2.1) has no positive
solution φ(ξ) satisfying (3.2).

Proof. If the statement were false, then for some c1 < c∗, (2.1) with c = c1 has a
positive solution φ(ξ) satisfying (3.2), which is bounded and uniformly continuous
for ξ ∈ R. Let ε > 0 such that

γ2 − c1γ + g(0, 4ε) = 0

has no real root. By (3.2), there exists T < 0 such that∫ ∞
0

∫
R
φ(ξ − y − cs)J(y, s) dy ds < ε, ξ ≤ T.

Define
δ = lim inf

ξ>T
φ(ξ).
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Then δ > 0 is well defined and there exists M > 1 such that

g(φ(ξ),
∫ ∞

0

∫
R
φ(ξ − y − cs)J(y, s) dy ds) ≥ g(φ(ξ), 1) ≥ g(Mδ, ε)

and so
c1φ
′(ξ) ≥ φ′′(ξ) + φ(ξ)g(Mφ(ξ), ε). (4.1)

Let c2 > c1 such that
γ2 − c2γ + g(0, 2ε) = 0

has no real root. Note that u(x, t) = φ(ξ) also satisfies (3.2), then Lemma 2.2
implies that

lim inf
t→∞

inf
|x|=c2t

u(x, t) > ε

with ε > 0 such that g(Mε, ε) > 0.
Let −x = c2t, then t→∞ indicates that ξ → −∞ and

lim sup
t→∞

sup
−x=c2t

u(x, t) = 0,

which implies a contradiction. The proof is complete. �

Remark 4.5. The proof of Theorem 4.4 is also independent of g(0, 1) > 0.

5. Applications

In this part, we consider the traveling wave solutions of (1.1) with (1.2) by
presenting the conclusion if J takes several special kernels in Zhao and Liu [37].
For (1.1) with (1.2), it is easy to check that a bounded positive traveling wave
solution u(x, t) = φ(ξ) satisfying

0 ≤ φ(ξ) ≤ 1, ∀ξ ∈ R.
Then it is equivalent to consider (1.1) with

g∗(u, v) =



g(u, v), u, v ∈ [0, 2],
r

1+du+2ad [1− u− av], u ∈ [0, 2], v > 2,
r

1+2d+adv [1− u− av], u > 2, v ∈ [0, 2],
r

1+2d+2ad [1− u− av], u, v > 2.

Theorem 5.1. Assume that a ∈ [0, 1) holds and one of the following seven state-
ments are true:

(K1) ρ ∈ (0, 1/
√
g(0, 0)) with J(y, s) = δ(s)

2ρ e
−‖y|/ρ;

(K2) for any τ > 0 with J(y, s) = δ(y) s
τ2 e
−s/τ ;

(K3) for any τ > 0 with J(y, s) = δ(y)δ(s− τ);
(K4) for any τ > 0 with J(y, s) = δ(y) 1

τ e
−s/τ ;

(K5) for any τ > 0 with J(y, s) = 1
τ e
−s/τ 1√

4πs
e−y

2/(4s);

(K6) for any τ > 0 with J(y, s) = s
τ2 e
−s/τ 1√

4πs
e−y

2/(4s);

(K7) for any τ > 0 with J(y, s) = δ(s− τ) 1√
4πs

e−y
2/(4s).

Then 2
√
r is the minimal wave speed of traveling wave solution φ(ξ) of (1.1) with

(1.2), which connects 0 with 1/(1 + a) in the sense of

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) =
1

1 + a
.
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Remark 5.2. For more kernel functions, we can obtain some conditions on the
parameters such that 2

√
r is the minimal wave speed of traveling wave solutions

of (1.1) with (1.2). It should be noted that we cannot prove the monotonicity of
traveling wave solutions by the methods in this paper.

From Remark 4.5, we also have the following result.

Theorem 5.3. Assume that a ≥ 0, d ≥ 0. Then, for any c < 2
√
r, (1.1) with (1.2)

has not a bounded positive traveling wave solution φ(ξ) such that

lim
ξ→−∞

φ(ξ) = 0, lim inf
ξ→∞

φ(ξ) > 0.

Remark 5.4. Theorem 5.3 remains true for monotone and bounded traveling wave
solutions, which completes the results in Gourley and Chaplain [7], Wang and Li
[30] and Zhao and Liu [37].
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