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SOLUTIONS TO THIRD-ORDER MULTI-POINT
BOUNDARY-VALUE PROBLEMS AT RESONANCE WITH
THREE DIMENSIONAL KERNELS

SHUANG LI, JIAN YIN, ZENGJI DU

ABSTRACT. In this article, we consider the boundary-value problem

a(t) = f(t, x(t), 2’ (1), 2" (1), te€(0,1),
m l n
2"(0) = Y aia”(&), @)=Y (o), a(1) =3 Balny),
i=1 k=1 j=1

where £ : [0,1] x R? — R is a Carathéodory function, and the kernel to the
linear operator has dimension three. Under some resonance conditions, by
using the coincidence degree theorem, we show the existence of solutions. An
example is given to illustrate our results.

1. INTRODUCTION

This concerns the third-order nonlinear differential equation

2" (t) = f(t,x(t), 2" (¢),2"(t), te€(0,1), (1.1)
with the boundary conditions

l

2"(0) = Zaw”(&), 2(0) =) wa'(on), (1) = Zﬂjx(m), (1.2)

k=1

where f : [0,1] x R® — R is a Carathéodory function, 0 < & < -+ < &, < 1,
0<op <+ <<l 0<m<-<n <1l avwmpB eRE=1..,m
E=1,...,5;5=1,...,n)and o1 > {&,...,&En}.

The existence of solutions for multi-point boundary-value problems at resonance
case has been extensively studied by many authors [I} 2, [3, 4 5] [6] [7), [§, 10]. When
the linear equation Lz = z’’/ = 0 with the boundary conditions has a non-
trivial solution, i.e. dimker L > 1. we say that boundary value problem (BVP for
short) and is a resonance problem.

The case of dimker L = 1 has been discussed by many authors [T}, 2} 4, [6]. For the
case of dimker L = 2, there are some results in [3] [} 8, [10]., Lin, Du and Meng [7]
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discussed the third-order multi-point boundary value-problem with dimker L = 2,
2"(t) = f(t,z(t),2'(t),2"(t), te€(0,1), (1.3)

2"(0) =Y aa”(&), 2'(0)=0, z(1)=>_ Bz(n). (1.4)
i=1 Jj=1

Zhao, Liang and Ren [II] studied the nonlinear third-order boundary-value prob-
lems with dimker L = 3,

2" (t) = f(t,z(t),2'(t),z"(t)) + e(t), te(0,1),
2'(0) =Y oy (&), 2"(0)=2"(n), 2"(1)=2"(C).
j=1

In [I1], the results are obtained under the assumption that

mi1 MMmi2 MMi13
M = mo1 M22 Ma3 7& 0. (15)
m31 M32 M33

This condition is difficult to verify and looks superfluous.
Inspired by the above results, in this paper, we study (L.1))-(1.2) at resonance
and show that the assumption

Ap,q,r)

P+ D +2) T 0l 0+ Tpmymop 20 - 5 B )

=@+ Dg+2) T8 aill (g+2) Ty ol 20— 7, Bmi )| #0

r+Dr+2) T el (r+2) X w200 = X5, )
can replace from [5 [IT], by using Lemma below. If there exists ok (k =
1,2,...,1) satisfying 2/(0) = 22:1 k' (o) = 0, then BVP (L.3)-(1.4) is a special
case of BVP -.

The remaining part of this article is organized as follows: In section 2, we will
state some definitions and lemmas which would be useful in the proving of main
results of this paper. In section 3, by applying Mawhin coincidence degree theory,
we obtain some sufficient conditions which guarantee the existence of solution for
BVP — at resonance case. In the last section, an example is given to
illustrate our results.

2. PRELIMINARIES

Now, some notation and an abstract existence result [9] are introduced. Let Y, Z
be real Banach spaces and let L : dom L C Y — Z be a linear operator which is a
Fredholm map of index zero and P: Y — Y, Q : Z — Z be continuous projectors
such that In P = ker L, kerQ = ImL and Y = ker L@ ker P, Z = Im L & Im Q.
It follows that L|gom Lrker p : dom L Nker P — Im L is invertible, we denote the
inverse of that map by Kp. Let €2 be an open bounded subset of Y such that
dom LN # O, the map N : Y — Z is said to be L-compact on Q if the map
QN () is bounded and Kp(I — Q)N : Q — Y is compact.

Lemma 2.1 ([9, Theorem IV]). Let L be a Fredholm map of index zero and let N
be L-compact on Q. Assume that the following conditions are satisfied:

(i) Lz # ANz for every (z,A) € ((dom L\ ker L) N 092) x [0, 1];
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(ii) Nz ¢ Im L for every x € ker L N OQY;
(iii) deg(QN|kerr, 2Nker L,0) # 0, where Q : Z — Z is a conlinuous projector
as above with Im L = ker Q).

Then the abstract equation Lx = Nx has at least one solution in dom L N .

We use the classical spaces C[0, 1], C1[0,1], C?[0,1] and L'[0, 1]. For z in C?[0, 1],
we use the norms ||zlo = max;¢(o,1){|z(t)|} and

2]l = max{||z/loc, 12" lloc, 12" loc }-
For L'[0, 1] we denote the norm by || - ||;. We define the Sobolev space
W310,1) = {z : [0,1] — R:x,2’,2” are absolutely continuous on [0, 1]
with 2 € L'[0,1]}.

Let Y = C?[0,1], Z = L'[0,1], and define the linear operator L : domL C Y — Z
as Lr = 2", x € dom L, where

dom L = {x € W*1(0,1) : = satisfies boundary conditions (1.2))}.
We define N : Y — Z as
Na = f(t,z(t),2'(t),2"(t)), te(0,1),

then (|1.1)-(1.2) can be written as Lz = Nzx.
The resonance conditions of (1.1))-(1.2)) are as follows

m I "
Zai:l’ ZWC:L Zﬂjil,
=1 k=1 j=1

n n 1

Zﬁjﬂj =1, Zﬁjﬂ? =1, Z’}/kdk =0.

J=1 j=1 k=1

Define the following symbols:
Alp,q.7)
P+DE+D N 0l DN woh | AL =5 By )
=@+ D(g+2) 200 ! (¢+2) Zk Lot 2(1 - P 1BJ77q+2) )
(r+D(r+2) 30 @l (r+2) Zk Lvko 21 Z; 18im TH)

<q+2>22 Lol 2= B

11 =

(r+ )Zk 17kUT+1 2(1 Zj 1 Bin T+2)
My, = (q + (g +2) 3075, ail 2(1 Zj 1 Bin q+2)
D2 N g 2030 B )
15 = (@+D(g+2) 3% cagf (¢+2) Zk Lo
(r+1)(r+2) 3% aigr (r+2) Xy WTTH 7
Mo, (p +2) Zk 1 'Yka 2(1 - Z] 1 ﬂjﬁp+2)
(r+2) 35 %Cf’”“ 21 =327, Bim; )|
Moy — (p+1)p+2) 37 ] 2(1— Z;L 15 p+2)
2D+ el 200 -0, 5 ]”) 7
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My = |PHDE+2ET 0! (p+2) X meof
(r+1)(r+2)30", aiff (r+2) Zk Lo

My, = (»+ )Zk 1 ’Ykak 2(1 - Z] 1 @ﬂpﬁ)
(q+ )Zk 17k0' 2(1 Z] 1 Bin q+2)

My = — p+1)(p+2) Zi:1 ] 2(1— ZJ 1 ﬂjnp+2)

D(g+2) 3007, aiff %1—211@WH)

33 = (P+Dp+2) 30 0l (p+2) Ek:l %UZH
(¢+ D@+ Ty ag! (@+2) Cpy mopt

3. MAIN RESULTS

Lemma 3.1. Assume condition (2.1) holds, then there exist p € {1,2,...,n},
qEZT, q>p+1 andr € ZT large enough number, such that A(p,q,r) # 0.

Proof. Clearly there exists p € {1,2,.. n} such that Y ;" | ai§f+2 # 0. Otherwise,
we have 327 a;677* = 0 and p € {1,2,...,n}, then

Zaigga_gi):o, j=1,2,...,n—1;
=1

ie.,
51(1_51) gm(l_fm) aq 0
_1(;[_61) m (1_§m) a;n O
Because
61(1_§1) gm(l_fm) m
: : =[[s-% ] &—-¢&) #0
_1(1 _ 61) o 5%—1(1 _ gm) i=1 1<i<j<m—1

So we have a; =0, i € {1,2,...,m}. Which is a contradiction to >_.*; a; = 1 of

condition ([2.1]).
Similarly, there exists ¢ € {1,2,...,n+ 1}, such that > ;- «;&! # 0. And for
each s € Z,s > 0, there exists ks € {sn+1,..., (s + 1)n} such that

l

St A0 S aieh Ao,
=1

k=1
Set

{kﬁ S ny o'q+1_ Q+1)Zz lalg Zk 1'7]@0'16 +1}
(ks +1) Zi:l aifi ’

then S is a finite set. If else, there exists a monotone sequence {ks,}, t = 1,2,...
ks, <k such that

St+19

ks, +1
Z,y 0_q+1 (¢+1) 3 aigf Zk 1%‘7 ' .
(kst + 1) Zz 1 0515
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For o1 > {&1,...,&m},

ks, +1
Z,ykaqﬂ lim (q+1) 3 af Zk 1 %0 '
kay =00 (ks, + 1) 20 as)

which is a contradiction. Then

(p+ D+ X0 0l (+2) S mol | L
(a+ D@ +2) T il (a+2) Tpey o™

= 00,

Thus, we have
lim A(p,q,7)

P+1)p+2) ", (+ )Zk nkak 20130, Bt ™?)
=g+ D@ +2) X" @€l (g+2) S5 mol™ 201 - > i1 Bin ‘”2)
0 0 2
o[+ DT el DT el
(¢+1)(g+2) Z:il 04153 (Q+2) Zk 1'Yk0'q+1

So there exist p € {1,2,...,n}, ¢ € Z*, ¢ > p+1 and r € Z* large enough
number, such that A(p,q,r) # 0. O

Lemma 3.2. If condition (2.1) holds, then L : domL C Y — Z is a Fredholm
operator of index zero. Furthermore, the continuous projector operator Q : Z — Z
can be defined by

Qy) = (Tay ()"~ + (Toy (1)t + (Tsy(t))t" ",
where p,q,r are given by Lemma[3.1] and
pp+1)(p+2)

Ty = [M11Q1y + M12Q2y + M13Q3y],
A(p,q,7)
+1 + 2
Toy = w[Mley + M22Qoy + M23Q3y),
A(p,q,7)
r(r+1)(r+2
T3y = (A(p);))[MSlQly + M32Q2y + M33Q3y],

Quy = Z/ 5)ds, Qay = Z’Yk /o% o — s)y(s)ds,
Qu= [ - ats~ >0 [y - o

The linear operator Kp : Im L — dom L Nker P can be written as

1 t
Kpy(t) = 5/ (t —5)%y(s)ds, y € Im L.
0
Furthermore |Kpy| < |lyll1, y € Im L.

Proof. 1t is clear that
ker L = {x € dom L : x = a + bt + ct*, a,b,c € R}.
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Now we show that

ImL={y€Z:Qy=Qy=Qsy=0} (3.1)
Since the problem
"=y (3.2)
has a solution z(t), such that boundary conditions hold; i.e.,

m

l n
x”(O) = Zaix”(gi)7 xl(o) = Z’ykxl(ak)v CU(I) = Zﬁjx(nj)v
i—1 k=1 j=1

if and only if
Quy = Qay = Q3y =0. (3-3)
In fact, if (3.2) has a solution z(t) that satisfies the boundary conditions (1.2)), then

we have

z(t) = 2(0) + 2'(0)t + %ac"(O)t2 + %/0 (t — 5)%y(s)ds.

According to condition (2.1), we have Q1y = Q2y = Q3y = 0.
On the other hand, we let
1 t
x(t) = a+ bt + ct? + 5/ (t — 8)%y(s)ds,
0

where a, b, ¢ are arbitrary constants. If (3.3)) holds, then z(t) is a solution of (3.2])
and (1.2). Hence (3.1) holds. By Lemma there exists p € {1,2,...,n}, q €
ZT, q>p+1andr € Z7T is a large enough number, such that A(p,q,7) # 0. Set

_prp+1)(p+2)

Try [M11Qvy + M12Q2y + M13Q3y],
A(p,q,7)
+1 + 2
Ty = q(q—)(q)[Mley + M22Q2y + M23Q3y),
A(p,q,7)
r(r+1)(r+2
T3y = M[MMQNJ + M32Q2y + M33Q3y].
A(p,q,r)

And we define

Q) = (TN + Dy + Ty,
then dimIm Q = 3. So we have
T (D))
= P 0D h@u (T ) + MiaQal (TP ™) + MiaQal (Tin)e? ™)
_pp )+

= i MuQuUE) + MiaQa(t) + MiaQs (e ] (Tiy)

m l
1
= g M+ DE+2 Y ] + Mia(p+2) D kol
T i=1 k=1

+2Mig(1 =) Bm} )| (Thy)
j=1
= lea
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Ty ((Tay)t*™")

- W[Man((sz)tql) + MiQo(Toy)t" ") + MisQs((Toy)t" )]

- W[Mqu(tq_l) + MiQo(t771) + Mi3Qs (¢~ 1) (Toy)

1 m 1
:7[M11(q—|— q+2 Zalg —|—M12 q+2 Z’ym)’lﬁ_
A(p,q,T) i=1 k=1
=+ 2M13 1-— Z,Bjnq+2 sz) =0,
j=1

Ty (Tsy)t™)

= D QT ) + MraQa((Tag)e ) + MraQa((Tap)t' )

M 0 Qu ) + MiaQal ™)+ Mia Q™ ))(Ta)

l
1
= 7[M11(T’+1 +2 0575 +M12 ’I"+2 ’yk()'r—"_l
Alp,q,7) Z; z:: g
+2My3(1 — Zﬁ]rf“ (Tzy) = 0.

j=1
Similarly, we obtain
T(Twy)t" 1) =0, To((Tey)t? ') = Toy, To((Tay)t'') =0,
T5(Tuy)tr™1) =0, Ty(Tay)t*™") =0, Ty(Tsy)t"™") = Tay.
So we have
Q% = Q(Tiy(1)P ™" + (Tay(t)t"" + (Ty(1))t" ")
= T (Tuy(O))P " + (Toy ()t~ + (Tay(t))" e
+ To((Toy ()P~ + (Toy(0)t™ + (Tay()t" e
+ T((Tay(@)) ™ + (Toy (1)t~ + (Tay()t e
= (Tiy ()"~ + (Tey ()" + (Ty ()t~
= Qy.
Thus, @ is a well defined operator.
Now we need to show that ker@Q = Im L. If y € ker @, then Qy = 0. By the
definition of Qy, we have
Mi1Qvy + Mi2Qoy + M13Qsy = 0,
M21Qry + M22Qoy + Ma3Qsy = 0,
M31Q1y + M32Q2y + M33Q3y = 0.
Because of
My Mis Mg

My May  Mos =A2(p,q,7')7é07
Mz Msy Mss
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we have Q1y = Q2y = Q3y =0, i.e. y € ImL.

If y € ImL, we have Q1y = Q2y = Q3y = 0. From the definition of Qy, it is
obvious that Qy = 0, thus y € Ker@. Hence, ker @ = Im L.

Fory € Z, let y = (y — Qy) + Qy, since Q(y — Qy) = Qy — Q*y = 0, we know
y—Qy € ker@ =1Im L, and we have Qy € Im@Q. Thus Z =Im L + Im Q. And for
any y € ImL NIm @, from y € Im @Q, there exists constants a,b,c € R, such that
y(t) = atP~1 + bt + ct"~1. From y € Im L, we obtain

a & b € -
5;%5?-&-;;%534—;2%& =0,

l l
a p+1 b q+1 r+l _
- E - E E =0,
plp+1) £ Wj’“ T 1) 4 %ok (1) £ R0

1 2 p+2 2 q+2
al= —
(p p+1 p+2 Zﬁ]n q g+l q+2 ZBJ”
1 2 r+2
+c(7“ r+1 r+2 Zﬂﬂ?
(3.4)
In view of
% 27%1 aigf % 27%1 aigf % Z%l &,
+1 +1 r+1
m k1 VkOY, m > k1 kO, r(r1+1) > ket WO
Asq Asp Ass
1
A(p. g, ) # 0,

p(p+1)(p+2)g(g + 1)(g+2)r(r+1)(r +2)

where the entries of the third row are

1 2
Az = (= — E 2
81 (p p+1 p+2 Bin;
1 2
Az = (- — g q+2
82 (q g+1 q+2 By,
1 2

A — (= _ 7‘+2
5 (r r+1 r+2 Zﬁm

I split the above ma-
trix, please check it Therefore (3.4) has an unique solution a = b = ¢ = 0, which implies Im Q N

ImL = {0} and Z =ImL & Im@Q. Since dimker L = dimIm@ = codimImL = 3,
thus L is a Fredholm map of index zero.
Let P:Y — Y be defined by

Px(t) = z(0) + 2/ (0)t + %x”(o)tz, t e (0,1).

then, the generalized inverse operator Kp : Im L — dom L N ker P be defined by

1

K((t) = 3 [ (4=sPy(s)ds. yetmL.
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If y € Im L, we have (LKp)(y(t)) = (Kpy)" = y(t). If 2(t) € dom L Nker P, we
have
(KpL)x(t) = (Kp)(="(t))

1 ! 2.1
25/0(75—8) 2" (s)ds

— 2(t) — [2(0) + 2/ (0)t + %x"(om
= z(t) — Px(t).

Because x € dom L Nker P, we know that Px(t) = 0. Thus (KpL)(z(t)) = x(t). It
is obviously that ||Kpy|| < |lyll1- O

For the next theorem we use the assumptions:

(H1) There exists a(t), 8(t),v(t),0(t) € L'[0,1], such that for all (z1,z2,73) in

R?, 1 €(0,1),
|f(t, 21, 29, 23)| < aft)]a] + B()]w2| +~(8)|s] +0(D).

(H2) There exists a constant A > 0 such that for z(t) € dom L, if |z(¢)] > A
or |z/(t)] > A or |2"(t)] > A for all ¢ € (0,1), then Q1N (z(t)) # 0 or
Q2N (z(t)) # 0 or Q3N (z(t)) # 0.

(H3) There exists a constant B > 0 such that for a,b,c € R, if |a| > B, |b| > B,
le| > B, then either

Q1N (a+ bt + ct?) + QN (a + bt + ct?) + Q3N (a + bt + ct?) > 0, (3.5)
or
Q1N (a+ bt + ct?) + QaN(a + bt + ct?*) + Q3N (a + bt + ct?) < 0. (3.6)

Theorem 3.3. Let the conditions (2.1), (H1), (H2), (H3) hold. Then BVP (L.1)-
(1.2) have at least one solution in C?[0,1], provided that ||a||1 + ||B]l1 + ||7]1 < 1.

Proof. We divide the proof into four steps.
Step 1: Let
O ={z €domL\kerL: Lx = ANz, X € [0,1]}.
Then € is bounded. Suppose that x € 1, we have Lx = ANz. Thus A # 0, Nz €
Im L = ker Q, hence

Q1(Na(t)) = Q2(Nz(t)) = Q3(Nx(t)) =0.
From (H2), there exists t1,t2,t5 € (0,1), such that |z(t;)| < A, |2/(t2)] < A,

|z’ (t3)] < A. Since x,2’,2" are absolutely continuous for all ¢ € (0, 1), and

2/ (t) = 2 (t) Jr/t

ta

t

2 (s)ds, a"(t) =a"(t3) +/ 2" (s)ds.

t3
Thus
[#"floc < A+1l2"]l1, 2"loc <24+ [|l2" 1.

And
[zlloo < I[(I = P)xloc + [|[Pzlloc = [P2|loc + [[KpL(I — P)x| s
= [|[Pz|oo + [|[KpLz|oo < [|Pzlloc + [ Kpl| L1
< | Pzlloo + [ Lally = [|Pxllco + fl2" 1



10 S. LI, J. YIN, Z. DU EJDE-2014/61

From (H;), we obtain
12"l = [ L]l < [[Na|
< lladlilizlloo + 18111112 lloo + IVlI1ll2"[loo + 16111
< (lell + 181 + Iy =™ + @ISl + IV A + el | Pzllo + (1011
Then
1
"
I <
L= (llels + 118112 + lIvll)
So there exists a constant M7 > 0 such that ||z|| < M;. Hence we show that Q; is
bounded.

Step 2: Let Q3 = {z € ker L : Nz € Im L}. Then Qs is bounded. Since z € Qo,
rekerL ={r€domL:x=a+bt+ct? a,bccR}, and QNx = 0, thus,

Q1(N(a+ bt + ctz)) =Q2(N(a+bt+ ctz)) =Q3(N(a+bt+ ctz)) =0.
From (H3),

2

(I8l + ) A+ el [Pzl + [10]]-

=]l < |af 4 [b] + |c] < 3B.
So €5 is bounded.
Step 3: Let
Qs={zeckerL: \Jzx+ (1-XN)QNxz=0, X\ €[0,1]}.

Here J : ker L — Im (@ is the linear isomorphism given by

J(a+ bt + ct?) = (P~ L+ b0yt g et" Y, a,bceR

1
Ap,q.r)
where

a1 =p(p+1)(p + 2)(Mi1lal + Mi2[b| + Mislcl),
b1 = q(q + 1)(q + 2)(Ma1|a| + Maz|b] + Mas|c|),
cr =7r(r+1)(r+ 2)(Msy|a| + Msz2|b| + Mss|c|).
Then 3 is bounded.
Set
B, = Pt +2) By — ’
Alp,q,7) Alp,q;7) Alp,q;7)
Xy = Aal + (1 = N)Q1N(a+bt+ct?), Xo=Abl+ (1 —N)Q2N(a+bt+ct?),
X3 = M|+ (1 = N)Q3N(a+ bt + ct?).
Since z(t) = a + bt + ct? € Q3, then we have A\Jz + (1 — \)QNz = 0; i.e.,
BiM11 X1 + BiM12Xs + BiM13 X3 = 0,
By Ms1 X1 + BaMaz Xo + Ba M3z X3 = 0,
BsM31 X1 + BgM32Xo + BsM33X3 = 0.

B~ 4D+ o rr+1r+2)

Because
BiMyy BiMy; B{M3 My Mz M3
BoyMyy  ByMsy  BoMos| = (B1BaBs) (Mar Moy Mo
B3M3y B3M3zy B3zM3z3 M3z Mszz Mss

_ e+ Dp+2)q(g+ 1)(g+2)r(r + 1)(r +2)
A(p,q,r)

£0.
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Then X; = X =X3=0. f A=1, then |a| =10 =|¢|]=0. If A # 1 and |a| > B
or [b| > B or |¢| > B and hold, then
Mal + 16l +Jel) = =(1 = X) [Q1(N(a + bt + ct?)) + Q2(N(a + bt + ct?))
+ Q3(N(a+bt+ct?)] <0,
which contradicts A(|a| + |b] + |¢|) > 0. Thus
]l < laf 4 [b] + |e] < 3B.
So €3 is bounded.
If holds, we let
Qs ={zeckerL: -AJzx+ (1 -N)QNz =0, A €[0,1]}.
Similarly, we can proof that {23 is bounded.

Step 4: In the following, we shall prove that all the conditions of Lemma [2.1] are
satisfied. Let Q@ C Y be a bounded open set such that U?_;Q; C Q. By the Ascoli-
Arzela theorem, we can show that Kp(I — Q)N : Q — Y is compact, thus N is
L—compact on . Then by the above argument, we obtain

(i) Lz # ANz for each (x,A) € ((dom L\ ker L) N 99Q) x [0, 1];
(ii) Nz ¢ Im L for each x € ker L N 9.

At last we prove that (iii) of the Lemma [2.1]is satisfied. Let H (z, ) £AJz +
(1 = N)@QNz. According to the above argument, we have H(xz,\) # 0, for x €
ker L N 0f). Thus, by the homotopy property of degree, we get
deg(QN|ker ., 2N ker L, 0) = deg(H(-,0), 2N ker L, 0)
=deg(H(-,1),Q2Nker L,0)
= deg(+J, Q2 Nker L,0) # 0.

Then by Lemma[2.1) Lz = Nz has at least one solution in dom LN, so that BVP
(1.1)-(1.2) has at least one solution in C?[0, 1]. O

4. APPLICATIONS

We consider the boundary value problem

2'(t) = 2" (t) + sinz(t)(1 — cos 2’ (t)),t € (0, 1), (4.1)

N ol 1 o 1 Ty } o 1
(0 =203 -0y, @) = s 2D @2)

9 1 1 16 3
1) = 2a(2) —da(2) + —a(2). 4.
#(1) = Ja(3) — aa () + D) @3)
So f(t x(t ) (1), 2" () = 2" (t) + sinz(t) (1 — cos 2/ (1)), a1 = 2, p = —1, &1 = £,
52_% 372__201_3702:;7/61:gaﬁ2: 463:1567771_%7
72 :% N3 = 3. Then we have a1 —ags =1, 1 +v2 =1, f1 + B2+ 03 = 1,
Bint + B2 +ﬁ3773 =1, £10? + Ban3 + Bani = 1, y101 + 202 = 0. So the condition
. ) holds.

By calculations, we obtain

1/5 3 1/2
Qu=2 [y Q=3[ G-sueas—2 [ G-
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1 9 9 % 1 9
Qu= [ a=susas— 3 [ G- 9Puls)ds
0 0
1/2 4 16 (%43
4 (5 —9)2y(s)ds — — 79 y(s)d
+ /0 (2 s)*y(s)ds 5 /. (4 5)7y(s)ds,
1225231
A(1,2,3) =
(1,2,3) = Te31200"
_ 5731015 _ 45787 _ 3429
Y 5085447 T 3110400 T 38880°
_ 10758 _ 3089 _ 8649
27979935 T 96000 2% T 2260°
_ 4 _ 1269 __
3773888 2T 36000 0 T T 2000
6
Ty = W[Mllc)ly + M12Q2y + M13Q3y],
24
Toy = W[Mm@ly + M2sQay + M23Q3y),
60
Tgy = W[M?,lcgly + M32Q2y + M33Q3y]'

Define Qy by Qy = T1y + (Tey)t + (T3y)t?, and we take Kpy(t) as in Lemma
then Lemma [3.2] holds.
On the other hand, we have

[f(t 2 (t), 2" (1), 2" ()] < |2" ()] + 2, t€(0,1).

|
And let a(t) =0, B(t) =0, v(t) =1, 0(¢) = 2, then the condition (H1) of Theorem
is satisfied. If 2”(t) > 8 = A, t € (0,1), then

1/5
Qv = 2/0 (2 (£) + sin 2(t) (1 — cos &’ (£)))dt

_ /1/4(x”(t) +sina(t)(1 — cosa!(1)))dt
01/5 1/4 9
>2/0 7dt—/0 10dt > <,
If 2" (t) < =8 = —A, t € (0,1), then

1/5
Qy = 2/0 (2" (t) + sinz(t)(1 — cos ' (t)))dt

1/4
- /0 (2"(t) +sinz(t)(1 — cos2'(t)))dt

1/5 1/4 3
< 2/ (—6)dt —/ (—9)dt < ——,
0 0 20
So condition (H2) is satisfied.
If |a| > 16 = B, |b| > 16 = B, |c| > 16 = B, then

Q1N (a+ bt + ct?) + Q2N(a + bt + ct?) + Q3N (a + bt + ct?)

1/5
= 2/ (|2¢| + sin(a + bt + ct?)[1 — cos(b + 2¢t)])dt
0
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1/4
- / (|2¢| + sin(a + bt + ct?)[1 — cos(b + 2ct)])dt
0

+ 3/;(% — t)(|2¢| + sin(a + bt + ct?)[1 — cos(b + 2ct)])dt

1/2
_ 2/ (% — 1)(|2¢] + sin(a + bt + cf)[1 — cos(b+ 2t)])dt
0

+ /1(1 —1)2(|2¢| + sin(a + bt + ct?)[1 — cos(b + 2ct)])dt
0

— g /3 (% —1)%(|2¢| + sin(a + bt + ct*)[1 — cos(b + 2ct)])dt
0

1/2 4
+4/ (5~ 02(12¢] +sin(a + bt + )1~ cos(b + 2t)])dt
0

16 [ 3
= (- )%(|12¢| + sin(a + bt + ct?)[1 — cos(b + 2ct)])dt > 0.

So condition (H3) is satisfied. Thus all the conditions of Theorem are satisfied.
Hence BVP (4.1)-([4.3) has at least one solution in C2[0, 1].
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