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NONLINEAR SCHRÖDINGER ELLIPTIC SYSTEMS INVOLVING
EXPONENTIAL CRITICAL GROWTH IN R2

FRANCISCO SIBERIO BEZERRA ALBUQUERQUE

Abstract. This article concerns the existence and multiplicity of solutions

for elliptic systems with weights, and nonlinearities having exponential critical

growth. Our approach is based on the Trudinger-Moser inequality and on a
minimax theorem.

1. Introduction

In this article, we consider the system

−∆u+ V (|x|)u = Q(|x|)f(u, v) in R2,

−∆v + V (|x|)v = Q(|x|)g(u, v) in R2,
(1.1)

where the nonlinear terms f and g are allowed to have exponential critical growth.
By means of the Trudinger-Moser inequality and the radial potentials V and Q
may be unbounded or decaying to zero. We shall consider the variational situation
in which

(f(u, v), g(u, v)) = ∇F (u, v)
for some function F : R2 → R of class C1, where ∇F stands for the gradient of
F in the variables w = (u, v) ∈ R2. Aiming an analogy with the scalar case, we
rewrite (1.1) in the matrix form

−∆w + V (|x|)w = Q(|x|)∇F (w) in R2,

where we denote ∆ = (∆,∆) and Q(|x|)∇F (w) = (Q(|x|)f(w), Q(|x|)g(w)). We
make the following assumptions on the potentials V (|x|) and Q(|x|):

(V1) V ∈ C(0,∞), V (r) > 0 and there exists a > −2 such that

lim inf
r→+∞

V (r)
ra

> 0.

(Q1) Q ∈ C(0,∞), Q(r) > 0 and there exist b < (a − 2)/2 and b0 > −2 such
that

lim sup
r→0

Q(r)
rb0

<∞ and lim sup
r→+∞

Q(r)
rb

<∞.
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This type of potentials appeared in [2, 13, 14], in which the authors studied the
existence and multiplicity of solutions for the scalar problem

−∆u+ V (|x|)u = Q(|x|)f(u) in RN

|u(x)| → 0 as |x| → ∞,

where in [13, 14] the nonlinearity considered was f(u) = |u|p−2u, with 2 < p < 2∗ =
2N/(N − 2) for N ≥ 3 and 2 < p <∞ for N = 2. In [2] the authors considered the
critical case in the sense of Trudinger-Moser inequality [9, 15].

Let us introduce the precise assumptions under which our problem is studied.
(F0) f and g have α0-exponential critical growth, i.e., there exists α0 > 0 such

that

lim
|w|→+∞

|f(w)|
eα|w|2

= lim
|w|→+∞

|g(w)|
eα|w|2

=

{
0, ∀α > α0,

+∞, ∀α < α0;

(F1) f(w) = o(|w|) and g(w) = o(|w|) as |w| → 0;
(F2) there exists θ > 2 such that

0 < θF (w) ≤ w · ∇F (w), ∀w ∈ R2\{0};
(F3) there exist constants R0,M0 > 0 such that

0 < F (w) ≤M0|∇F (w)|, ∀|w| ≥ R0;

(F4) there exist ν > 2 and µ > 0 such that

F (w) ≥ µ

ν
|w|ν , ∀w ∈ R2.

To establish our main results, we need to recall some notation about function
spaces. In all the integrals we omit the symbol dx and we use C,C0, C1, C2, . . . to
denote (possibly different) positive constants. Let C∞0 (R2) be the set of smooth
functions with compact support and

C∞0,rad(R2) = {u ∈ C∞0 (R2) : u is radial }.

Denote by D1,2
rad(R2) the closure of C∞0,rad(R2) under the norm

‖∇u‖2 =
(∫

R2
|∇u|2

)1/2

.

If 1 ≤ p <∞ we define

Lp(R2;Q) .= {u : R2 → R : u is mensurable,
∫

R2
Q(|x|)|u|p <∞}.

Similarly we define L2(R2;V ). Then we set

H1
rad(R2;V ) .= D1,2

rad(R2) ∩ L2(R2;V ),

which is a Hilbert space (see [14]) with the norm

‖u‖H1
rad(R2;V )

.=
(∫

R2
|∇u|2 + V (|x|)|u|2

)1/2

.

We will denote H1
rad(R2;V ) by E and its norm by ‖ · ‖E . In E×E we consider the

scalar product

〈w1, w2〉
.=
∫

R2
[∇u1∇u2 + V (|x|)u1u2] +

∫
R2

[∇v1∇v2 + V (|x|)v1v2],
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where w1 = (u1, v1) and w2 = (u2, v2), to which corresponds the norm

‖w‖ = 〈w,w〉1/2.
Motivated by [2, 13, 14] and using a minimax procedure, we obtain existence and
multiplicity results for system (1.1). As in the scalar problem treated in [2], there
are at least two main difficulties in our problem; the possible lack of the compactness
of the Sobolev embedding since the domain R2 is unbounded and the critical growth
of the nonlinearities.

Denoting by Sν > 0 the best constant of the Sobolev embedding

E ↪→ Lν(R2;Q)

(see Lemma 2.3 below), we have the following existence result for system (1.1).

Theorem 1.1. Assume (V1) and (Q1). If (F0)–(F4) are satisfied, then (1.1) has
a nontrivial weak solution w0 in E × E provided

µ >
[2α0(ν − 2)

α′ν

](ν−2)/2
Sν/2ν ,

where α′ .= min{4π, 4π(1 + b0/2)}.

Our multiplicity result concerns the problem

−∆w + V (|x|)w = λQ(|x|)∇F (w) in R2, (1.2)

where λ is a positive parameter. It can be stated as follows.

Theorem 1.2. Assume (V1) and (Q1). If F is odd and (F0)–(F4) are satisfied,
then for any given k ∈ N there exists Λk > 0 such that the system (1.2) has at least
2k pairs of nontrivial weak solutions in E × E provided λ > Λk.

To close up this section, we remark that the main tool to prove Theorem 1.2, is
the symmetric Mountain-Pass Theorem due to Ambrosetti-Rabinowitz [3]. It will
be used in a more common version in comparison to the one used to prove the
analogous theorem in the scalar case [2, Theorem 1.5], which leads us to a more
direct conclusion of the result.

This article is organized as follows. Section 2 contains some technical results.
In Section 3, we set up the framework in which we study the variational problem
associated with (1.1) and we prove our existence result, Theorem 1.1. Finally, in
Section 4 we prove Theorem 1.2.

2. Preliminaries

We start by recalling a version of the radial lemma due to Strauss in [12] (see
[2, 13]). In the following, Br denotes the open ball in R2 centered at the 0 with
radius r and BR \Br denotes the annulus with interior radius r and exterior radius
R.

Lemma 2.1. Assume (V1) with a ≥ −2. Then, there exists C > 0 such that for
all u ∈ E,

|u(x)| ≤ C‖u‖|x|−
a+2
4 , |x| � 1.

Next, we recall some basic embeddings (see Su et al. [13]). Let A ⊂ R2 and
define

H1
rad(A;V ) = {u|A : u ∈ H1

rad(R2;V )}.
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Lemma 2.2. Let 1 ≤ p <∞. For any 0 < r < R <∞, with R� 1,
(i) the embeddings H1

rad(BR \Br;V ) ↪→ Lp(BR \Br;Q) are compact;
(ii) the embedding H1

rad(BR;V ) ↪→ H1(BR) is continuous.

In particular, as a consequence of (ii) we have that H1
rad(BR;V ) is compactly

immersed in Lq(BR) for all 1 ≤ q <∞. If we assume that (V1) and (Q1) hold, by
using Lemmas 2.1 and 2.2, a Hardy inequality with remainder terms (see [16]) and
the same ideas from [13] we have:

Lemma 2.3. Assume (V1) and (Q1). If a ≥ −2 and b < a, then the embeddings
E ↪→ Lp(R2;Q) are compact for all 2 ≤ p <∞.

Inspired by [1, 5, 9, 10, 15], to study system (1.1), the following version of the
Trudinger-Moser inequality in the scalar case, obtained in [2, Theorem 1.1], plays
an important rule.

Proposition 2.4. Assume (V1) and (Q1). Then, for any u ∈ E and α > 0, we
have that Q(|x|)(eαu2 − 1) ∈ L1(R2). Furthermore, if α < α′, then there exists a
constant C > 0 such that

sup
u∈E, ‖u‖E≤1

∫
R2
Q(|x|)(eαu

2
− 1) ≤ C.

In line with Lions [8] and in order to prove our multiplicity result; Theorem 1.2,
we establish an improvement of the Trudinger-Moser inequality on the space E×E,
considering our variational setting. Using Proposition 2.4 and following the same
steps as in the proof of [7, Lemma 2.6] we have:

Corollary 2.5. Assume (V1) and (Q1). Let (wn) be in E ×E with ‖wn‖ = 1 and
suppose that wn ⇀ w weakly in E × E with ‖w‖ < 1. Then, for each 0 < β <
α′

2

(
1− ‖w‖2

)−1, up to a subsequence, it holds

sup
n∈N

∫
R2
Q(|x|)(eβ|wn|

2
− 1) < +∞.

3. Variational setting

The natural functional associated with (1.1) is

I(w) =
1
2
‖w‖2 −

∫
R2
QF (w),

w ∈ E × E. Under our assumptions we have that I is well defined and it is C1 on
E×E. Indeed, by (F1), for any ε > 0, there exists δ > 0 such that |∇F (w)| ≤ ε|w|
always that |w| < δ. On the other hand, for α > α0, there exist constants C0, C1 > 0
such that f(w) ≤ C0(exp(α|w|2)−1) and g(w) ≤ C1(exp(α|w|2)−1) for all |w| ≥ δ.
Thus, for all w ∈ R2 we have

|∇F (w)| ≤ ε|w|+ |f(w)|+ |g(w)|
≤ ε|w|+ C(exp(α|w|2)− 1).

(3.1)

Hence, using (F2), (3.1) and the Hölder’s inequality, we have∫
R2
Q|F (w)|
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≤ ε
∫

R2
Q|w|2 + C

∫
R2
Q|w|(eα|w|

2
− 1)

≤ ε
(∫

R2
Q|u|2 +

∫
R2
Q|v|2

)
+ C

(∫
R2
Q|w|r

)1/r(∫
R2
Q(esα|w|

2
− 1)

)1/s

,

with r, s ≥ 1 such that 1/r + 1/s = 1. Considering Lemma 2.3, for r ≥ 4, we have(∫
R2
Q|w|r

)1/r

= ‖u2 + v2‖1/2
Lr/2(R2;Q)

≤ C‖u2 + v2‖1/2E ≤ C‖w‖ <∞.

On the other hand, by the Young’s inequality and Proposition 2.4,∫
R2
Q(esα|w|

2
− 1) ≤ 1

2

∫
R2
Q(e2sαu2

− 1) +
1
2

∫
R2
Q(e2sαv2 − 1) <∞. (3.2)

Hence, QF (w) ∈ L1(R2), which implies that I is well defined, for α > α0. Using
standard arguments, we can see that I ∈ C1(E × E,R) with

I ′(w)z = 〈w, z〉 −
∫

R2
Qz · ∇F (w)

for all z ∈ E×E. Consequently, critical points of the functional I are precisely the
weak solutions of system (1.1).

In the next lemma we check that the functional I satisfies the geometric condi-
tions of the Mountain-Pass Theorem.

Lemma 3.1. Assume (V1) and (Q1). If (F0)–(F2) hold, then:
(i) there exist τ, ρ > 0 such that I(w) ≥ τ whenever ‖w‖ = ρ;
(ii) there exists e∗ ∈ E × E, with ‖e∗‖ > ρ, such that I(e∗) < 0.

Proof. Just as we have obtained (3.1), we deduce that

|∇F (w)| ≤ ε|w|+ C|w|q−1(eα|w|
2
− 1) (3.3)

for all w ∈ R2 and q ≥ 1. Thus, using (F2), the Hölder’s inequality and Lemma 2.3,
we have∫

R2
Q|F (w)|

≤ ε
∫

R2
Q|w|2 + C

∫
R2
Q|w|q(eα|w|

2
− 1)

≤ ε
(∫

R2
Q|u|2 +

∫
R2
Q|v|2

)
+ C

(∫
R2
Q|w|qr

)1/r(∫
R2
Q(esα|w|

2
− 1)

)1/s

≤ Cε‖w‖2 + C0‖w‖q
(∫

R2
Q(esα|w|

2
− 1)

)1/s

,

provided r ≥ 2 and s > 1 such that 1/r+1/s = 1. Now for ‖w‖ ≤M < [α′/(2α)]1/2,
which implies that 2α‖u‖2E ≤ 2αM2 < α′ and 2α‖v‖2E ≤ 2αM2 < α′, and s
sufficiently close to 1, it follows from (3.2) that∫

R2
Q|F (w)| ≤ Cε‖w‖2 + C1‖w‖q.

Hence,

I(w) ≥
(1

2
− Cε

)
‖w‖2 − C1‖w‖q,
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which implies i), if q > 2. In order to verify ii), let w ∈ E × E with compact
support G. Thus, using (F4) we obtain

I(tw) ≤ t2

2
‖w‖2 − Ctν

∫
G

Q|w|ν ,

for all t > 0, which yields I(tw) → −∞ as t → +∞, provided ν > 2. Setting
e∗ = t∗w with t∗ > 0 large enough, the proof is complete. �

To prove that a Palais-Smale sequence converges to a weak solution of system
(1.1) we need to establish the following lemmas.

Lemma 3.2. Assume (F2). Let (wn) be a sequence in E × E such that

I(wn)→ c and I ′(wn)→ 0.

Then

‖wn‖ ≤ C,
∫

R2
QF (wn) ≤ C,

∫
R2
Qwn · ∇F (wn) ≤ C.

Proof. Let (wn) be a sequence in E × E such that I(wn) → c and I ′(wn) → 0.
Thus, for any z ∈ E × E,

I(wn) =
1
2
‖wn‖2 −

∫
R2
QF (wn) = c+ on(1) (3.4)

and

I ′(wn)z = 〈wn, z〉 −
∫

R2
Qz · ∇F (wn) = on(1). (3.5)

Taking z = wn in (3.5) and using (F2) we have

c+ ‖wn‖+ on(1) ≥ I(wn)− 1
θ
I ′(wn)wn

=
(1

2
− 1
θ

)
‖wn‖2 +

∫
R2
Q[

1
θ
wn · ∇F (wn)− F (wn)]

≥
(1

2
− 1
θ

)
‖wn‖2.

Consequently, ‖wn‖ ≤ C. By (3.4) and (3.5) we obtain∫
R2
QF (wn) ≤ C,

∫
R2
Qwn · ∇F (wn) ≤ C. �

We will also use the following convergence result.

Lemma 3.3. Assume (F2) and (F3). If (wn) ⊂ E ×E is a Palais-Smale sequence
for I and w0 is its weak limit then, up to a subsequence,

∇F (wn)→ ∇F (w0) in L1
loc(R2,R2)

and
QF (wn)→ QF (w0) in L1(R2).

Proof. Suppose that (wn) is a Palais-Smale sequence. According to Lemma 3.2,
wn = (un, vn) ⇀ w0 = (u0, v0) weakly in E × E, that is, un ⇀ u0 and vn ⇀ v0

weakly in E. Thus, recalling that H1
rad(BR;V ) ↪→ Lq(BR) compactly for all 1 ≤ q <

∞ and R > 0 (see the consequence of ii) from Lemma 2.2), up to a subsequence, we
can assume that un → u0 and vn → v0 in L1(BR). Hence, wn → w0 in L1(BR,R2)
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and wn(x)→ w0(x) a.e. in R2. Since ∇F (wn) ∈ L1(BR,R2), the first convergence
follows from [6, Lemma 2.1]. Hence,

f(wn)→ f(w0) and g(wn)→ g(w0) in L1
loc(R2).

Thus, there exist h1, h2 ∈ L1(BR) such that Q|f(wn)| ≤ h1 and Q|g(wn)| ≤ h2 a.e.
in BR. From (F3) we conclude that

|F (wn)| ≤ sup
[−R0,R0]

|F (wn)|+M0|∇F (wn)|

a.e. in BR. Thus, by Lebesgue Dominated Convergence Theorem

QF (wn)→ QF (w0) in L1(BR).

On the other hand, from (F2) and (3.3) with q = 2 we have∫
BcR

QF (wn) ≤ ε
∫
BcR

Q|wn|2 + C

∫
BcR

Q|wn|(eα|wn|
2
− 1), (3.6)

for α > α0. From Lemma 2.3, the Hölder’s inequality, ‖wn‖ ≤ C and developing
the exponential into a power series, we obtain

ε

∫
BcR

Q|wn|2 ≤ Cε and
∫
BcR

Q|wn|(eα|wn|
2
− 1) ≤ C

Rξ
,

for some ξ > 0. Hence, given δ > 0, there exists R > 0 sufficiently large such that∫
BcR

Q|wn|2 < δ and
∫
BcR

Q|wn|(eα|wn|
2
− 1) < δ.

Thus, from (3.6) ∫
BcR

QF (wn) ≤ Cδ and
∫
BcR

QF (w0) ≤ Cδ.

Finally, since∣∣∣ ∫
R2
QF (wn)−

∫
R2
QF (w0)

∣∣∣
≤
∣∣∣ ∫
BR

QF (wn)−
∫
BR

QF (w0)
∣∣∣+
∫
BcR

QF (wn) +
∫
BcR

QF (w0),

we obtain

lim
n→∞

∣∣∣ ∫
R2
QF (wn)−

∫
R2
QF (w0)

∣∣∣ ≤ Cδ.
Since δ > 0 is arbitrary, the result follows and the lemma is proved. �

In view of Lemma 3.1 the minimax level satisfies

c = inf
g∈Γ

max
0≤t≤1

I(g(t)) ≥ τ > 0,

where
Γ = {g ∈ C([0, 1], E × E) : g(0) = 0 and I(g(1)) < 0} .

Hence, by the Mountain-Pass Theorem without the Palais-Smale condition (see [3])
there exists a (PS)c sequence (wn) = ((un, vn)) in E × E, that is,

I(wn)→ c and I ′(wn)→ 0. (3.7)
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Lemma 3.4. If

µ >
[2α0(ν − 2)

α′ν

](ν−2)/2
Sν/2ν ,

then c < α′/(4α0).

Proof. Since the embeddings E ↪→ Lp(R2;Q) are compacts for all 2 ≤ p <∞, there
exists a function ū ∈ E such that

Sν = ‖ū‖2E and ‖ū‖Lν(R2;Q) = 1.

Thus, considering w = (ū, ū), by the definition of c and (F4), one has

c ≤ max
t≥0

[
Sνt

2 −
∫

R2
QF (tw)

]
≤ max

t≥0

[
Sνt

2 − 2ν/2µ
ν

tν
]

=
ν − 2

2ν
S
ν/(ν−2)
ν

µ2/(ν−2)
<

α′

4α0
. �

Now we are ready to prove our existence result.

Proof of Theorem 1.1. It follows from Lemmas 3.2 and 3.3 that the Palais-Smale
sequence (wn) is bounded and it converges weakly to a weak solution of (1.1)
denoted by w0. To prove that w0 is nontrivial we argue by contradiction. If w0 ≡ 0,
Lemma 3.3 implies that

lim
n→∞

∫
R2
QF (wn) = 0.

Thus, by (3.4)
lim
n→∞

‖wn‖2 = 2c > 0. (3.8)

From this and Lemma 3.4, given ε > 0, we have that ‖wn‖2 < α′/(2α0) + ε for
n ∈ N large. Thus, it is possible to choice s > 1 sufficiently close to 1 and α > α0

close to α0 such that sα‖wn‖2 ≤ β′ < α′/2, which implies that

2sα‖un‖2E ≤ 2β′ < α′ and 2sα‖vn‖2E ≤ 2β′ < α′.

Thus, using (3.2), (3.1) in combination with the Hölder’s inequality and Lemma 2.3,
up to a subsequence, we conclude that

lim
n→∞

∫
R2
Qwn · ∇F (wn) = 0.

Hence, by (3.5), we obtain that

lim
n→∞

‖wn‖2 = 0,

which is a contradiction with (3.8). Therefore, w0 is a nontrivial weak solution of
(1.1). �

4. Proof of Theorem 1.2

To prove our multiplicity result we shall use the following version of the Sym-
metric Mountain-Pass Theorem (see [3, 4, 11]).

Theorem 4.1. Let X = X1 ⊕ X2, where X is a real Banach space and X1 is
finite-dimensional. Suppose that J is a C1(X,R) functional satisfying the following
conditions:

(J1) J(0) = 0 and J is even;
(J2) there exist τ, ρ > 0 such that J(u) ≥ τ if ‖u‖ = ρ, u ∈ X2;
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(J3) there exists a finite-dimensional subspace W ⊂ X with dimX1 < dimW
and there exists S > 0 such that maxu∈W J(u) ≤ S;

(J4) J satisfies the (PS)c condition for all c ∈ (0,S).
Then J possesses at least dimW − dimX1 pairs of nontrivial critical points.

Given k ∈ N, we apply this abstract result with X = E × E, X1 = {0}, J = Iλ
and W = W̃ × W̃ with W̃

.= [ψ1, . . . , ψk], where {ψi}ki=1 ⊂ C∞0 (R2) is a collec-
tion of smooth function with disjoint supports. We see that the energy functional
associated with (1.2),

Iλ(w) .=
1
2
‖w‖2 − λ

∫
R2
QF (w), w ∈ E × E,

is well defined and Iλ ∈ C1(E × E,R) with derivative given by, for w, z ∈ E × E,

I ′λ(w)z = 〈w, z〉 − λ
∫

R2
Qz · ∇F (w).

Hence, a weak solution w ∈ E×E of (1.2) is exactly a critical point of Iλ. Further-
more, since Iλ(0) = 0 and F is odd, Iλ satisfies (J1) and with similar computations
to prove (i) in Lemma 3.1 we conclude that Iλ also verifies (J2). In order to verify
(J3) and (J4) we consider the following lemma.

Lemma 4.2. Assume (V1) and (Q1). If F satisfies (F0)-(F4), we have
(i) there exists S > 0 such that maxw∈W Iλ(w) ≤ S;

(ii) the functional Iλ satisfies the (PS)c condition for all c ∈ (0,S), that is,
any sequence (wn) in E × E such that

Iλ(wn)→ c and I ′λ(wn)→ 0 (4.1)

admits a convergent subsequence in E × E.

Proof. By (F4),

max
w∈W

Iλ(w) = max
w∈W

[1
2
‖w‖2 − λ

∫
R2
QF (w)

]
≤ max
w∈W

[1
2
‖u‖2fW +

1
2
‖v‖2fW − µλ

ν
‖u‖νLν(R2;Q) −

µλ

ν
‖v‖νLν(R2;Q)

]
≤ max
u∈fW

[1
2
‖u‖2fW − µλ

ν
‖u‖νLν(R2;Q)

]
+ max
v∈fW

[1
2
‖v‖2fW − µλ

ν
‖v‖νLν(R2;Q)

]
.

Now, once dim W̃ <∞, the equivalence of the norms in this space gives a constant
C > 0 such that

max
u∈fW

[1
2
‖u‖2fW − µλ

Cν
‖u‖νfW

]
+ max
v∈fW

[1
2
‖v‖2fW − µλ

Cν
‖v‖νfW

]
= Mk(λ),

where
Mk(λ) .=

ν − 2
ν

(C
µ

)2/(ν−2)
λ2/(2−ν).

Since 2/(2 − ν) < 0 we have that limλ→+∞Mk(λ) = 0, which implies that there
exists Λk > 0 such that Mk(λ) < α′/(4α0) .= S for any λ > Λk. Therefore, i)
is proved. For ii), by Lemma 3.2, (wn) is bounded in E × E and so, up to a
subsequence, wn ⇀ w weakly in E × E. We claim that∫

R2
Qw · ∇F (wn)→

∫
R2
Qw · ∇F (w) as n→∞. (4.2)
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Indeed, since C∞0,rad(R2) is dense in E, for all δ > 0, there exists v ∈ C∞0,rad(R2,R2)
such that ‖w − v‖ < δ. Observing that∣∣∣ ∫

R2
Qw · [∇F (wn)−∇F (w)]

∣∣∣
≤
∣∣∣ ∫

R2
Q(w − v) · ∇F (wn)

∣∣∣+ ‖v‖∞
∫
supp(v)

Q|∇F (wn)−∇F (w)|

+
∣∣∣ ∫

R2
Q(w − v) · ∇F (w)

∣∣∣
and using Cauchy-Schwarz and the fact that |I ′λ(wn)(w − v)| ≤ εn‖w − v‖ with
εn → 0, we obtain∣∣∣ ∫

R2
Q(w − v) · ∇F (wn)

∣∣∣ ≤ εn‖w − v‖+ ‖wn‖‖w − v‖ ≤ C‖w − v‖ < Cδ,

where we have used that (wn) is bounded in E × E. Similarly, since the second
limit in (4.1) implies that I ′λ(w)(w − v) = 0, we have∣∣∣ ∫

R2
Q(w − v) · ∇F (wn)

∣∣∣ < Cδ.

From Lemma 3.3,

lim
n→∞

∫
supp(v)

Q|∇F (wn)−∇F (w)| = 0.

Thus,

lim
n→∞

∣∣∣ ∫
R2
Qw · [∇F (wn)−∇F (w)]

∣∣∣ < 2Cδ.

Since δ > 0 is arbitrary, the claim follows. Hence, passing to the limit when n→∞
in

on(1) = I ′λ(wn)w = 〈wn, w〉 − λ
∫

R2
Qw · ∇F (wn)

and using that wn ⇀ w weakly in E × E, (4.2) and (F2) we obtain

‖w‖2 = λ

∫
R2
Qw · ∇F (w) ≥ 2λ

∫
R2
QF (w).

Hence
Iλ(w) ≥ 0. (4.3)

We have two cases to consider:
Case 1: w = 0. This case is similar to the checking that the solution w0 obtained
in the Theorem 1.1 is nontrivial. Case 2: w 6= 0. In this case, we define

zn =
wn
‖wn‖

and z =
w

lim ‖wn‖
.

It follows that zn ⇀ z weakly in E × E, ‖zn‖ = 1 and ‖z‖ ≤ 1. If ‖z‖ = 1, we
conclude the proof. If ‖z‖ < 1, it follows from Lemma 3.3 and (4.1) that

1
2

lim
n→∞

‖wn‖2 = c+ λ

∫
R2
QF (w). (4.4)

Setting

A
.=
(
c+ λ

∫
R2
QF (w)

)
(1− ‖z‖2),
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by (4.4) and the definition of z, we obtain A = c − Iλ(w). Hence, coming back to
(4.4) and using (4.3), we conclude that

1
2

lim
n→∞

‖wn‖2 =
A

1− ‖z‖2
=
c− Iλ(w)
1− ‖z‖2

≤ c

1− ‖z‖2
<

α′

4α0(1− ‖z‖2)
.

Consequently, for n ∈ N large, there are r > 1 sufficiently close to 1, α > α0 close
to α0 and β > 0 such that

rα‖wn‖2 ≤ β <
α′

2
(1− ‖z‖2)−1.

Therefore, from Corollary 2.5,∫
R2
Q(eα|wn|

2
− 1)r < +∞. (4.5)

Next, we claim that

lim
n→∞

∫
R2
Q(wn − w) · ∇F (wn) = 0.

Indeed, let r, s > 1 be such that 1/r + 1/s = 1. Invoking (3.1) and the Hölder’s
inequality we conclude that∣∣∣ ∫

R2
Q(wn − w) · ∇F (wn)

∣∣∣ ≤ ε(∫
R2
Q|wn|2

)1/2(∫
R2
Q|wn − w|2

)1/2

+ C
(∫

R2
Q(eα|wn|

2
− 1)r

)1/r(∫
R2
Q|wn − w|s

)1/s

.

Then, from Lemma 2.3 and (4.5), the claim follows. This convergence together
with the fact that I ′λ(wn)(wn − w) = on(1) imply that

lim
n→∞

‖wn‖2 = ‖w‖2

and so wn → w strongly in E × E. The proof is complete. �

Proof of Theorem 1.2. Since Iλ satisfies (J1)–(J4), the result follows directly from
Theorem 4.1. �
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[7] J. M. do Ó, E. S. de Medeiros, U. Severo; A nonhomogeneous elliptic problem involving
critical growth in dimension two, J. Math. Anal. Appl. 345 (2008) 286-304.

[8] P.-L. Lions; The concentration-compactness principle in the calculus of variations. Part I,

Rev. Mat. Iberoamericana 1 (1985) 145-201.
[9] J. Moser; A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971)

1077-1092.

[10] B. Ruf; A sharp Trudinger-Moser type inequality for unbounded domains in R2, J. Funct.
Anal. 219 (2) (2005) 340-367.

[11] E. A. B. Silva; Critical point theorems and applications to differential equations, Ph.D. Thesis,
University of Wisconsin-Madison, 1988.

[12] W.A. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55

(1977) 149-162.
[13] J. Su, Z.-Q. Wang, M. Willem; Nonlinear Schrödinger equations with unbounded and decaying

radial potentials, Comm. Contemp. Math. 9 (2007) 571-583.

[14] J. Su, Z.-Q. Wang, M. Willem; Weighted Sobolev embedding with unbounded and decaying
radial potentials. J. Differential Equations 238 (2007) 201-219.

[15] N. S. Trudinger; On the embedding into Orlicz spaces and some applications, J. Math. Mech.

17 (1967) 473-484.
[16] Z.-Q. Wang, M. Willem; Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J.

Funct. Anal. 203 (2003) 550-568.

Francisco Siberio Bezerra Albuquerque
Centro de Ciências Exatas e Sociais Aplicadas, Universidade Estadual da Paráıba 58700-
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