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BLOCK-PULSE FUNCTIONS AND THEIR APPLICATIONS TO
SOLVING SYSTEMS OF HIGHER-ORDER NONLINEAR

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

ALI EBADIAN, AMIR AHMAD KHAJEHNASIRI

Abstract. The operational block-pulse functions, a well-known method for
solving functional equations, is employed to solve a system of nonlinear Volterra

integro-differential equations. First, we present the block-pulse operational

matrix of integration, then by using these matrices, the nonlinear Volterra
high-order integro-differential equation is reduced to an algebraic system. The

benefits of this method is low cost of setting up the equations without applying
any projection method such as Galerkin, collocation, etc. The results reveal

that the method is very effective and convenient.

1. Introduction

Systems of integro-differential equations are a well-known mathematical tool for
representing physical problems. Historically, they have achieved great popularity
among the mathematicians and physicists in formulating boundary value problems
of gravitation, electrostatics, fluid dynamics and scatering.

The concept of the block-pulse functions (BPFs) was first introduced to electrical
engineers by Harmuth. Then several researchers (Gopalsami and Deekshatulu, 1997
[9], Sannuti, 1977 [17], Riad, 1992 [16], Chen and Tsay, 1977 [7]) discussed the BPFs
and their operational matrix [8, 12].

The aim of this work is to present a numerical method for approximating the
following system of nonlinear Volterra integro-differential equations of order r (r ≥
1):

ur
i (x) +

r∑
k=1

Br−ku
(r−k)
i (x) = gi(x) + λ

∫ x

0

ki(x, t, F (ui(x)))dt, i = 1, 2, . . . , n,

(1.1)
with initial conditions

ui(0) = ui, (1.2)

where the parameters λ and functions gi(x), ki(x, t, F (ui(t)) are known and belong
to L2[0, 1), and u(x) is an unknown function and Bi (i = 0, 1, . . . , n) are n × n
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matrices. In this work, we consider that, the nonlinear function has the form

F (ui(t)) = (ui(t))p,

where p is a positive integer.
Systems of integro-differential equations have a major role in the fields of science

and engineering [3, 10, 11, 19]. The initial value problem for a nonlinear system
of integro-differential equations was used to model the competition between tumor
cells and the immune system [4]. There are various techniques for solving a system
of integral or integro-differential equation, e.g. Galerkin method [13], Adomian
decomposition method (ADM) [18, 5], rationalized Haar functions method [14]
and variational iteration method (VIM) [20], He’s homotopy perturbation method
(HPM) [6, 21], Tau method [2], differential transform method [1], and Maleknejad
in [15] have applied Bernstein operational matrix for solving a system of high order
linear Volterra-Fredholm integro-differential equations, etc.

This article is organized as follows: In Section 2, we introduce BPFs and their
properties. In Section 3, the operational matrix of integration is derived. Section 4
introduces Application of the method. Some numerical results has been presented
in section 5 to show accuracy and advantage of the proposed method. Finally, some
concluding remarks are given in section 6.

2. Properties of block-pulse functions

An m-set of BPFs is defined as follows:

φi(t) =

{
1, ih 6 t < (i+ 1)h,
0, otherwise,

(2.1)

where i = 1, 2, . . . ,m−1 with positive integer values for m, and h = T/m, and m are
arbitrary positive integers. There are some properties for BPFs, e.g. disjointness,
orthogonality, and completeness.
Disjointness. The block-pulse functions are disjoint with each other; i.e.,

φi(t)φj(t) =

{
φi(t), i = j,

0, i 6= j,
(2.2)

where i, j = 0, . . . ,m− 1.
Orthogonality. The block-pulse functions are orthogonal with each other; i.e.,∫ T

0

φi(t)φj(t)dt =

{
h, i = j,

0, otherwise,
(2.3)

in the region of t ∈ [0, T ), where i, j = 1, 2, . . . ,m − 1. This property is obtained
from the disjointness property.
Completeness. For every f ∈ L2([0, 1)) when m go to infinity, Parseval identity
holds: ∫ 1

0

f2(t)dt =
∞∑

i=0

f2
i ‖φi(t)‖2, (2.4)

where

fi =
1
h

∫ 1

0

f(t)φi(t)dt.
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The set of BPFs may be written as a m-vector Φ(t) :

Φ(t) = [φ0(t), . . . , φm−1(t)]T , (2.5)

where t ∈ [0, 1). From the above representation and disjointness property, it follows:

Φ(t)ΦT (t) =


φ0(t) 0 . . . 0

0 φ1(t) . . . 0
...

...
. . .

...
0 0 . . . φm−1(t)


ΦT (t)Φ(t) = 1,

Φ(t)Φ(t)TV = Ṽ Φ(t),

where V is an m-vector and V = diag(V ). Moreover, it can be clearly concluded
that for every m×m matrix A:

ΦT (t)AΦ(t) = ÂT Φ(t), (2.6)

where A is an m-vector with elements equal to the diagonal entries of matrix A.

2.1. Functions approximation. A function f(t) ∈ L2([0, 1)) may be expanded
by the BPFs as:

f(t) '
m−1∑
i=0

fi1φi(t) = FT Φ(t) = ΦT (t)F, (2.7)

where F is a m-vector given by

F = [f0, . . . , fm−1]T , (2.8)

Φ(t) = [φ1(t), φ2(t), . . . , φm−1(t)]T , (2.9)

the block-pulse coefficients fi are obtained as

fi =
1
h

∫ (i+1)h

ih

f(t)dt, (2.10)

such that error between f(t), and its block-pulse expansion (2.7) in the region of
t ∈ [0, 1)

ε =
∫ 1

0

(
f −

m−1∑
i=0

fiφi(t)
)2

dt, (2.11)

is minimal. Now assume K(x, t) ∈ L2([0, 1) × [0, 1)) may be approximated with
respect to BPFs such as:

k(x, t) = ΦT (x)KΦ(t), (2.12)
where Φ(x) and Φ(t) are BPFs vectors of dimension m1 and m2, respectively,
and K is a m1 ×m2 one dimensional block-pulse coefficients matrix with kij , i =
0, . . . ,m1 − 1, j = 0, . . . ,m2 − 1 as follows:

kij = m1m2

∫ 1

0

∫ 1

0

k(x, t)φi(x)φj(t) dx dt. (2.13)

Also, the positive integer powers of a function f(s) may be approximated by BPFs
as

[u(t)]p = [ΦT (t)U ]p = ΦT (t)Λ,
where Λ is a column vector, whose elements are pth power of the elements of the
vector U .
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2.2. Block-pulse functions series. The function xk, x ∈ [0, 1), k ∈ N can be
approximated as a BPF series of size m. Indeed, from (2.7) and (2.10), we have

xk '
m−1∑
i=0

fk(i)φ(x), (2.14)

where

fk(i) =
1
h

∫ (i+1)h

ih

tkdt =
1

h(k + 1)
[((i+ 1)h)k+1 − (ih)k+1]. (2.15)

Therefore,

xk ' 1
h(k + 1)

m−1∑
i=0

[((i+ 1)h)k+1 − (ih)k+1]Φi(x), (2.16)

and in matrix form

xk ' 1
h(k + 1)

Y T
k Φm(x), (2.17)

where

Y T
k =

m−1∑
i=0

[((i+ 1)h)k+1 − (ih)k+1].

3. Operational matrix of integration

We compute
∫ t

0
Φidτ as

∫ t

0

Φi(τ)dτ =


0, t ≤ ih,
t− ih ih ≤ t < (i+ 1)h,
h (i+ 1)h ≤ t < 1.

(3.1)

Then (3.1) can be written as∫ t

0

Φi(τ)dτ = (t− ih)Φi(t) + h

m−1∑
j=i+1

Φj(t). (3.2)

From (2.17) we have

x ' 1
2h

m−1∑
i=0

[((i+ 1)h)2 − (ih)2]Φi(t). (3.3)

Substituting (3.3) and (2.2) into (3.2), and by using orthogonal property, for 0 ≤
i < m, we have∫ t

0

Φi(τ)dτ =
1

2h

n−1∑
j=0

[
((j + 1)h)2 − (jh)2

]
Φj(t)Φi(t)− ihΦi(t) + h

m−1∑
j=i+1

Φj(t)

=
1

2h
[((i+ 1)h)2 − (ih)2]Φi(t)− ihΦi(t) + h

m−1∑
j=i+1

Φj(t)

=
h

2
Φi + h

m−1∑
j=i+1

Φj(t).
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The integration of the vector Φ(t) defined in (2.5) may be obtained as∫ t

0

Φ(τ)dτ ' ΥΦ(t), (3.4)

where Υ is called operational matrix of integration which can be represented by

Υ =
h

2


1 2 2 . . . 2
0 1 2 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1

 ,

and their integrals in the matrix form
∫

Φ0∫
Φ1

...∫
Φm−1

 ' h

2


1 2 2 . . . 2
0 1 2 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1




Φ0

Φ1

...
Φm−1

 ,

or in more compact form ∫ t

0

Φm(τ)dτ ' ΥΦm(t), (3.5)

By using this matrix, we can express the integral of a function f(t) into its block
pulse series ∫ t

0

fm(τ)dτ '
∫ t

0

FT Φm(τ)dτ ' FT ΥΦm(t). (3.6)

4. Application of the method

In this section, we calculate Uk−r
i (x) by using

ur
i (x) =

m−1∑
i=0

uiΦ(x) = UT
i Φm(x). (4.1)

Now integrating from 0 to t and using (3.5) we obtain

Ur−1
i (x) = UΥΦm(x) + Ur−1

0 (x) (4.2)

The k − th integration of (4.1) yields

Ur−k
i (x) = UiΥkφm(x) +

k∑
i=1

Ur−i
0

tk−i

(k − i)!
k = 1, 2, . . . , r. (4.3)

From (2.17) we have

tk−i

(k − i)!
' 1
h(k − i+ 1)!

Y T
k−iΦm(x) (4.4)

Substituting (4.4) in (4.3) we obtain

Ur−k
i (x) = UiΥkΦm(t) + ZkΦm(x), (4.5)

where

Zk =
1
h

k∑
i=1

1
h(k − i+ 1)!

Ur−i
0 Y T

k−i (4.6)

is an n×m constant matrix.
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Now, we solve the system of nonlinear Volterra high-order integro-differential
equations by using BPFs. As we show before, we can write

gi(x) = GT
i Φm(x),

ur
i (x) = UT

i Φm(x),

[ui(x)]p = ΦT
m(x)Λ,

k(x, t) = ΦT (x)KΦ(t),

(4.7)

where them-vectors U,G,Λ, and matrixK are BPFs coefficients of u(x), g(x), [u(t)]p,
and K(x, t) respectively, Λ is a column vector whose elements are pth power of the
elements of the vector U. To approximate the integral equation (1.1), from (4.7)
and (4.5) we get

ur
i (x) +

r∑
k=1

Br−ku
(r−k)
i (x) = gi(x) +

∫ x

0

ki(x, t, F (ui(x)))dt i = 1, 2, . . . , n.

Now the second part of equation

UT
i Φm(x) +

r∑
k=1

Br−k(UiΥk + Zk)Φm(x) = GT
i Φm(x) + ΦT

m(x)K
∫ x

0

Φ(t)ΦT (t)Λ

= GT
i Φm(x) + ΦT

m(x)KΛ̃
∫ x

0

Φm(t)dt

= GT
i Φm(x) + ΦT

m(x)KΛ̃ΥΦm(x).

If we put A = KΛ̃Υ then it can be written from (2.6),

UT
i Φm(x) +

r∑
k=1

Br−kuiΥkΦm(x) = GT
i Φm(x) + ÂT Φm(x),

hence, we have

UT
i +

r∑
k=1

Br−kuiΥk = GT
i + ÂT . (4.8)

It can be written as:
AU = F (4.9)

where A and F are the combination of block-pulse coefficient matrix and U can be
obtained from Newton-Raphson method for solving nonlinear systems.

5. Numerical examples

To illustrate the effectiveness of the proposed method in the present paper, sev-
eral test examples are carried out in this section.

Example 5.1. Consider the nonlinear Volterra integro-differential equations prob-
lem with initial conditions [6],

u′(x)− 1 +
1
2
v

′2
(x) =

∫ x

0

((x− t)v(t) + v(t)u(t))dt,

v′(x)− 2x =
∫ x

0

((x− t)u(t)− v2(t) + u2(t))dt,

u(0) = 0, v(0) = 1.

(5.1)
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The exact solutions are u(x) = sinh(x), v(x) = cosh(x). The numerical results
obtained with BPFs are presented in Table 1 and Figure 1.

Figure 1. Comparison of the exact solution and the present method

Example 5.2. consider the system of two nonlinear integro-differential equations
with boundary conditions [6],

u′′(x) = 1− 1
3
x3 − 1

2
v′

2(x) +
1
2

∫ x

0

(u2(t) + v2(t))dt,

v′′(x) = −1 + x2 − xu(x) +
1
4

∫ x

0

(u2(t)− v2(t))dt,

u(0) = 1, u′(0) = 2, v(0) = −1, v′(0) = 0.

(5.2)

Table 1. Numerical results of Example 5.1
x (uexact(x), vexact(x)) m = 8 m = 16 m = 32

0.0 (0.00000, 1.00000) (0.00145, 0.88425) (0.00115, 0.91196) (0.00025, 1.00056)
0.1 (0.10016, 1.00500) (0.10727, 1.01570) (0.101852, 1.009) (0.10016, 1.00501)
0.3 (0.30452, 1.04533) (0.38440, 1.00521) (0.58562, 1.03122) (0.30450, 1.04533)
0.5 (0.52109, 1.12762) (0.50695, 1.108423) (0.52012, 1.12521) (0.52108, 1.12762)
0.7 (0.75858, 1.25516) (0.74932, 1.20390) (0.75125, 1.25501) (0.75857, 1.25510)
0.9 (1.02651, 1.43308) (1.09032, 0.30390) (1.02541, 1.43321) (1.02651, 1.43308)

The exact solutions are u(x) = x+ ex and v(x) = x− ex. Numerical results for
this solution is presented in Table 2.

Table 2. Numerical results of Example 5.2
x (uexact(x), vexact(x)) m = 8 m = 16 m = 32

0.0 (1,−1) (0.93915,−0.88365) (0.96251,−0.89936) (0.99251,−0.97936)
0.1 (1.02051,−1.00517) (1.01107,−1.02517) (1.02012,−1.01701) (1.02052,−1.00701)
0.3 (1.64985,−1.04985) (1.61852,−1.00980) (1.64212,−1.04914) (1.64812,−1.04984)
0.5 (2.14872,−1.14872) (2.12211,−1.14582) (2.14121,−1.14705) (2.14821,−1.14725)
0.7 (2.71375,−1.31375) (2.71175,−1.31075) (2.71301,−1.31221) (2.71371,−1.31321)
0.9 (3.35960,−1.55960) (3.35255,−1.54696) (3.35666,−1.55009) (3.35966,−1.55909)
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Conclusion. In this article, we approximated the solution of nonlinear Volterra
integro-differential equations. To this end, we used some orthogonal functions called
Block-Pulse Functions. Finally, numerical examples reveal that the present method
is very accurate and convenient for solving systems of high order linear and non-
linear Volterra integro-differential equations. The benefits of this method is low
cost of setting up the equations without applying any projection method such as
Galerkin, collocation, etc. Also, the linear system (4.9) has a regular form which
can help us for solving it.
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