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GROWTH OF SOLUTIONS TO SECOND-ORDER COMPLEX
DIFFERENTIAL EQUATIONS

NAN LI, LIANZHONG YANG

Abstract. In this article, we study the existence of non-trivial subnormal
solutions for second-order linear differential equations. We show that under

certain conditions some differential equations do not have subnormal solutions,

also that the hyper-order of every solution equals one.

1. Introduction

In this article, we use standard notation from the value distribution theory of
meromorphic functions (see [8, 12]). In addition, we denote the order of growth of
f(z) by σ(f). The hyper-order of f(z) is defined by

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

.

Consider the second order homogeneous linear periodic differential equation

f ′′ + P (ez)f ′ +Q(ez)f = 0, (1.1)

where P (z) and Q(z) are polynomials in z and not both constants. It is well known
that every solution f of (1.1) is entire.

For be a meromorphic function f , define

σe(f) = lim sup
r→∞

log T (r, f)
r

(1.2)

to be the e-type order of f . If f 6≡ 0 is a solution of (1.1) satisfying σe(f) = 0, then
we say that f is a nontrivial subnormal solution of (1.1).

Wittich [10], Gundersen and Steinbart [7], Xiao [11] etc. have investigated the
subnormal solution of (1.1), and obtained good results. In 2007, Chen and Shon
[3] studied the existence of subnormal solutions of the general equation

f ′′ +
(
P1(ez) + P2(e−z)

)
f ′ +

(
Q1(ez) +Q2(e−z)

)
f = 0, (1.3)

and obtained the following results.

Theorem 1.1. Let Pj(z), Qj(z) (j = 1, 2) be the polynomials in z. If

degQ1 > degP1 or degQ2 > degP2 (1.4)
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then (1.3) has no nontrivial subnormal solution, and every solution of (1.3) satisfies
σ2(f) = 1.

Theorem 1.2. Let Pj(z), Qj(z) (j = 1, 2) be the polynomials in z. If

degQ1 < degP1 and degQ2 < degP2 (1.5)

and Q1 + Q2 6≡ 0, then (1.3) has no nontrivial subnormal solution, and every
solution of (1.3) satisfies σ2(f) = 1.

Question. What can we said when degP1 = degQ1 and degP2 = degQ2 for (1.3)?
We will prove the following theorem.

Theorem 1.3. . Let

P1(z) = anz
n + · · ·+ a1z + a0,

Q1(z) = bnz
n + · · ·+ b1z + b0,

P2(z) = cmz
m + · · ·+ c1z + c0,

Q2(z) = dmz
m + · · ·+ d1z + d0,

where ai, bi (i = 0, . . . , n), cj , dj (j = 0, . . . ,m) are constants, anbncmdm 6= 0.
Suppose that andm = cmbn and any one of the following three hypotheses holds:

(i) there exists i satisfying
(
− bn

an

)
ai + bi 6= 0, 0 < i < n; (ii) there exists j

satisfying
(
− bn

an

)
cj + dj 6= 0, 0 < j < m;

(iii) (
− bn
an

)2 +
(
− bn
an

)
(a0 + c0) + b0 + d0 6= 0.

Then (1.3) has no non-trivial subnormal solution, and every non-trivial solution f
satisfies σ2(f) = 1.

We remark that the equation

f ′′ + (e2z + e−z + 1)f ′ + (2e2z + 2e−z − 2)f = 0

has a subnormal solution f0 = e−2z. Here n = 2, m = 1, a2 = 1, b2 = 2,
a1 = b1 = 0, c1 = 1, d1 = 2, a0 + c0 = 1, b0 + d0 = −2, (− b2

a2
) · a1 + b1 = 0, and

(− b2
a2

)2 + (− b2
a2

)(a0 + c0) + b0 + d0 = 0. This shows that the restrictions (i)–(iii) in
Theorem 1.3 are sharp.

Another problem we want to consider in this paper is what condition will guar-
antee the more general form

f ′′ +
(
P1(eαz) + P2(e−αz)

)
f ′ +

(
Q1(eβz) +Q2(e−βz)

)
f = 0, (1.6)

where P (z), Q(z) are polynomials in z, α, β are complex constants, does not have a
non-trivial subnormal solution? We will prove the following theorems.

Theorem 1.4. Let

P1(z) = a1m1z
m1 + · · ·+ a11z + a10,

P2(z) = a2m2z
m2 + · · ·+ a21z + a20,

Q1(z) = b1n1z
n1 + · · ·+ b11z + b10,

Q2(z) = b2n2z
n2 + · · ·+ b21z + b20,

where mk ≥ 1, nk ≥ 1 (k = 1, 2) are integers, a1i1 (i1 = 0, 1, . . . ,m1), a2i2 (i2 =
0, 1, . . . ,m2), b1j1 (j1 = 0, 1, . . . , n1), b2j2 (j2 = 0, 1, . . . , n2), α and β are complex
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constants, a1m1a2m2b1n1b2n2 6= 0, αβ 6= 0. Suppose m1α = c1n1β (0 < c1 < 1) or
m2α = c2n2β (0 < c2 < 1). Then (1.6) has no non-trivial subnormal solution and
every non-trivial solution f satisfies σ2(f) = 1.

Theorem 1.5. Let

P1(z) = a1m1z
m1 + · · ·+ a11z + a10,

P2(z) = a2m2z
m2 + · · ·+ a21z + a20,

Q1(z) = b1n1z
n1 + · · ·+ b11z + b10,

Q2(z) = b2n2z
n2 + · · ·+ b21z + b20,

where mk ≥ 1, nk ≥ 1 (k = 1, 2) are integers, a1i1 (i1 = 0, 1, . . . ,m1), a2i2 (i2 =
0, 1, . . . ,m2), b1j1 (j1 = 0, 1, . . . , n1), b2j2 (j2 = 0, 1, . . . , n2), α and β are complex
constants, a1m1a2m2b1n1b2n2 6= 0, αβ 6= 0. Suppose m1α = c1n1β (c1 > 1) and
m2α = c2n2β (c2 > 1). Then (1.6) has no non-trivial subnormal solution and
every non-trivial solution f satisfies σ2(f) = 1.

Note that a subnormal solution f0 = e−z + 1 satisfies the equation

f ′′ − [e3z + e2z + e−z]f ′ − [e2z + e−z]f = 0.

Here α = 1
2 , β = 1/3, m1 = 6, m2 = 2, n1 = 6, n2 = 3, m1α = 3

2n1β and
m2α = n2β. This shows that the restrictions that m1α = c1n1β (c1 > 1) and
m2α = c2n2β (c2 > 1) can not be omitted.

2. Some lemmas

Let P (z) = (a + ib)zn + . . . be a polynomial with degree n ≥ 1. and z = reiθ.
We will we denote δ(P, θ) = a cos(nθ)− b sin(nθ).

Lemma 2.1 ([8]). Let P (z) = anz
n + an−1z

n−1 + · · · + a0 be a polynomial with
an 6= 0. Then, for every ε > 0, there exists r0 > 0 such that for all r = |z| > r0 we
have the inequalities

(1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn .
Lemma 2.2 ([8]). Let g : (0,+∞) → R and h : (0,+∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite
logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤
h(αr) holds for all r > r0.

Lemma 2.3. [5] Let f(z) be a transcendental meromorphic function with σ(f) =
σ < ∞. Let H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of
integers that satisfy ki > ji ≥ 0, for i = 1, 2, . . . , q. And let ε > 0 be a given
constant. Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if ψ ∈ [0, 2π) \ E, then there is a constant R0 = R0(ψ) > 1 such that for all z
satisfying arg z = ψ and |z| ≥ R0 and for all (k, j) ∈ H, we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ |z|(k−j)(σ−1+ε). (2.1)

Lemma 2.4 ([6, 9]). Let f(z) be an entire function and suppose that |f (k)(z)| is
unbounded on some ray arg z = θ. Then, there exists an infinite sequence of points
zn = rne

iθ (n = 1, 2, . . . ), where rn →∞, such that f (k)(zn)→∞ and∣∣ f (j)(zn)
f (k)(zn)

∣∣ ≤ 1
(k − j)!

|zn|(k−j)(1 + o(1)) (j = 0, . . . , k − 1). (2.2)
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Lemma 2.5 ([2]). Let f(z) be an entire function with σ(f) = σ < ∞. Let there
exists a set E ⊂ [0, 2π) with linear measure zero, such that for any arg z = θ0
∈ [0, 2π) \ E, |f(reiθ0)| ≤ Mrk (M = M(θ0) > 0 is a constant, k(> 0) is constant
independent of θ0). Then f(z) is a polynomial of deg f ≤ k.

Lemma 2.6 ([1]). Let A and B be entire functions of finite order. If f(z) is a
solution of the equation

f ′′ +Af ′ +Bf = 0,
then σ2(f) ≤ max{σ(A), σ(B)}.

Lemma 2.7 ([4]). Let f(z) be an entire function of infinite order with σ2 = α (0 ≤
α <∞), and a set E ⊂ [1,∞) have a finite logarithmic measure. Then, there exists
{zk = rke

iθk} such that |f(zk)| = M(rk, f), θk ∈ [0, 2π), limk→∞ θk = θ0 ∈ [0, 2π),
rk 6∈ E, rk →∞, and such that

(1) if σ2(f) = α (0 < α <∞), then for any given ε1 (0 < ε1 < α),

exp{rα−ε1k } < ν(rk) < exp{rα+ε1
k }, (2.3)

(2) if σ(f) =∞ and σ2(f) = 0, then for any given ε2 (0 < ε2 < 1/2), and any
large M (> 0), we have, for rk sufficiently large,

rMk < ν(rk) < exp{rε2k }. (2.4)

Lemma 2.8 ([5]). Let f be a transcendental meromorphic function, and α > 1 be a
given constant. Then there exists a set E ⊂ (1,∞) with finite logarithmic measure
and a constant B > 0 that depends only on α and i, j (0 ≤ i < j ≤ 2), such that
for all z satisfying |z| = r 6∈ E ∪ [0, 1],∣∣f (j)(z)

f (i)(z)

∣∣ ≤ B(T (αr, f)
r

(logα r) log T (αr, f)
)j−i

. (2.5)

Remark 2.9 ([3]). From the proof of Lemma 2.8, we can see that the exceptional
set E satisfies that if an and bm (n,m = 1, 2, . . . ) denote all zeros and poles of f ,
respectively, O(an) and O(bm) denote sufficiently small neighborhoods of an and
bm, respectively, then

E = {|z| : z ∈ (∪+∞
n=1O(an)) ∪ (∪+∞

m=1O(bm))}.
Hence, if f(z) is a transcendental entire function, and z is a point that satisfies
|f(z)| to be sufficiently large, then (2.5) holds.

3. Proof of Theorem 1.3

Suppose that f(z) is a non-trivial subnormal solution of (1.3). Let

h(z) = e(bn/an)zf(z),

then h(z) is a non-trivial subnormal solution of

h′′ +
(

2(− bn
an

) + P1(ez) + P2(e−z)
)
h′

+
(

(− bn
an

)2 + (− bn
an

)
(
P1(ez) + P2(e−z)

)
+Q1(ez) +Q2(e−z)

)
h = 0.

Since any one of the following three hypotheses holds:
(i) there exists i satisfying (− bn

an
)ai + bi 6= 0, 0 < i < n;

(ii) there exists j satisfying (− bn

an
)cj + dj 6= 0, 0 < j < m;
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(iii) (
(− bn
an

)2 + (− bn
an

)(a0 + c0) + b0 + d0

)
6= 0,

we obtain

(− bn
an

)2 + (− bn
an

)(P1(ez) + P2(e−z)) +Q1(ez) +Q2(e−z) 6≡ 0. (3.1)

From andm = cmbn, we obtain

degP2(z) > m− 1 ≥ deg[(− bn
an

)P2(z) +Q2(z)]. (3.2)

Combining (3.1) and (3.2) with

degP1(z) > n− 1 ≥ deg[(− bn
an

)P1(z) +Q1(z)], (3.3)

we obtain the conclusion by using Theorem 1.2.

4. Proof of Theorem 1.4

Suppose f(6≡ 0) is a solution of (1.6), then f is an entire function. Next we
will prove that f is transcendental. Since Q1(eβz) + Q2(e−βz) 6≡ 0, we see that
any nonzero constant can not be a solution of the (1.6). Now suppose that f0 =
bnz

n + · · · + b1z + b0, (n ≥ 1, bn, . . . , b0 are constants, bn 6= 0) is a polynomial
solution of (1.6).
(1) m1α = c1n1β (0 < c1 < 1). Take z = reiθ, such that δ(βz, θ) = |β| cos(arg β +
θ) > 0, then δ(αz, θ) = n1c1

m1
δ(βz, θ) > 0. From (1.6) and Lemma 2.1, that for a

sufficiently large r and ε > 0, we have

(1− ε)|bn|rn|b1n1 |en1δ(βz,θ)r(1− o(1)) ≤ |Q1(eβz) +Q2(e−βz)| · |f0|
≤ |f ′′0 |+ |P1(eαz) + P2(e−αz)| · |f ′0|

≤ |a1m1 |em1δ(αz,θ)rn(n− 1)(1 + ε)|bn|rn−1(1 + o(1))

≤M1e
m1·n1c1

m1
δ(βz,θ)rrn−1(1 + o(1))

≤M1e
n1c1δ(βz,θ)rrn−1(1 + o(1)),

(4.1)
where M1 > 0 is some constant. Since 0 < c1 < 1, we see that (4.1) is a contradic-
tion.
(2) m2α = c2n2β (0 < c2 < 1). Take z = reiθ, such that δ(βz, θ) = |β| cos(arg β +
θ) < 0, then δ(αz, θ) = n2c2

m2
δ(βz, θ) < 0. From (1.6) and Lemma 2.1, that for a

sufficiently large r and ε > 0, we have

(1− ε)|bn|rn|b2n2 |e−n2δ(βz,θ)r(1− o(1))

≤ |Q1(eβz) +Q2(e−βz)| · |f0|
≤ |f ′′0 |+ |P1(eαz) + P2(e−αz)| · |f ′0|

≤ |a2m2 |e−m2δ(αz,θ)rn(n− 1)(1 + ε)|bn|rn−1(1 + o(1))

≤M2e
−m2·n2c2

m2
δ(βz,θ)rrn−1(1 + o(1))

≤M2e
−n2c2δ(βz,θ)rrn−1(1 + o(1)),

(4.2)
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where M2 > 0 is some constant. Since 0 < c2 < 1, we see that (4.2) is also a
contradiction. Thus we obtain that f is transcendental.

By Lemma 2.6 and max{σ(P1(eαz)), σ(P2(e−αz)), σ(Q1(eβz)), σ(Q2(e−βz))} =
1, we see that σ2(f) ≤ 1. By Lemma 2.8, we can see that there exists a subset
E ⊂ (1,∞) having a logarithmic measure mlE < ∞ and a constant B > 0 such
that for all z satisfying |z| = r 6∈ [0, 1] ∪ E, we have

|f
(j)(z)
f(z)

| ≤ B[T (2r, f)]j+1, j = 1, 2. (4.3)

(1) Suppose m1α = c1n1β (0 < c1 < 1). Take z = reiθ, such that δ(βz, θ) > 0, then
δ(αz, θ) = n1c1

m1
δ(βz, θ) > 0. From (1.6), (4.3), that for a sufficiently large r and

r 6∈ [0, 1] ∪ E, we have

(1− ε)|b1n1 |en1δ(βz,θ)r(1− o(1))

≤ |Q1(eβz) +Q2(e−βz)|

≤ |f
′′(z)
f(z)

|+ |P1(eαz) + P2(e−αz)||f
′(z)
f(z)

|

≤ B[T (2r, f)]3 + (1 + ε)|a1m1 |em1δ(αz,θ)rB[T (2r, f)]2(1 + o(1))

≤ C[T (2r, f)]3em1·n1c1
m1

δ(βz,θ)r(1 + o(1))

≤ C[T (2r, f)]3en1c1δ(βz,θ)r(1 + o(1)).

(4.4)

Since 0 < c1 < 1, by lemma 2.2, (4.4), we obtain σ2(f) ≥ 1. So σ2(f) = 1.
Next we prove that any f(6≡ 0) is not subnormal. If f is subnormal, then for

any ε > 0,

T (r, f) ≤ eεr. (4.5)

When taking z = reiθ, such that δ(βz, θ) > 0, by (4.4) and (4.5), we deduce that

(1− ε)|b1n1 |en1δ(βz,θ)r(1− o(1)) ≤ C[T (2r, f)]3en1c1δ(βz,θ)r(1 + o(1))

≤ Ce6εr · en1c1δ(βz,θ)r(1 + o(1)).
(4.6)

We see that (4.6) is a contradiction when 0 < ε < 1
6n1δ(βz, θ)(1− c1). Hence (1.6)

has no non-trivial subnormal solution and every solution f satisfies σ2(f) = 1.

(2) Suppose m2α = c2n2β (0 < c2 < 1). Take z = reiθ, such that δ(βz, θ) < 0, then
δ(αz, θ) = n2c2

m2
δ(βz, θ) < 0. Using the similar method as in the proof of (1), we

obtain the conclusion.

5. Proof of Theorem 1.5

Suppose that f(6≡ 0) is a solution of (1.6), then f is an entire function. Next
we will prove that f is transcendental. Since Q1(eβz) +Q2(e−βz) 6≡ 0, we see that
any nonzero constant can not be a solution of the Eq.(1.6). Now suppose that
f0 = bnz

n + · · ·+ b1z + b0, (n ≥ 1, bn, . . . , b0 are constants, bn 6= 0) is a polynomial
solution of (1.6).

Take z = reiθ, such that δ(αz, θ) = |α| cos(argα + θ) > 0, then δ(βz, θ) =
m1
c1n1

δ(αz, θ) > 0. From (1.6) and Lemma 2.1, that for a sufficiently large r and
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ε > 0, we have

(1− ε)|bn|nrn−1|a1m1 |em1δ(αz,θ)r(1− o(1)) ≤ |P1(eαz) + P2(e−αz)| · |f ′0|

≤ |f ′′0 |+ |Q1(eβz) +Q2(e−βz)| · |f0|

≤ |b1n1 |en1δ(βz,θ)rn(n− 1)(1 + ε)|bn|rn(1 + o(1))

≤Men1· m1
c1n1

δ(αz,θ)rrn(1 + o(1))

≤Me
m1
c1
δ(αz,θ)rrn(1 + o(1)),

(5.1)
where M > 0 is some constant. Since c1 > 1, we see that (5.1) is a contradiction.
Thus we obtain that f is transcendental.

First step. We prove that σ(f) = ∞. We assume that σ(f) = σ < ∞. By
Lemma 2.3, we know that for any given ε > 0, there exists a set E ⊂ [0, 2π)
which has linear measure zero, such that if ψ ∈ [0, 2π) \E, then there is a constant
R0 = R0(ψ) > 1, such that for all z satisfying arg z = ψ and |z| = r ≥ R0, we have

|f
′′(z)
f ′(z)

| ≤ rσ−1+ε. (5.2)

Let H = {θ ∈ [0, 2π) : δ(αz, θ) = 0}; then H is a finite set. Now we take a ray
arg z = θ ∈ [0, 2π)\ (E∪H), then δ(αz, θ) > 0 or δ(αz, θ) < 0. We divide the proof
into the following two cases.

Case 1. If δ(αz, θ) > 0, then δ(βz, θ) = m1
c1n1

δ(αz, θ) > 0, δ(−αz, θ) < 0 and
δ(−βz, θ) < 0. We assert that |f ′(reiθ)| is bounded on the ray arg z = θ. If
|f ′(reiθ)| is unbounded on the ray arg z = θ, then by Lemma 2.4, there exists a
sequence of points zt = rte

iθ(t = 1, 2, . . . ) such that as rt →∞, f ′(zt)→∞ and

| f(zt)
f ′(zt)

| ≤ rt(1 + o(1)). (5.3)

By (1.6), we obtain that

− [P1(eαzt) + P2(e−αzt)] =
f ′′(zt)
f ′(zt)

+ [Q1(eβzt) +Q2(e−βzt)] · f(zt)
f ′(zt)

. (5.4)

From δ(αz, θ) > 0, we have

|P1(eαzt) + P2(e−αzt)| ≥ (1− ε)|a1m1 |em1δ(αzt,θ)rt(1− o(1)), (5.5)

|Q1(eβzt) +Q2(e−βzt)| ≤Men1δ(βzt,θ)rt(1 + o(1)). (5.6)

Substituting (5.2), (5.3), (5.5) and (5.6) in (5.4), we obtain

(1− ε)|a1m1 |em1δ(αzt,θ)rt(1− o(1))

≤ rσ−1+ε
t +Men1δ(βzt,θ)rt(1 + o(1))rt(1 + o(1))

≤Mrσ+ε
t e

m1
c1
δ(αzt,θ)rt(1 + o(1)).

(5.7)

Since c1 > 1, δ(αzt, θ) > 0, when rt → ∞, (5.7) is a contradiction. Hence
|f ′(reiθ)| ≤ C. So

|f(reiθ)| ≤ Cr. (5.8)
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Case 2. If δ(αz, θ) < 0, then δ(βz, θ) = m2
c2n2

δ(αz, θ) < 0, δ(−αz, θ) > 0 and
δ(−βz, θ) > 0. Using the similar method as above, we can obtain that

|f(reiθ)| ≤ Cr. (5.9)

Since the linear measure of E ∪ H is zero, by (5.8), (5.9) and Lemma 2.5, we
know that f(z) is a polynomial, which contradicts the assumption that f(z) is
transcendental. Therefore σ(f) =∞.

Second step. We prove that (1.6) has no non-trivial subnormal solution. Now
suppose that (1.6) has a non-trivial subnormal solution f0. By the conclusion in
the first step, σ(f0) = ∞. By Lemma 2.6, we see that σ2(f0) ≤ 1. Set σ2(f0) =
ω ≤ 1. By Lemma 2.8, we see that there exists a subset E1 ⊂ (1,∞) having
finite logarithmic measure and a constant B > 0 such that for all z satisfying
|z| = r 6∈ [0, 1] ∪ E1, we have

|f
(j)
0 (z)
f0(z)

| ≤ B[T (2r, f0)]3, (j = 1, 2). (5.10)

From the Wiman-Valiron theory, there is a set E2 ⊂ (1,∞) having finite logarithmic
measure, so we can choose z satisfying |z| = r 6∈ E2 and |f0(z)| = M(r, f0). Thus,
we have

f
(j)
0 (z)
f0(z)

=
(υ(r)
z

)j(1 + o(1)), j = 1, 2, (5.11)

where υ(r) is the central index of f0(z).
By Lemma 2.7, we see that there exists a sequence {zn = rne

iθn} such that
|f0(zn)| = M(rn, f0), θn ∈ [0, 2π), limn→∞ θn = θ0 ∈ [0, 2π), rn 6∈ [0, 1] ∪ E1 ∪ E2,
rn →∞, and if ω > 0, we see that for any given ε1 (0 < ε1 < ω), and for sufficiently
large rn,

exp{rω−ε1n } < υ(rn) < exp{rω+ε1
n }, (5.12)

and if ω = 0, then by σ(f0) = ∞ and Lemma 2.7, we see that for any given ε2
(0 < ε2 < 1/2), and for any sufficiently large M , as rn is sufficiently large,

rMn < υ(rn) < exp{rε2n }. (5.13)

From (5.12) and (5.13), we obtain that

υ(rn) > rn, rn →∞. (5.14)

For θ0, let δ = δ(αz, θ0) = |α| cos(argα + θ0), then δ < 0, or δ > 0, or δ = 0. We
divide this proof into three cases.
Case 1. δ > 0. By θn → θ0, we see that there is a constant N(> 0) such
that, as n > N , δ(αzn, θn) > 0. Since f0 is a subnormal solution, for any given
ε(0 < ε < 1

12 (1− 1
c1

)δ(αzn, θn)), we have

[T (2rn, f0)]3 ≤ e6εrn ≤ e
1
2 (1− 1

c1
)δ(αzn,θn)rn . (5.15)

By (5.10), (5.11), (5.15), we have(υ(rn)
rn

)j(1 + o(1)) = |f
(j)
0 (zn)
f0(zn)

|

≤ B[T (2rn, f0)]3

≤ Be
1
2 (1− 1

c1
)δ(αzn,θn)rn , j = 1, 2.

(5.16)
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Since δ(αzn, θn) > 0, from (1.6), (5.11), we obtain that

(1− ε)υ(rn)
rn
|a1m1 |em1δ(αzn,θn)rn(1− o(1))

≤ |f
′
0(zn)
f0(zn)

(
P1(eαzn) + P2(e−αzn)

)
|

= |f
′′
0 (zn)
f0(zn)

+ [Q1(eβzn) +Q2(e−βzn)]|

≤
(υ(rn)
rn

)2(1 + o(1)) + (1 + ε)|b1n1 |en1δ(βzn,θn)rn(1 + o(1))

≤M1

(υ(rn)
rn

)2
e

m1
c1
δ(αzn,θn)rn(1 + o(1)).

(5.17)

From (5.16) and (5.17), we can obtain

(1− ε)|a1m1 |e
m1(1− 1

c1
)δ(αzn,θn)rn(1− o(1))

≤M1Be
1
2 (1− 1

c1
)δ(αzn,θn)rn(1 + o(1)).

(5.18)

Since c1 > 1 and m1 ≥ 1, we see that (5.18) is a contradiction.
Case 2. δ < 0. By θn → θ0, we see that there is a constant N(> 0) such that,
as n > N , δ(αzn, θn) < 0. Since f0 is a subnormal solution, for any given ε
(0 < ε < − 1

12 (1− 1
c2

)δ(αzn, θn)), we have

[T (2rn, f0)]3 ≤ e6εrn ≤ e−
1
2 (1− 1

c2
)δ(αzn,θn)rn . (5.19)

By (5.10), (5.11), (5.19) we have(υ(rn)
rn

)j(1 + o(1)) = |f
(j)
0 (zn)
f0(zn)

| ≤ B[T (2rn, f0)]3

≤ Be−
1
2 (1− 1

c2
)δ(αzn,θn)rn , j = 1, 2.

(5.20)

By (5.11) and (1.6), we obtain

(1− ε)υ(rn)
rn
|a2m2 |e−m2δ(αzn,θn)rn(1− o(1))

≤ |f
′
0(zn)
f0(zn)

(
P1(eαzn) + P2(e−αzn)

)
|

= |f
′′
0 (zn)
f0(zn)

+ [Q1(eβzn) +Q2(e−βzn)]|

≤
(υ(rn)
rn

)2(1 + o(1)) + (1 + ε)|b2n2 |e−n2δ(βzn,θn)rn(1 + o(1))

≤M2

(υ(rn)
rn

)2
e−

m2
c2
δ(αzn,θn)rn(1 + o(1)).

(5.21)

From (5.20) and (5.21), we can deduce that

(1− ε)|a2m2 |e
−m2(1− 1

c2
)δ(αzn,θn)rn(1− o(1))

≤M2Be
− 1

2 (1− 1
c2

)δ(αzn,θn)rn(1 + o(1)).
(5.22)

Since c2 > 1 and m2 ≥ 1, we see that (5.22) is a contradiction.
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Case 3. δ = 0. Then θ0 ∈ H = {θ|θ ∈ [0, 2π), δ(αz, θ) = 0}. Since θn → θ0, for any
given ε > 0, we see that there is an integer N (> 0), as n > N , θn ∈ [θ0 − ε, θ0 + ε]
and zn = rne

iθn ∈ Ω = {z : θ0 − ε ≤ arg z ≤ θ0 + ε}. By Lemma 2.8, there exists a
subset E3 ⊂ (1,∞) having finite logarithmic measure and a constant B > 0, such
that for all z satisfying |z| = r 6∈ [0, 1] ∪ E3, we have

|f
′′
0 (z)
f ′0(z)

| ≤ B[T (2r, f ′0)]2. (5.23)

Now we consider the growth of f0(reiθ) on a ray arg z = θ ∈ Ω \ {θ0}. Denote
Ω1 = [θ0 − ε, θ0), Ω2 = (θ0, θ0 + ε]. We can easily see that when θ1 ∈ Ω1, θ2 ∈ Ω2,
then δ(αz, θ1) ·δ(αz, θ2) < 0. Without loss of generality, we suppose that δ(αz, θ) >
0 (θ ∈ Ω1) and δ(αz, θ) < 0 (θ ∈ Ω2).

Since when θ ∈ Ω1, δ(αz, θ) > 0. Recall f0 is subnormal, then for any given ε
(0 < ε < 1

8 (1− 1
c1

)δ(αz, θ)),

[T (2r, f ′0)]2 ≤ e4εr ≤ e
1
2 (1− 1

c1
)δ(αz,θ)r. (5.24)

We assert that |f ′0(reiθ)| is bounded on the ray arg z = θ. If |f ′0(reiθ)| is unbounded
on the ray arg z = θ, then by Lemma 2.4, there exists a sequence {yj = Rje

iθ} such
that Rj →∞, f ′0(yj)→∞ and

|f0(yj)
f ′0(yj)

| ≤ Rj(1 + o(1)). (5.25)

By (5.23), (5.24), we see that for sufficiently large j,

|f
′′
0 (yj)
f ′0(yj)

| ≤ B[T (2Rj , f ′0)]2 ≤ Be
1
2 (1− 1

c1
)δ(αyj ,θ)Rj . (5.26)

By (1.6), we deduce that

(1− ε)|a1m1 |em1δ(αyj ,θ)Rj (1− o(1))

≤ | −
(
P1(eαyj ) + P2(e−αyj )

)
|

≤ |f
′′
0 (yj)
f ′0(yj)

|+ |Q1(eβyj ) +Q2(e−βyj )| · |f0(yj)
f ′0(yj)

|

≤ C1e
1
2 (1− 1

c1
)δ(αyj ,θ)Rjen1δ(βyj ,θ)RjRj(1 + o(1))

≤ C1e
[ 12 (1− 1

c1
)+

m1
c1

]δ(αyj ,θ)RjRj(1 + o(1)).

(5.27)

Since δ(αyj , θ) > 0, c1 > 1, we know that when Rj →∞, (5.27) is a contradiction.
Hence

|f0(reiθ)| ≤ Cr, (5.28)

on the ray arg z = θ ∈ Ω1.
When θ ∈ Ω2, δ(αz, θ) < 0. Recall f0 is subnormal, then for any given ε

(0 < ε < − 1
8 (1− 1

c2
)δ(αz, θ)),

[T (2r, f ′0)]2 ≤ e4εr ≤ e−
1
2 (1− 1

c2
)δ(αz,θ)r. (5.29)

We assert that |f ′0(reiθ)| is bounded on the ray arg z = θ. If |f ′0(reiθ)| is un-
bounded on the ray arg z = θ, using the similar proof as above, we can obtain
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that
(1− ε)|a2m2 |e

−m2(1− 1
c2

)δ(αyj ,θ)Rj (1− o(1))

≤ C2e
− 1

2 (1− 1
c2

)δ(αyj ,θ)RjRj(1 + o(1))
(5.30)

Since δ(αyj , θ) < 0 and c2 > 1, we know that when Rj →∞, (5.30) is a contradic-
tion. Hence

|f0(reiθ)| ≤ Cr, (5.31)
on the ray arg z = θ ∈ Ω2. By (5.28), (5.31), we see that |f0(reiθ)| satisfies

|f0(reiθ)| ≤ Cr, (5.32)

on the ray arg z = θ ∈ Ω \ {θ0}. However, since f0 is transcendental and {zn =
rne

iθn} satisfies |f0(zn)| = M(rn, f0), we see that for any large N(> 2), as n is
sufficiently large,

|f0(zn)| = |f0(rneiθn)| ≥ rNn . (5.33)
Since zn ∈ Ω, by (5.32), (5.33), we see that for sufficiently,large n,

θn = θ0.

Thus for sufficiently large n, δ(αzn, θn) = 0 and

|P1(eαzn) + P2(e−αzn)| ≤ C, |Q1(eβzn) +Q2(e−βzn)| ≤ C. (5.34)

By (1.6), (5.11), we obtain that

−
(υ(rn)
zn

)2(1 + o(1))

=
(
P1(eαzn) + P2(e−αzn)

) (υ(rn)
zn

)
(1 + o(1)) + [Q1(eβzn) +Q2(e−βzn)].

(5.35)

By (5.34), (5.35) and (5.14) we obtain that

υ(rn) ≤ 2Crn, (5.36)

by (5.12) (or (5.13)), we see that (5.36) is a contradiction. Hence (1.6) has no
non-trivial subnormal solution.

Third step. We prove that all solutions of (1.6) satisfies σ2(f) = 1. If there is a
solution f1 satisfying σ2(f1) < 1, then σe(f1) = 0, that is to say f1 is subnormal,
but this contradicts the conclusion in step 2. Hence σ2(f) = 1. This completes the
proof of Theorem 1.5.

Acknowledgements. The authors would like to thank the editor and the referee
for their valuable suggestions. This work was supported by the NNSF of China
(No. 11171013 and No. 11371225).

References

[1] Z. X. Chen; The growth of solutions of f ′′ + e−zf ′ + Q(z)f = 0 where the order σ(Q) = 1,

Sci. China Ser. A 45 (3) (2002) 290-300.

[2] Z. X. Chen; On the growth of solutions of a class of higher order differtial equations, Chin
Ann of Math., 24B(4) (2003), 501–508.

[3] Z. X. Chen, K. H. Shon; On subnormal solutions of second order linear periodic differential
equations, Sci. China Ser. A., 50 (2007), no. 6,786–800

[4] Z. X. Chen, K. H. Shon; The hyper order of solutions of second order differential equations

and subnormal solutions of periodic equations, Taiwanese J. Math. 14 (2)(2010), 611–628.
[5] G. Gundersen; Estimates for the logarithmic derivative of a meromorphic function, plus

similar estimates, J. London Math. Soc, 37 (1988), 88–104.



12 N. LI, L. YANG EJDE-2014/51

[6] G. Gundersen; Finite order solutions of second order linear differential equations, Trans.

Amer. Math. Soc., 305 (1988), 415–429.

[7] G. Gundersen, M. Steinbart; Subnormal solutions of second order linear differential equation
with periodic coefficients, Results in Math., 25 (1994), 270–289.

[8] I. Laine; Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin,

(1993)
[9] I. Laine, R. Yang; Finite order solutions of complex linear differential equations, Electron.

J. Differential Equations., 65 (2004), 8 pp.
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