Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 47, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

FUZZY DIFFERENTIAL EQUATIONS UNDER DISSIPATIVE AND COMPACTNESS TYPE CONDITIONS

TZANKO DONCHEV, AMMARA NOSHEEN

ABSTRACT. Fuzzy differential equation with right-hand side defined as a sum of two almost continuous functions is studied. The first function satisfies dissipative-type condition with respect to Lyapunov-like function. The second maps bounded sets into relatively compact sets. The existence of solution is proved with aid of Schauder's fixed point theorem.

1. Introduction

Starting from [6], the theory of fuzzy differential equations is rapidly developed due to many applications in the real world problems. Notice only the basic work in this direction [5, 8, 11, 12]. As it is shown in [5], the set of fuzzy numbers is not locally compact. It means that the classical Peano theorem is (probably) no longer valid and some extra conditions along with continuity of right-hand side are needed.

In [14] the existence of solutions of fuzzy differential equation with uniformly continuous right-hand side is proved under compactness-type condition. The existence and uniqueness of solution under dissipative-type conditions when the right-hand side is continuous is studied in [4, 10, 13]. In this paper we study fuzzy differential equation whose right-hand side is a sum of two almost continuous functions, one satisfies dissipative-type condition, and another maps bounded sets into relatively compact sets. To the authors knowledge there are not related results in the literature.

We study the fuzzy differential equation

$$\dot{x}(t) = f(t, x) + g(t, x); \ x(0) = x_0, \ t \in I, \tag{1.1}$$

where $f: I \times \mathbb{E} \to \mathbb{E}$ satisfies dissipative-type condition and $g: I \times \mathbb{E} \to \mathbb{E}$ satisfies compactness-type assumption. Here and further in the paper I = [0, 1]. $\mathbb{E} = \{x : \mathbb{R}^n \to [0, 1]; x \text{ satisfies } (1) - (4)\}$ is the space of fuzzy numbers:

- (1) x is normal i.e. there exists $y_0 \in \mathbb{R}^n$ such that $x(y_0) = 1$,
- (2) x is fuzzy convex i.e. $x(\lambda y + (1-\lambda)z) \ge \min\{x(y), x(z)\}$ whenever $y, z \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,
- (3) x is upper semicontinuous i.e. for any $y_0 \in \mathbb{R}^n$ and $\varepsilon > 0$ there exists $\delta(y_0, \varepsilon) > 0$ such that $x(y) < x(y_0) + \varepsilon$ whenever $|y y_0| < \delta$, $y \in \mathbb{R}^n$,

²⁰⁰⁰ Mathematics Subject Classification. 34A07, 34G20.

 $[\]it Key\ words\ and\ phrases.$ Lyapunov-like function; compact perturbations; fuzzy sets.

^{©2014} Texas State University - San Marcos.

Submitted July 27, 2012. Published February 19, 2014.

(4) The closure of the set $\{y \in \mathbb{R}^n; \ x(y) > 0\}$ is compact.

The set $[x]^{\alpha} = \{y \in \mathbb{R}^n; \ x(y) \ge \alpha\}$ is called α -level set of x.

It follows from (1)–(4) that the α -level sets $[x]^{\alpha}$ are convex compact subsets of \mathbb{R}^n for all $\alpha \in (0,1]$. The fuzzy zero is defined by

$$\hat{0}(y) = \begin{cases} 0 & \text{if } y \neq 0, \\ 1 & \text{if } y = 0. \end{cases}$$

The metric in \mathbb{E} is defined by $D(x,y) = \sup_{\alpha \in (0,1]} D_H([x]^{\alpha}, [y]^{\alpha})$, where

$$D_H(A, B) = \max\{\max_{a \in A} \min_{b \in B} |a - b|, \max_{b \in B} \min_{a \in A} |a - b|\}$$

is the Hausdorff distance between the convex compact subsets of \mathbb{R}^n .

The map $F: I \times \mathbb{E} \to \mathbb{E}$ is said to be continuous at (s, y) when for every $\varepsilon > 0$ there exists $\delta > 0$ such that $D(F(s, y), F(t, x)) < \varepsilon$ for every $t \in I$ and $x \in \mathbb{E}$ with $|t - s| + D(x, y) < \delta$. The map $F: I \times \mathbb{E} \to \mathbb{E}$ is said to be almost continuous if there exists a sequence $\{I_k\}_{k=1}^{\infty}$ of pairwise disjoint compact sets with meas $(I_k) > 0$ and meas $(\bigcup_{k=1}^{\infty} I_k) = \max(I)$ such that $F: I_k \times \mathbb{E} \to \mathbb{E}$ is continuous for every k.

Since I_k is compact for every k, one has that $\bigcup_{k=1}^n I_k$ is also compact and hence $(0,1)\setminus\bigcup_{k=1}^n I_k=\bigcup_{i=1}^\infty (a_i,b_i)$ is open, because every open set in $\mathbb R$ is a union of countable sets of pairwise disjoint open intervals.

Throughout this paper both $f: I \times \mathbb{E} \to \mathbb{E}$ and $g: I \times \mathbb{E} \to \mathbb{E}$ are assumed to be almost continuous.

Remark 1.1. Due to Lusin's theorem (see e.g. [9] for short proof) $\Lambda: I \to \mathbb{E}$ is strongly measurable if and only if it satisfies Lusin property, i.e. for all $\varepsilon > 0$ there exists $I_{\varepsilon} \subset I$ with meas $(I \setminus I_{\varepsilon}) \leq \varepsilon$ such that $\Lambda: I_{\varepsilon} \to \mathbb{E}$ is continuous.

A mapping $\Upsilon: I \to \mathbb{E}$ is said to be differentiable at $t \in I$ if for sufficiently small h > 0 the differences $\Upsilon(t+h) - \Upsilon(t)$, $\Upsilon(t) - \Upsilon(t-h)$ (in sense of Hukuhara) exist and there exists $\dot{\Upsilon}(t) \in \mathbb{E}$ such that the limits $\lim_{h \to 0^+} \frac{\Upsilon(t+h) - \Upsilon(t)}{h}$ and $\lim_{h \to 0^+} \frac{\Upsilon(t) - \Upsilon(t-h)}{h}$ exist, and are equal to $\dot{\Upsilon}(t)$. At the end points of I we consider only the one sided derivative.

The integral of fuzzy function $\Upsilon: I \to \mathbb{E}$ is defined levelwise, i.e. there exists $\Lambda: I \to \mathbb{E}$ such that $[\Lambda(t)]^{\alpha} = \int_0^t [\Upsilon(s)]^{\alpha} ds$, where the integral is in Auman sense. Every such function $\Lambda(\cdot)$ is absolutely continuous (AC).

The sequence of strongly measurable functions $\{y_n(\cdot)\}_{n=1}^{\infty}$ is said to be integrally bounded if there exists $\lambda(t) \in L_1(I, \mathbb{R}^+)$ (non negative valued integrable function) such that $D(y_n(t), \hat{0}) \leq \lambda(t)$ for every n and a.a. $t \in I$.

The Caratheodory function $v: I \times \mathbb{R}^+ \to \mathbb{R}^+$ is said to be Kamke function if it is integrally bounded on the bounded sets, v(t,0) = 0 and the unique solution of $\dot{r}(t) = v(t,r(t))$ with r(0) = 0 is $r(t) \equiv 0$.

2. Fuzzy differential equation under dissipative-type condition

In this section we consider the fuzzy differential equation

$$\dot{x}(t) = f(t, x), \quad x(0) = x_0,$$
 (2.1)

where $f: I \times \mathbb{E} \to \mathbb{E}$ satisfies dissipative-type condition. We extend the results of [12] to the case of fuzzy differential equations with almost continuous right-hand side. We need the following hypothesis:

- (F1) $D(f(t,x), \hat{0}) \leq \lambda(t)(1 + D(x, \hat{0}))$ for some $\lambda(t) \in L_1(I, \mathbb{R}^+)$.
- (F2) There exists a Lyapunov-like function $W: \mathbb{E} \times \mathbb{E} \to \mathbb{R}^+$ for (2.1).

A continuous map $W : \mathbb{E} \times \mathbb{E} \to \mathbb{R}^+$ is said to be Lyapunov-like function for (2.1) if the following conditions hold (cf. [7]):

- (1) W(x,x) = 0, W(x,y) > 0 for $x \neq y$ and $\lim_{m\to\infty} W(x_m,y_m) = 0$ implies $\lim_{m\to\infty} D(x_m,y_m) = 0$,
- (2) There exists a constant L > 0 such that

$$|W(x_1, y_1) - W(x_2, y_2)| \le L(D(x_1, x_2) + D(y_1, y_2)),$$

(3) There exists a Kamke function $v: I \times \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\lim_{h \to 0^+} h^{-1} \left[W \left(x + h f(t, x), y + h f(t, y) \right) - W(x, y) \right] \le v(t, W(x, y))$$

for any $x, y \in \mathbb{E}$.

Lemma 2.1. Let (F1) holds, then for $\varepsilon > 0$ and $\delta > 0$ there exists an AC function $x_{\varepsilon}(t)$ such that $D(\dot{x}_{\varepsilon}(t), f(t, x_{\varepsilon}(t))) \leq \varepsilon$ for all $t \in I_{\varepsilon} \subset I$, where I_{ε} is a compact set with measure greater than $1 - \delta$.

Proof. Since $f: I \times \mathbb{E} \to \mathbb{E}$ is almost continuous there exists a sequence $\{I_k\}_{k=1}^{\infty}$ of pairwise disjoint compact sets such that meas $(\bigcup_{k=1}^{\infty} I_k) = \max(I)$ and $f: I_k \times \mathbb{E} \to \mathbb{E}$ is continuous for every k. For large n we have $\max(I_{\delta}) > 1 - \delta$, where $I_{\delta} = (\bigcup_{k=1}^{n} I_k)$. Let the needed solution $x_{\varepsilon}(\cdot)$ be defined on $[0, \tau]$ where $\tau \leq 1$ ($\tau = 0$ is possible). If $\tau = 1$ then we have done, otherwise two cases would be possible:

- (i) $\tau \in (a_l, b_l)$ where $(0, 1) \setminus I_{\delta} = \bigcup_{l=1}^{\infty} (a_l, b_l)$. In this case we extend $x_{\varepsilon}(\cdot)$ on $[\tau, b_l)$ by $x_{\varepsilon}(t) = x_{\varepsilon}(\tau)$ and denote $\tau_1 = b_l > \tau$,
 - (ii) $\tau \notin \bigcup_{i=1}^{\infty} [a_i, b_i]$ then we define

$$x_{\varepsilon}(t) = x_{\varepsilon}(\tau) + (t - \tau)f(\tau, x_{\varepsilon}(\tau)), \quad t \in [\tau, \tau_1] \cap I_{\delta}.$$

Since $f(\cdot, x_{\varepsilon}(\cdot))$ is continuous on I_{δ} , then $D(\dot{x}_{\varepsilon}(t) = f(t, x_{\varepsilon}(t)), f(\tau, x_{\varepsilon}(\tau))) \leq \varepsilon$, $\forall t \in [\tau, \tau_1] \cap I_{\delta}$.

One can continue by induction. Suppose the largest interval on which $x_{\varepsilon}(\cdot)$ satisfies lemma conditions is $[0, \bar{\tau})$. Since $D(f(t, x_{\varepsilon}), \hat{0}) \leq \lambda(t)(1 + D(x_{\varepsilon}(t), \hat{0}))$, one has that

$$D(\dot{x}_{\varepsilon}(t), \hat{0}) \leq \lambda(t)(1 + D(x_{\varepsilon}(t), \hat{0})) + \varepsilon \quad \text{for } t \in [0, \bar{\tau}).$$

Consequently,

$$D(x_{\varepsilon}(t), \hat{0}) \leq e^{\int_{0}^{\bar{\tau}} \lambda(s)ds} D(x_{0}, \hat{0}) + \varepsilon,$$

$$D(\dot{x}_{\varepsilon}(t), \hat{0}) \leq \lambda(t)(1 + N_{\varepsilon}) + \varepsilon,$$

where

$$N_{\varepsilon} = e^{\int_0^{\bar{\tau}} \lambda(s)ds} (D(x_0, \hat{0}) + 2).$$

Therefore, $D(\dot{x}_{\varepsilon}(t), \hat{0}) \in L_1(I, \mathbb{R}^+)$. Furthermore, since $x_{\varepsilon}(\cdot)$ is AC, then one can conclude that $x_{\varepsilon}(\cdot)$ is uniformly continuous on $[0, \bar{\tau})$. Thus $\lim_{t \uparrow \bar{\tau}} x_{\varepsilon}(t) = x(\bar{\tau})$ exists, which is a contradiction to the fact that $[0, \tau]$ is maximum interval of existence. If $\bar{\tau} = 1$ then the proof is complete.

If $\bar{\tau} < 1$ then we can continue this process by defining

$$x_{\varepsilon}(t) = x_{\varepsilon}(\bar{\tau}) + (t - \bar{\tau})f(\bar{\tau}, x_{\varepsilon}(\bar{\tau})), \ t \in [\bar{\tau}, \tilde{\tau}]$$

for $\bar{\tau} \notin \bigcup_{l=1}^{\infty} [a_l, b_l)$ or $\tilde{\tau} = b_l$ if $\bar{\tau} \in [a_l, b_l)$ for some l, therefore there exists a $\tilde{\tau}_1 > \tilde{\tau}$ such that $x_{\varepsilon}(\cdot)$ satisfies the conclusion of the lemma on $[0, \tilde{\tau}_1]$. Continuing in the same way the so defined $x_{\varepsilon}(\cdot)$ will satisfy the conclusion of the lemma on [0, 1]

Theorem 2.2. Let (F1) and (F2) hold, then (2.1) admits unique solution.

Proof. Denote $\chi_n(t) = \lambda(t)(1+N_{\varepsilon}) + \frac{\varepsilon}{2^n}$, where N_{ε} is from Lemma 2.1. Let $I_{\delta_n} = \bigcup_{n=1}^{k_{\delta_n}} I_n$ be such that $\max(I_{\delta_n}) > 1 - \frac{\delta}{2^n}$ and $f: I_n \times \mathbb{E} \to \mathbb{E}$ is continuous. Consider the sequence of approximate solutions $\{x_n(\cdot)\}_{n=0}^{\infty}$ where $x_n(\cdot)$ is the AC function defined in Lemma 2.1 when ε is replaced by $\frac{\varepsilon}{2^n}$. Therefore $D(\dot{x}_n(t), f(t, x_n(t))) \leq \eta_n(t)$, where

$$\eta_n(t) = \begin{cases} \varepsilon/2^n & \text{if } t \in I_{\delta_n}, \\ \chi_n(t) & \text{if } t \notin I_{\delta_n}. \end{cases}$$

We have to prove that $\{x_n(\cdot)\}_{n=0}^{\infty}$ is a Cauchy sequence. To this end we take $\{x_n(\cdot)\}$, $\{x_m(\cdot)\}$, where n < m. Without loss of generality we can assume that $\dot{x}_n(\cdot)$, $\dot{x}_m(\cdot)$ and $f(\cdot, x(\cdot))$ are continuous on J_n , where $J_n \subset I_{\delta_n}$ with $\text{meas}(J_n) > 1 - \frac{\delta}{2^n}$. If $t \in J_n$, then

$$\begin{split} &D^{+}W(x_{n}(t),x_{m}(t))\\ &=\lim_{h\to 0^{+}}\frac{W(x_{n}(t+h),x_{m}(t+h))-W(x_{n}(t),x_{m}(t))}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+h\dot{x}_{n}(t),x_{m}(t)+h\dot{x}_{m}(t))-W(x_{n}(t),x_{m}(t))+o(h)}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+h\dot{x}_{n}(t),x_{m}(t)+h\dot{x}_{m}(t))-W(x_{n}(t),x_{m}(t))}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+hf(t,x_{n}(t)),x_{m}(t)+hf(t,x_{m}(t)))-W(x_{n}(t),x_{m}(t))}{h}\\ &+\lim_{h\to 0^{+}}\frac{Lh\left[D(\dot{x}_{n}(t),f(t,x_{n}(t)))+D(\dot{x}_{m}(t),f(t,x_{m}(t)))\right]}{h}\\ &\leq v(t,D(x_{n}(t),x_{m}(t)))+\frac{2L\varepsilon}{2^{n}}. \end{split}$$

For almost all $t \notin J_n$, we have

$$\begin{split} &D^{+}W(x_{n}(t),x_{m}(t))\\ &=\lim_{h\to 0^{+}}\frac{W(x_{n}(t+h),x_{m}(t+h))-W(x_{n}(t),x_{m}(t))}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+h\dot{x}_{n}(t),x_{m}(t)+h\dot{x}_{m}(t))-W(x_{n}(t),x_{m}(t))+o(h)}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+h\dot{x}_{n}(t),x_{m}(t)+h\dot{x}_{m}(t))-W(x_{n}(t),x_{m}(t))}{h}\\ &\leq\lim_{h\to 0^{+}}\frac{W(x_{n}(t)+hf(t,x_{n}(t)),x_{m}(t)+hf(t,x_{m}(t)))-W(x_{n}(t),x_{m}(t))}{h}\\ &+\lim_{h\to 0^{+}}\frac{Lh\left[D(\dot{x}_{n}(t),f(t,x_{n}(t)))+D(\dot{x}_{m}(t),f(t,x_{m}(t)))\right]}{h}\\ &\leq v(t,D(x_{n}(t),x_{m}(t)))+2L\chi_{n}(t). \end{split}$$

Consequently, $D^+W(x_n(t), x_m(t)) \leq v(t, D(x_n(t), x_m(t))) + 2L\eta_n(t)$, because n < m.

Thus $W(x_n(t), x_m(t)) \leq r_n(t)$, where $r_n(t)$ is the maximal solution of $\dot{r}(t) = v(t, r(t)) + 2L\eta_n(t)$.

Clearly $\eta_n(\cdot)$ is integrally bounded (as a sequence of real valued functions), and $\lim_{n\to\infty}\eta_n(t)=0$ for almost all $t\in I$. Since $v(\cdot,\cdot)$ is Kamke function, then $\lim_{n\to\infty}r_n(t)=0$ uniformly on I. Therefore there exists a sequence of continuous real valued functions $S_n(t)$ with $\lim_{n\to\infty}D(x_n(t),x_m(t))\leq S_n(t)$ for all $m\geq n$ and $\lim_{n\to\infty}S_n(t)=0$ uniformly on I. Thus the sequence $\{x_n(\cdot)\}_{n=1}^\infty$ is a Cauchy sequence and hence $\lim_{n\to\infty}x_n(t)=x(t)$ uniformly on I. Consequently $f(t,x_n(t))\to f(t,x(t))$ for a.a. $t\in I$. Furthermore, $D(f(t,x_n(t)),\hat{0})\leq \chi_n(t)\leq \chi_1(t)$. Due to dominated convergence theorem we get

$$x(t) = x_0 + \int_0^t f(s, x(s))ds.$$
 (2.2)

The proof is complete thanks to Lemma 2.3 given below.

Lemma 2.3. If $f: I \times \mathbb{E} \to \mathbb{E}$ is almost continuous and integrally bounded then every solution of (2.1) is a solution of (2.2) and vice versa.

Proof. The space \mathbb{E} can be embedded as a closed convex cone in a Banach space \mathbb{X} . The embedding map $j: \mathbb{E} \to \mathbb{X}$ is an isometry and isomorphism. From (cf[3]) we know that $j(\dot{x}(t)) = \frac{d}{dt}j(x(t))$. The fact that every solution of (2.2) is at the same time a solution of (2.1) is tautology because $\int_0^t \dot{x}(s)ds = \int_0^t f(s,x(s))ds$. Let $x: I \to \mathbb{E}$ be a solution of (2.2). Since $x: I \to \mathbb{E}$ is continuous, therefore $f: I \times \mathbb{E} \to \mathbb{E}$ satisfies Lusin property and hence

$$g(t) = \frac{d}{dt} \left(\int_0^t g(s) ds \right)$$

for a.a. $t \in I$. i.e. $\dot{x}(t) = g(t) = f(t, x(t))$. Evidently, $x: I \to \mathbb{E}$ is AC, i.e. $x(\cdot)$ is a solution of (2.1).

Remark 2.4. Let us consider the equation

$$\dot{x}_n = f(t, x_n(t)) + \varphi_n(t), \ x_n(0) = x_0. \tag{2.3}$$

If $\{\varphi_n(\cdot)\}_{n=1}^{\infty}$ is integrally bounded and $\lim_{n\to\infty} \varphi_n(t) = 0$, then $\lim_{n\to\infty} x_n(t) = x(t)$, where $\dot{x}(t) = f(t,x(t))$, $x(0) = x_0$. Therefore the solution of (2.3) depends continuously on the right-hand side.

3. Compact perturbations of dissipative fuzzy system

In this section we prove the existence of solution of the differential equation (1.1). We will use the additional hypotheses:

- (F3) W(x+z,y+z) = W(x,y) for any fuzzy number z.
- (G1) $g(t,\cdot)$ maps the bounded subsets of \mathbb{E} into relatively compact subsets of \mathbb{E} for a.a. $t \in I$.
- (G2) $D(g(t,x), \hat{0}) \le \nu(t)(1 + D(x, \hat{0}))$, where $\nu(\cdot) \in L_1(I, \mathbb{R}^+)$.

Condition (F3) is essential here. Notice that it holds automatically if $W(x,y) = \zeta(D(x,y))$, where ζ is some continuous function such that W(x,y) is Lyapunov-like function for (2.1).

If $x(\cdot)$ is a solution of (1.1) then $D(\dot{x}(t), \hat{0}) \leq (\lambda(t) + \nu(t))(1 + D(x(t), \hat{0}))$. Therefore,

$$D(x(t), \hat{0}) \le D(x_0, \hat{0}) + e^{\int_0^t (\lambda(s) + \nu(s)) ds} \Big(D(x_0, \hat{0}) + \int_0^t [\lambda(s) + \nu(s)] ds \Big).$$

We can assume without loss of generality that $D(x(t), \hat{0}) \leq N$ and $D(\dot{x}(t), \hat{0}) \leq \gamma(t)$, where $\gamma(t) = (\lambda(t) + \nu(t))(1 + N)$ is Lebesgue integrable. Let $A = \{y \in \mathbb{E} : D(y, x_0) \leq N\}$. It follows from (G1) that $g(t, A) \subset K(t)$, where $K(t) \subset \mathbb{E}$ is a convex compact set for a.a. $t \in I$.

Theorem 3.1. Let (F1), (F2), (F3), (G1), (G2) hold, then the differential equation (1.1) admits a solution.

We need the following lemma for proving Theorem 3.1.

Lemma 3.2. Let $\{\varphi_n(\cdot)\}_{n=1}^{\infty}$ be an integrally bounded (by an integrable function $c(\cdot)$) sequence of strongly measurable functions from I to \mathbb{E} such that

$$\overline{\operatorname{co}}\big\{\cup_{i=1}^{\infty}\big\{\varphi_i(t)\big\}\big\} = K(t)$$

is compact for a.a. $t \in I$ and

$$\dot{x}_n(t) = f(t, x_n(t)) + \varphi_n(t), \ x_n(0) = x_0.$$
(3.1)

Passing to subsequence, if necessarily, $x_n(\cdot)$ converges uniformly to $x(\cdot)$, such that

$$\dot{x}(t) \in f(t, x(t)) + K(t).$$

Proof. Clearly $D(\varphi_n(t), \hat{0}) \leq c(t)$ implies that $z_n(t) = \int_0^t \varphi_n(s) ds$ is equicontinuous sequence. Furthermore,

$$\int_0^t \left[\cup_{n=1}^\infty \varphi_n(s) \right] ds \subset \int_0^t K(s) ds = R(t),$$

where $\overline{\bigcup_{t\in[0,1]}\{R(t)\}}$ is a compact subset of \mathbb{E} . Then the sequence $z_n(t)=\int_0^t \varphi_n(s)ds$ is $C(I,\mathbb{E})$ precompact. By Arzela Ascoli theorem, passing to subsequence we have $z_n(t)\to z(t)$ uniformly on I.

As we pointed out, \mathbb{E} can be embedded as a closed convex cone in a Banach space \mathbb{X} with a continuous embedding map $j: \mathbb{E} \to \mathbb{X}$. Thus $j(K) \subset \mathbb{X}$ is compact. Then due to Diestel criterion (see proposition 9.4 of [2]) the set $\{j(\varphi_n(\cdot))\}_{n=1}^{\infty}$ is weakly precompact in $L_1(I,\mathbb{X})$. Thus passing to subsequence in $L_1(I,\mathbb{X})$ we have $j(\varphi_n(t)) \to s(t)$. Since $s(t) \in j(K)$, then there exists $\varphi(t)$ such that $j(\varphi(t)) = s(t)$ and $z(t) = \int_0^t \varphi(s) ds$.

We denote for convenience y(t) = j(x(t)), $y_n(t) = j(x_n(t))$, p(t) = j(z(t)), $\psi(t) = j(\varphi(t))$, y(t) - p(t) = u(t), $y_n(t) - p_n(t) = u_n(t)$ and q(t, y) = j(f(t, x)). Consider the functions $y_n(t) - p_n(t) = u_n(t)$. We have

$$\begin{split} &W(u(t)+h\dot{u}(t),u_n(t)+h\dot{u}_n(t))\\ &=W(u(t)+hq(t,y(t)),u_n(t)+hq(t,y_n(t)))+o(h)\\ &=W(u(t)+p_n(t)+hq(t,y(t)),y_n(t)+hq(t,y_n(t)))+o(h)\\ &=W(u(t)+p_n(t)+hq(t,y(t)-p(t)+p_n(t)),y_n(t)+hq(t,y_n(t)))\\ &+h|q(t,y(t))-q(t,y(t)-p(t)+p_n(t))|+o(h). \end{split}$$

Consequently,

$$\begin{split} &\lim_{h \to 0^+} \frac{W(u(t) + h(\dot{u}(t), u_n(t) + h\dot{u}_n(t)) - W(u(t), u_n(t))}{h} \\ &= \lim_{h \to 0^+} \frac{W(u(t+h), u_n(t+h)) - W(u(t), u_n(t))}{h} \\ &= \lim_{h \to 0^+} \frac{W(u(t) + h\dot{u}(t), u_n(t) + h\dot{u}_n(t)) - W(u(t), u_n(t))}{h} \\ &\leq v(t, |u(t) - u_n(t)|) + |q(t, y(t) - p(t) + p_n(t)) - q(t, y(t))|. \end{split}$$

Thus

$$D^{+}W(y(t) - p(t), y_n(t) - p_n(t)) \le v(t, |y(t) - p(t) - (y_n(t) - p_n(t))|) + |q(t, y(t)) - q(t, y(t) - p(t) + p_n(t))|.$$

The latter implies that

$$W(y(t) - p(t), y_n(t) - p_n(t)) \le r_n(t),$$

where

$$\dot{r}_n(t) = v(t, r_n(t)) + |q(t, y(t) - p(t) + p_n(t)) - q(t, y(t))|, \ r_n(0) = 0.$$

Since $v(\cdot, \cdot)$ is Kamke function and since

$$\lim_{n \to \infty} |q(t, y(t) - p(t) + p_n(t)) - q(t, y(t))| = 0 \text{ for a.a } t \in I,$$

one has that $\lim_{n\to\infty} r_n(t) = 0$, which implies that $\lim_{n\to\infty} W(y(t) - p(t), y_n(t) - p_n(t)) = 0$. Thus $y_n(t) \to y(t)$ uniformly on I, where $\dot{y}(t) = q(t, y(t)) + \psi(t)$, i.e $\dot{x}(t) = f(t, x(t)) + \varphi(t)$.

Proof of Theorem 3.1. Consider the set

$$Q = \{ z(\cdot) \in C(I, K) : D(\dot{z}(t), \hat{0}) \le \gamma(t), \ z(0) = x_0 \}.$$

It is easy to see that $Q \subset C(I, \mathbb{E})$ is closed, bounded and convex. Consider the map $\xi: z(\cdot) \to x_z(\cdot)$, where $x_z(\cdot)$ is the unique solution of

$$\dot{x}_z(t) = f(t, x_z(t)) + g(t, z(t)); \ x_z(0) = x_0, \ t \in I.$$

Due to Remark 2.4 the map $\xi: Q \to Q$ is continuous. Furthermore, $\overline{\xi(Q)} \subset Q$ is compact by Lemma 3.2. It follows from Schauder's theorem that there exist a fixed point $z(\cdot) \in Q$ such that $\xi(z) = z$. This function $z(\cdot)$ is a solution of (1.1).

Notice that the linear growth conditions (F1), (G2) can be relaxed in order to prove only local existence, i.e. we can assume that $f: I \times \mathbb{E} \to \mathbb{E}$ is integrally bounded on the bounded sets. In that case, Theorem 2.2 is formulated as follows.

Theorem 3.3. Let $f: I \times \mathbb{E} \to \mathbb{E}$ be integrally bounded on the bounded sets. Then under (F2) there exists a > 0 such that the system (2.1) admits unique solution on [0, a].

Proof. Let M > 0. There exists an integrable function $\zeta: I \to \mathbb{R}^+$ with

$$\sup_{|x-x_0| \le M} |f(t,x)| \le \zeta(t).$$

Let a > 0 be such that $\int_0^a (\zeta(t) + \varepsilon) dt \le M$. On the interval [0, a] every δ solution $x_{\delta}(t)$ satisfies $|x_{\delta}(t)| \le M$ and $|\dot{x}_{\delta}(t)| \le \zeta(t) + \varepsilon$. Therefore, one can continue as in the proof of Theorem 2.2.

Theorem 3.1 can be obviously formulated as:

Theorem 3.4. Let $f: I \times \mathbb{E} \to \mathbb{E}$ and $g: I \times \mathbb{E} \to \mathbb{E}$ be integrally bounded on the bounded set. Then under (F2), (F3), (G1) there exists a > 0 such that the system (1.1) admits a solution on [0, a].

Proof. As in the proof of Theorem 3.3 we can see that there exists a>0 and $\varepsilon>0$ such that every ε -solution of (1.1) is extendable on [0,a] and $|x_{\varepsilon}(t)-x_{0}|\leq M$. Let $g(t,x_{0}+M\mathbb{B})\subset A(t)$, where $A(t)\subset\mathbb{E}$ is a convex compact set. It follows from Theorem 3.3 that for every strongly measurable $\varphi(t)\in A(t)$, the fuzzy differential equation

$$\dot{x}(t) = f(t, x(t)) + \varphi(t), \quad x(0) = x_0$$

admits unique solution on [0, a]. One can then continue as in the proof of Theorem 3.1, proving of course the corresponding variant of Lemma 2.1.

4. Conclusion

As it is pointed out in the introduction the space \mathbb{E} is not locally compact. This implies that it would be very difficult (if it is possible at all) to prove analogue of the classical Peano theorem, when the right-hand side of (2.1) is only jointly continuous. On the other hand up to author's knowledge there is no example of such a system without solutions.

In authors opinion it is very interesting open question to give an example of fuzzy differential equation without local solution, when the right-hand side is jointly continuous.

In optimal control problems the controls are measurable functions and it is one of the main motivation to study differential equations with almost continuous right-hand sides.

In this paper we proved existence (and uniqueness) of the solution of (2.1) under as weak as it is possible dissipative-type condition w.r.t. Lyapunov-like function. We also show the existence of solution when the right-hand side is the sum of a function satisfying such condition along with almost continuous function mapping bounded sets into relatively compact ones. For example such function is $g(t,\cdot)$ which takes values in a locally compact set $\mathbb{E}_K \subset \mathbb{E}$. It seems that it is impossible to relax compactness-type assumptions on g without using stronger dissipative-type conditions on f. We refer the reader to the paper [1], where it is shown by example that if $v(\cdot,\cdot)$ is a Kamke function, then it is possible that the function w(t,r) = v(t,r) + L(t)r is not a Kamke function.

Of course in our proof we essentially used (F3), which is in general not valid for arbitrary Lyapunov-like function. It is an open question does the solution exists, when the last condition is dispensed with?

Now we give a simple example of fuzzy system which satisfies our conditions.

Example 4.1. Consider the system of crisp first equation and fuzzy second:

$$\dot{x} = -\sqrt[3]{x} + f(t, x, y), \quad x(0) = 0$$
$$\dot{y}(t) = g(t, x, y), \quad y(0) = y_0.$$

Here x is crisp variable, $f: I \times \mathbb{R} \times \mathbb{E} \to \mathbb{R}$ is continuous and Lipschitzian on x and on y. Furthermore $g: I \times \mathbb{R} \times \mathbb{E} \to \mathbb{E}$ is continuous, Lipschitzian on x and takes values in a locally compact subset of \mathbb{E} . If some growth condition holds, than the system satisfies all the conditions of Theorem 3.1.

Acknowledgments. The first author is supported by a grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0154. The second author is partially supported by Higher Education Commission, Pakistan.

References

- [1] Augustinowicz, A.; Some remarks on comparison functions, Ann. Polon. Marg. 96 (2009) 97–106.
- [2] Deimling, K.; Multivalued Differential Equations, De Gruyter, Berlin, (1992).
- [3] Diamond, P.; Kloeden, P.; Characterization of compact subsets of fuzzy sets, Fuzzy Sets and Systems 29 (1989) 341–348.
- [4] Gong, Z.; Shao, Y.; Global existence and uniqueness of solutions for fuzzy differential equations under dissipative-type conditions, *Comput. Math. Appl.* **56** (2008), 2716–2723.
- [5] Kaleva, O.; Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301-317.
- [6] Kandel, A.; Byatt, W.; Fuzzy differential equations, Proc. Int. Conf. Cybern. and Society, Tokyo, Nov. (1978), 1213–1216.
- [7] Lakshmikantham, V.; Leela, S.; Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York, (1981).
- [8] Lakshmikantham, V.; Mohapatra, R; Theory of Fuzzy Differential Equations and Inclusions, Taylor - Francis, London, (2003).
- [9] Loeb, P.; Talnila, E.; Lusin's theorem and Bochner integration, *Scientiae Mathematicae Japonicae Online* **10** (2004), 55-62.
- [10] Lupulescu, V.; Initial value problem for fuzzy differential equations under dissipative conditions, Information Sciences 178 (2008), 4523–4533.
- [11] Park, J.; Han, H.; Existence and uniqueness theorem for a solution of fuzzy differential equation, *Intern. J. Math. Math. Sci.* **22** (1999), 271–279.
- [12] Plotnikov, A.; Skripnik, N.; Differential Equations with Clear and Fuzzy Multivalued Righthand Side, Assymptotical Methods, Astropoint, Odessa, (2009) (in Russian).
- [13] Song, S.; Wu, C.; Xue, X.; Existence and uniqueness of Cauchy problems for fuzzy differential equations under fuzzy dissipative conditions, *Comput. Math. Appl.* **51** (2006), 1483–1492.
- [14] Wu, C.; Song, S.; Existence theorem to Cauchy problem for fuzzy differential equations under compactness-type conditions, *Information Sciences* 108 (1998), 123-134.

Tzanko Donchev

DEPARTMENT OF MATHEMATICS, "AL. I. CUZA" UNIVERSITY, IAȘI 700506, ROMANIA E-mail address: tzankodd@gmail.com

Ammara Nosheen

ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES, 68-B, NEW MUSLIM TOWN, LAHORE, PAKISTAN

E-mail address: hafiza_amara@yahoo.com