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FUZZY DIFFERENTIAL EQUATIONS UNDER DISSIPATIVE
AND COMPACTNESS TYPE CONDITIONS

TZANKO DONCHEV, AMMARA NOSHEEN

ABSTRACT. Fuzzy differential equation with right-hand side defined as a sum
of two almost continuous functions is studied. The first function satisfies
dissipative-type condition with respect to Lyapunov-like function. The sec-
ond maps bounded sets into relatively compact sets. The existence of solution
is proved with aid of Schauder’s fixed point theorem.

1. INTRODUCTION

Starting from [6], the theory of fuzzy differential equations is rapidly developed
due to many applications in the real world problems. Notice only the basic work
in this direction [5], 8 11, 12]. As it is shown in [5], the set of fuzzy numbers is
not locally compact. It means that the classical Peano theorem is (probably) no
longer valid and some extra conditions along with continuity of right-hand side are
needed.

In [14] the existence of solutions of fuzzy differential equation with uniformly con-
tinuous right-hand side is proved under compactness-type condition. The existence
and uniqueness of solution under dissipative-type conditions when the right-hand
side is continuous is studied in [4] [10, [13]. In this paper we study fuzzy differen-
tial equation whose right-hand side is a sum of two almost continuous functions,
one satisfies dissipative-type condition, and another maps bounded sets into rela-
tively compact sets. To the authors knowledge there are not related results in the
literature.

We study the fuzzy differential equation

i(t) = f(t,x) + g(t, 2); ©(0) =z, t €1, (1.1
where f : I x E — E satisfies dissipative-type condition and g : I x E — E
satisfies compactness-type assumption. Here and further in the paper I = [0, 1].

E = {z : R™ — [0, 1]; z satisfies (1)—(4)} is the space of fuzzy numbers:
(1) =z is normal i.e. there exists yo € R™ such that z(yo) =1,
(2) x is fuzzy convex i.e. z(Ay+(1—A)z) > min{z(y), z(z)} whenever y, z € R"
and A € [0, 1],
(3) = is upper semicontinuous i.e. for any yg € R™ and € > 0 there exists
d(yo,€) > 0 such that z(y) < z(yo) + € whenever |y — yo| < J, y € R,
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(4) The closure of the set {y € R"; z(y) > 0} is compact.

The set [z]* = {y € R"; x(y) > a} is called a-level set of .
It follows from (1)—(4) that the a-level sets [z]* are convex compact subsets of
R™ for all a € (0, 1]. The fuzzy zero is defined by

) 0 ify#0,
O(y)={ 7
1 ify=0.

The metric in E is defined by D(x,y) = sup,e(o,1) Du ([2]%, [y]*), where
Dy(A,B) = max{r;leaj( min |a — b, max min |a — b|}

is the Hausdorff distance between the convex compact subsets of R”.

The map F' : I x E — E is said to be continuous at (s,y) when for every € > 0
there exists 6 > 0 such that D(F(s,y), F(t,z)) < € for every t € I and x € E with
|t —s| + D(z,y) < 0. The map F : I x E — E is said to be almost continuous if
there exists a sequence {I} }? ; of pairwise disjoint compact sets with meas(I)) > 0
and meas ( Uz Ik) = meas(]) such that F': I x E — E is continuous for every k.

Since I}, is compact for every k, one has that U}!_, I is also compact and hence
(0,1) \ Up_1Ir = U2, (ai,b;) is open, because every open set in R is a union of
countable sets of pairwise disjoint open intervals.

Throughout this paper both f: I XxE — E and g : I Xx E — E are assumed to be
almost continuous.

Remark 1.1. Due to Lusin’s theorem (see e.g. [9] for short proof) A : I — E is
strongly measurable if and only if it satisfies Lusin property, i.e. for all € > 0 there
exists I. C I with meas(I\I.) < e such that A : I. — E is continuous.

A mapping Y : I — E is said to be differentiable at ¢ € I if for sufficiently small
h > 0 the differences Y(t + h) — Y(¢), T(t) — Y(t — h) (in sense of Hukuhara)

exist and there exists T(t) € E such that the limits limy,_ o+ w and

limy, o+ W exist, and are equal to T(t) At the end points of I we consider
only the one sided derivative.

The integral of fuzzy function Y : I — E is defined levelwise, i.e. there exists
A : T — E such that [A(¥)]* = fg[’r(s)]ads, where the integral is in Auman sense.
Every such function A(-) is absolutely continuous (AC).

The sequence of strongly measurable functions {y,,(-)}>2, is said to be integrally
bounded if there exists A(t) € L1 (I,R™) (non negative valued integrable function)
such that D(y,(t),0) < A(t) for every n and a.a. t € I.

The Caratheodory function v : I x Rt — R7 is said to be Kamke function if it
is integrally bounded on the bounded sets, v(¢,0) = 0 and the unique solution of
7(t) = v(t,r(t)) with (0) = 0 is r(t) = 0.

2. FUZzY DIFFERENTIAL EQUATION UNDER DISSIPATIVE-TYPE CONDITION
In this section we consider the fuzzy differential equation

.’L‘(t) = f(ta l‘)v JJ(O) = Zo, (2.1)

where f : I x E — E satisfies dissipative-type condition. We extend the results of
[12] to the case of fuzzy differential equations with almost continuous right-hand
side. We need the following hypothesis:
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(F1) D(f(t,z),0) < A(t)(1+ D(z,0)) for some A(t) € Li(I,R*).
(F2) There exists a Lyapunov-like function W : E x E — R* for (2.1]).
A continuous map W : E x E — R™ is said to be Lyapunov-like function for (2.1
if the following conditions hold (cf. [7]):
(1) W(z,z) =0, W(z,y) > 0 for z # y and lim,,—.oo W (2, ym) = 0 implies
lim,,— 0o D(Tm, ym) =0,
(2) There exists a constant L > 0 such that

(W(z1,y1) = W(ze,y2)| < L(D(z1,22) + D(y1,92)) ,

(3) There exists a Kamke function v : I x RT — R¥ such that

T WU W (@ + hf(tx),y + hf(ty) — W(z,y)] < olt, W(z,y))
for any z,y € E.

Lemma 2.1. Let (F1) holds, then for e > 0 and 6 > 0 there exists an AC function
xe(t) such that D(i:(t), f(t, (1)) < e for allt € I. C I, where I, is a compact
set with measure greater than 1 — 6.

Proof. Since f : I x E — E is almost continuous there exists a sequence {I}72,
of pairwise disjoint compact sets such that meas (U2, I) = meas(I) and f :
I, x E — E is continuous for every k. For large n we have meas(I5) > 1 — d, where
Is = (Up_; Ir). Let the needed solution z.(-) be defined on [0, 7] where 7 < 1
(t = 0 is possible). If 7 = 1 then we have done, otherwise two cases would be
possible:

(i) 7 € (a,b;) where (0,1) \ Is = U2, (a;,b;). In this case we extend z.(-) on
[1,b1) by z-(t) = z.(7) and denote 71 = b; > T,

(ii) 7 ¢ U2, [as, b;) then we define

2 (t) =z (7)) + (t = 7)f(1,2:(7)), t€[r,m]NI;.
Since f(-,z-(+)) is continuous on Is, then D(&.(t) = f(t,z(1)), f(1,2:(7))) <
g, Vt € [r,m1] N Is.

One can continue by induction. Suppose the largest interval on which x.(-)
satisfies lemma conditions is [0, 7). Since D(f(t,z.),0) < A(t)(1+ D(z.(t),0)), one
has that

D(i(t),0) < Mt)(1 + D(x.(t),0)) +¢ fort € [0,7).
Consequently,
D(a(t),0) < elo X9 D(ag,0) + e,
D(&.(t),0) < A(t)(1 4+ No) +¢,

where .
N, = eJo A& (D, 0) + 2).

Therefore, D(i.(t),0) € Ly(I,Rt). Furthermore, since z.(-) is AC, then one can
conclude that z.(-) is uniformly continuous on [0, 7). Thus limsz z.(t) = 2(T) ex-
ists, which is a contradiction to the fact that [0, 7] is maximum interval of existence.
If 7 =1 then the proof is complete.

If 7 < 1 then we can continue this process by defining

ze(t) = 2e(T) + (t = 7) f(T,2:(7)), t € [T, 7]
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for 7 ¢ U2, [ag, by) or 7 = by if 7 € [ay, b;) for some [, therefore there exists a 7y > 7
such that x.(-) satisfies the conclusion of the lemma on [0,71]. Continuing in the
same way the so defined z.(-) will satisfy the conclusion of the lemma on [0,1] O

Theorem 2.2. Let (F1) and (F2) hold, then (2.1) admits unique solution.

Proof. Denote x,(t) = A(t)(1 + Nc) + 5=, where N is from Lemma Let Is, =

UZ‘;:"l I,, be such that meas(I5,) > 1— 2 and f : I, xE — E is continuous. Consider
the sequence of approximate solutions {z,(-)}52, where z,(-) is the AC function

defined in Lemma when ¢ is replaced by 5. Therefore D(i,(t), f(t,2,(t))) <

1 (t), where

e/2n ifte s,

min=1"2"

Xn(t) if ¢ ¢ I(;n.
We have to prove that {z,(-)}22, is a Cauchy sequence. To this end we take {2, (-)},
{zm(-)}, where n < m. Without loss of generality we can assume that @, (-), <m(-)
and f(-,z(-)) are continuous on J,, where J,, C I5, with meas(J,) > 1 — 2. If
t € J,, then

DYW (2, (1), (1))
W(zn(t+ h),zm(t+ h)) — W(x,(t), zm(t))

= lim

h—0t+ h
~ h—0t h
o iy W@a(t) + hin (1), (1) + bt (1)) = W (@n (1), 2 (1))
S o h
< i W@a(®) + Rt 2a (), 2 (t) + (2 (D) = W(@a(t), 2m(0))
~ h—0t h

i EPIDG (0, f(t@n(0)) + D (). S 20 (1))

h—0+ h

< v(t, D(zn(t), zm (1)) + 227an;

For almost all ¢ ¢ .J,,, we have
DYW (w (t), 2 (t))
W(zn(t +h), 2m(t +h)) = Wlzn(t), zm(t))

=l

< :;I;i W (2, (t) + hin (), x:(t) + h:’c;(t)) — W (2n(t), 2m(t)) + o(h)

< T, W (@ (t) + hin(t), 2 (t) +hh:'cm(t)) — W (@n(t), 2 (t))

< Tim, W (@n(t) + hf(t, 2n(t)), Tm () +hhf(t, T (1)) = W (@ (£), 2 (1))
+ lim. Lh [D(in (), f(t, :vn(t)))h+ D(@p (1), f(t, T (1)))]

< 0(t, D(@a(t), () + 2Lxn (0):

Consequently, DTW (z,,(t), 2 (1)) < v(t, D(xn(t), 2m(t))) + 2Ln,(t), because n <
m.



EJDE-2014/47 FUZZY DIFFERENTIAL EQUATIONS 5

Thus W (z,(t),xm(t)) < r,(t), where r,(t) is the maximal solution of 7(t) =
o(t, 7(1)) + 2L (D).

Clearly n,(-) is integrally bounded (as a sequence of real valued functions), and
limy, 00 7 (¢) = 0 for almost all ¢ € I. Since v(:,-) is Kamke function, then
lim;, 00 75 (t) = 0 uniformly on I. Therefore there exists a sequence of continuous
real valued functions S,,(t) with lim,,_, D(2,(t), z,n(t)) < S, (t) for all m > n and
lim;, o0 Sp(t) = 0 uniformly on I. Thus the sequence {x,(-)}52; is a Cauchy se-
quence and hence lim,,_, oo () = x(¢) uniformly on I. Consequently f(t, z,(t)) —
f(t,z(t)) for a.a. t € I. Furthermore, D(f(t,z,(t)),0) < xn(t) < x1(t). Due to
dominated convergence theorem we get

t
z(t) = xo —|—/ f(s,z(s))ds. (2.2)

0
The proof is complete thanks to Lemma [2.3] given below. (]

Lemma 2.3. If f : I X E — E is almost continuous and integrally bounded then

every solution of (2.1) is a solution of (2.2)) and vice versa.

Proof. The space E can be embedded as a closed convex cone in a Banach space
X. The embedding map j : E — X is an isometry and isomorphism. From (cf[3])
we know that j(i(t)) = 4j(z(t)). The fact that every solution of (22) is at

the same time a solution of (2.1)) is tautology because fot z(s)ds = fot f(s,z(s))ds.
Let z : I — E be a solution of (2.2). Since z : I — E is continuous, therefore
f I xE — E satisfies Lusin property and hence

o0 = ([ a1

for a.a. t € I. i.e. 2(t) = g(t) = f(¢, z(¢)).
Evidently,  : I — E is AC, i.e. z(+) is a solution of (2.1)). O

Remark 2.4. Let us consider the equation

= [(t,2n(t)) + @n(t), 2,(0) = 0. (2.3)

If {on(-)}52, is integrally bounded and lim,, o ¢, (t) = 0, then lim, o z,(t) =
x(t), where @(t) = f(t,z(t)), (0) = xo. Therefore the solution of (2.3)) depends
continuously on the right-hand side.

3. COMPACT PERTURBATIONS OF DISSIPATIVE FUZZY SYSTEM

In this section we prove the existence of solution of the differential equation (|1.1)).
We will use the additional hypotheses:

(F3) W(x+ 2,y + z) = W(x,y) for any fuzzy number z.
(G1) g(t,-) maps the bounded subsets of E into relatively compact subsets of E
for a.a. t e 1.
(G2) D(g(t,z),0) < v(t)(1+ D(,0)), where v(-) € L (I, R*).
Condition (F3) is essential here. Notice that it holds automatically if W (z,y) =
¢(D(x,y)), where  is some continuous function such that Wz, y) is Lyapunov-like

function for (2.1)).
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If z(-) is a solution of then D(i(t),0) < (A(t) + v())(1 + D(z(t),0)).
Therefore,

D(x(t),0) < D(x,0) + efo M) +v()ds (D(xg, 0) + /O t[)\(s) + V(S)]ds).

We can assume without loss of generality that D(z(t),0) < N and D(&(t),0) < (),
where v(t) = (A(t) + v(¢))(1 + N) is Lebesgue integrable. Let A = {y € E :
D(y,z0) < N}. Tt follows from (G1) that g(¢t,A) C K(¢t), where K(t) C E is a

convex compact set for a.a. t € I.

Theorem 3.1. Let (F1), (F2), (F3), (G1), (G2) hold, then the differential equation
(1.1) admits a solution.

We need the following lemma for proving Theorem

Lemma 3.2. Let {¢n(-)}52, be an integrally bounded (by an integrable function
c(+)) sequence of strongly measurable functions from I to E such that

co{ U, {wilt)}} = K (1)

is compact for a.a. t € I and

Tn(t) = f(t, 2, (1) + pn(t), x,(0) = zo. (3.1)

Passing to subsequence, if necessarily, x,(-) converges uniformly to x(-), such that

(t) € f(t,x(t)) + K(1).

Proof. Clearly D(p,(t),0) < c(t) implies that z, () = fot ©n(s)ds is equicontinuous
sequence. Furthermore,

/ (U2, ¢n(s)]ds C / K(s)ds = R(t),
0 0

where Uyeo,1){ R(t)} is a compact subset of E. Then the sequence z, (t fo on(s)ds
is C'(I,E) precompact. By Arzela Ascoli theorem, passing to subsequence we have
zn(t) — z(t) uniformly on I.

As we pointed out, E can be embedded as a closed convex cone in a Banach
space X with a continuous embedding map j : E — X. Thus j(K) C X is compact.
Then due to Diestel criterion (see proposition 9.4 of [2]) the set {j(pn(-))}02, is
weakly precompact in L1 (7, X). Thus passing to subsequence in L;(I,X) we have
j((pn(t)) - s( ). Since s(t) € j(K), then there exists p(t) such that j(p(t)) = s(t)
and z(t fo o(s

We denote for convenience y(t) = j(z(t))

t

yn(t) = jlzn(t)), p(t) = j(2(1)),

B(t) = §((), y(t) — pl) = u(t), () = pult) = un(t) and lt.y) = J(f(t.2)).
Consider the functions y, (t) — pn(t) = u,(t). We have
W (u(t) + ha(t), un(t) + hiin (1))

u(t) n(
u(t) + pn(t) + hq(t,y
u(t) +pn(t) + hq(t,y

(u(t) + hq(t, y(t)),u
(
( ;
+ hlg(t,y(t)) — a(t,y(t) — p(t) + pn

t)+ (J(t yn(t))) + o(R)
hq(t; yn(t))) + o(h)

Pn(t)), yn(t) + ha(t, yn(t)))
t)
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Consequently,
L () + B(E), un (8) + i (1)) — W (2) 4 (1)
h—0t+ h
lim W (u(t 4+ h),un(t + h)) — W (u(t), u,(t))
h—0+ h
lim W (u(t) + hi(t), un (t) + by, (t)) — W(u(t), un(t))
h—0t h

<oty |ut) —un()]) + lg(t, y(t) — p(t) + pn(t) — q(t, y(1))]-
Thus
DTW (y(t) —p(t), yn(t) — pu(t)) < v(t, [y(t) — p(t) = (yn(t) — pa(t))])
+la@t,y(t) — q(t, y(t) — p(t) + pa(t))].
The latter implies that
W (y(t) = p(t), yn(t) — pu(t)) < ra(t),
where
rn(t) = ’U(tvrn(t» + |Q(ta y(t> - p(t) +pn<t)) - Q(ta y(t))|> Tn(O) = 0.
Since v(-, ) is Kamke function and since
tim q(t,y(t) = p(t) +pa(t)) = q(t,y(1))| = 0 for aat eI,
one has that lim,, o 7, (t) = 0, which implies that lim, . W (y(t) — p(t), yn(t) —
pn(t)) = 0. Thus y,(¢t) — y(t) uniformly on I, where y(¢) = q(t,y(t)) + ¥ (¢), i.e
o(t) = f(t,z(t) + o(2). O
Proof of Theorem[3.1. Consider the set
Q={z() € C(I,K) : D(:(1),0) < 7(t), 2(0) = xo}-
It is easy to see that @ C C(I,E) is closed, bounded and convex. Consider the map
€:2(-) — x.(+), where x,(-) is the unique solution of
L2(t) = f(t,22()) + g(t, 2(2)); ©2(0) =20, t € I.

Due to Remark the map & : @ — @ is continuous. Furthermore, £(Q) C @ is
compact by Lemma[3.2] It follows from Schauder’s theorem that there exist a fixed
point z(-) € @ such that £(z) = z. This function z(-) is a solution of (|L.1)). O

Notice that the linear growth conditions (F1), (G2) can be relaxed in order
to prove only local existence, i.e. we can assume that f : [ x E — E is integrally
bounded on the bounded sets. In that case, Theorem is formulated as follows.

Theorem 3.3. Let f: I X E — E be integrally bounded on the bounded sets. Then
under (F2) there exists a > 0 such that the system (2.1) admits unique solution on
[0,al.

Proof. Let M > 0. There exists an integrable function ¢ : I — R™ with
sup | f(t,2)] < C(1).

|z—zo| <M
Let a > 0 be such that [;'(((t) + €)dt < M. On the interval [0,a] every § solution
x5(t) satisfies |x5(t)] < M and |is(t)| < ((t) + . Therefore, one can continue as in
the proof of Theorem O
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Theorem [3.1] can be obviously formulated as:

Theorem 3.4. Let f: I XE —E and g: I Xx E — E be integrally bounded on the
bounded set. Then under (F2), (F3), (G1) there exists a > 0 such that the system
(1.1) admits a solution on [0,a].

Proof. As in the proof of Theorem [3.3] we can see that there exists @ > 0 and € > 0
such that every e-solution of is extendable on [0,a] and |z, (t) — x| < M. Let
g(t,xo + MB) C A(t), where A(t) C E is a convex compact set. It follows from
Theorem that for every strongly measurable ¢(t) € A(t), the fuzzy differential
equation
£(t) = f(t,2(t) + ¢(t),  x(0) = zo

admits unique solution on [0, a]. One can then continue as in the proof of Theorem
proving of course the corresponding variant of Lemma [2.1 O

4. CONCLUSION

As it is pointed out in the introduction the space E is not locally compact. This
implies that it would be very difficult (if it is possible at all) to prove analogue
of the classical Peano theorem, when the right-hand side of is only jointly
continuous. On the other hand up to author’s knowledge there is no example of
such a system without solutions.

In authors opinion it is very interesting open question to give an example of
fuzzy differential equation without local solution, when the right-hand side is jointly
continuous.

In optimal control problems the controls are measurable functions and it is one
of the main motivation to study differential equations with almost continuous right-
hand sides.

In this paper we proved existence (and uniqueness) of the solution of under
as weak as it is possible dissipative-type condition w.r.t. Lyapunov-like function.
We also show the existence of solution when the right-hand side is the sum of a
function satisfying such condition along with almost continuous function mapping
bounded sets into relatively compact ones. For example such function is g(t,-)
which takes values in a locally compact set Ex C E. It seems that it is impossible
to relax compactness-type assumptions on g without using stronger dissipative-
type conditions on f. We refer the reader to the paper [I], where it is shown by
example that if v(-,-) is a Kamke function, then it is possible that the function
w(t,r) = v(t,r) + L(t)r is not a Kamke function.

Of course in our proof we essentially used (F3), which is in general not valid for
arbitrary Lyapunov-like function. It is an open question does the solution exists,
when the last condition is dispensed with?

Now we give a simple example of fuzzy system which satisfies our conditions.

Example 4.1. Consider the system of crisp first equation and fuzzy second:
@=—Vz+f(tzy), z(0)=0
y(t) = g(t,z,y), y(0) = yo.
Here z is crisp variable, f : I x R x E — R is continuous and Lipschitzian on = and
on y. Furthermore g : I x R x E — E is continuous, Lipschitzian on x and takes

values in a locally compact subset of E. If some growth condition holds, than the
system satisfies all the conditions of Theorem 3.1
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