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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
DISCRETE NONLINEAR BOUNDARY VALUE PROBLEM

GHASEM A. AFROUZI, ARMIN HADJIAN

Abstract. In this article, we show the existence and multiplicity of posi-
tive solutions for a discrete nonlinear boundary value problem involving the

p-Laplacian. Our approach is based on critical point theorems in finite dimen-

sional Banach spaces.

1. Introduction

It is well known that in fields of research, such as computer science, mechanical
engineering, control systems, artificial or biological neural networks, economics and
many others, the mathematical modelling of important questions leads naturally to
the consideration of nonlinear difference equations. For this reason, in recent years,
many authors have widely developed various methods and techniques, such as fixed
point theorems, upper and lower solutions, and Brouwer degree, to study discrete
problems (see, e.g., [5, 6, 14, 16, 17, 21, 24] and references therein). Recently, also
the critical point theory has aroused the attention of many authors in the study of
these problems (see, e.g., [2, 3, 7, 9, 13, 18, 19]).

Let N be a positive integer, denote with [1, N ] the discrete interval {1, . . . , N}
and consider the problem

−∆(φp(∆uk−1)) + qkφp(uk) = λf(k, uk), k ∈ [1, N ],
u0 = uN+1 = 0,

(1.1)

where, f : [1, N ] × R → R is a continuous function, ∆uk−1 := uk − uk−1 is the
forward difference operator, qk ≥ 0 for all k ∈ [1, N ], φp(s) := |s|p−2s, 1 < p < +∞
and λ is a positive parameter.

In the present article, first we obtain the existence of at least one solution for
problem (1.1). It is worth noticing that, usually, to obtain the existence of one
solution, asymptotic conditions both at zero and at infinity on the nonlinear term
are requested, while, here, it is assumed only a unique algebraic condition (see (3.5)
in Corollary 3.6). As a consequence, by combining with the classical Ambrosetti-
Rabinowitz condition (see [4]), the existence of two solutions is obtained (see The-
orem 4.1). Subsequently, an existence result of three non-negative solutions is
obtained combining two algebraic conditions which guarantee the existence of two
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local minima for the Euler-Lagrange functional and applying the mountain pass
theorem as given by Pucci and Serrin (see [20]) to ensure the existence of the third
critical point (see Theorem 4.3).

Our approach is variational and the main tool is a local minimum theorem estab-
lished in [8], of whose two its consequences are here applied (see Theorems 2.1 and
2.2). We also refer the interested reader to the papers [1, 10, 11, 12, 15] and refer-
ences therein, in which the Ricceri Variational Principle and its variants have been
successfully used to obtain the existence and multiplicity of solutions for nonlinear
boundary value problems.

Further, we state two special cases of our results. First, combining Remark 3.5
and Theorem 4.1, one has the following theorem.

Theorem 1.1. Let g : R→ R be a continuous function such that g(0) 6= 0 and

lim
ξ→0+

g(ξ)
ξ

= +∞. (1.2)

Let G(t) :=
∫ t

0
g(ξ)dξ for all t ∈ R, and assume that

(AR) there exist constants ν > 2 and R > 0 such that, for all |ξ| ≥ R, one has

0 < νG(ξ) ≤ ξg(ξ).

Then, for each

λ ∈
]
0,

2
N(N + 1)

sup
γ>0

γ2

max|ξ|≤γ G(ξ)
[
,

the problem

−∆2uk−1 + qkuk = λg(uk), k ∈ [1, N ],
u0 = uN+1 = 0,

admits at least two non-trivial solutions.

Instead, Theorem 4.3 gives the following theorem.

Theorem 1.2. Let g : R→ R be a non-negative continuous function such that

lim
ξ→0+

g(ξ)
ξ

= +∞, lim
ξ→+∞

g(ξ)
ξ

= 0,∫ 1

0

g(x)dx <
1

2(N + 1)

∫ 2

0

g(x)dx.

Then, for each

λ ∈ 1
N

] 4∫ 2

0
g(x)dx

,
2

(N + 1)
∫ 1

0
g(x)dx

[
,

the problem

−∆2uk−1 = λg(uk), k ∈ [1, N ],
u0 = uN+1 = 0,

admits at least three non-negative solutions.
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2. Preliminaries

Our main tools are Theorems 2.1 and 2.2, consequences of the existence result
of a local minimum theorem [8, Theorem 3.1] which is inspired by the Ricceri
Variational Principle [23].

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
following functions

β(r1, r2) := inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)
r2 − Φ(v)

,

ρ2(r1, r2) := sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1]) Ψ(u)
Φ(v)− r1

,

for all r1, r2 ∈ R, with r1 < r2, and

ρ(r) := sup
v∈Φ−1(]r,+∞[)

Ψ(v)− supu∈Φ−1(]−∞,r]) Ψ(u)
Φ(v)− r

,

for all r ∈ R.

Theorem 2.1 ([8, Theorem 5.1]). Let X be a reflexive real Banach space; Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable function whose Gâteaux derivative admits a continuous inverse on
X∗; Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux
derivative is compact. Put Iλ := Φ−λΨ and assume that there are r1, r2 ∈ R, with
r1 < r2, such that

β(r1, r2) < ρ2(r1, r2). (2.1)
Then, for each λ in the interval ] 1

ρ2(r1,r2) ,
1

β(r1,r2) [ there is u0,λ in Φ−1(]r1, r2[) such
that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

Theorem 2.2 ([8, Theorem 5.3]). Let X be a real Banach space; Φ : X → R
be a continuously Gâteaux differentiable function whose Gâteaux derivative admits
a continuous inverse on X; Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Fix infX Φ < r < supX Φ and
assume that

ρ(r) > 0, (2.2)
and for each λ > 1

ρ(r) the function Iλ := Φ−λΨ is coercive. Then, for each λ > 1
ρ(r)

there is u0,λ ∈ Φ−1(]r,+∞[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r,+∞[)
and I ′λ(u0,λ) = 0.

Remark 2.3. It is worth noticing that whenever X is a finite dimensional Banach
space, a careful reading of the proofs of Theorems 2.1 and 2.2 shows that regarding
to the regularity of the derivative of Φ and Ψ, it is enough to require only that Φ′

and Ψ′ are two continuous functionals on X∗.

Now, consider the N -dimensional Banach space

S := {u : [0, N + 1]→ R : u0 = uN+1 = 0}

endowed with the norm

‖u‖ :=
(N+1∑
k=1

|∆uk−1|p + qk|uk|p
)1/p

.
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In the sequel, we will use the inequality

max
k∈[1,N ]

|uk| ≤
(N + 1)(p−1)/p

2
‖u‖ (2.3)

for every u ∈ S. It immediately follows, for instance, from [18, Lemma 2.2]. Put

Φ(u) :=
‖u‖p

p
, Ψ(u) :=

N∑
k=1

F (k, uk), Iλ(u) := Φ(u)− λΨ(u) (2.4)

for every u ∈ S, where F (k, t) :=
∫ t

0
f(k, ξ)dξ for every (k, t) ∈ [1, N ]× R.

Standard arguments show that Iλ ∈ C1(S,R) as well as that critical points of Iλ
are exactly the solutions of problem (1.1). In fact, one has

I ′λ(u)(v) =
N+1∑
k=1

[φp(∆uk−1)∆vk−1 + qk|uk|p−2ukvk − λf(k, uk)vk]

= −
N∑
k=1

[∆(φp(∆uk−1))vk − qk|uk|p−2ukvk + λf(k, uk)vk]

for all u, v ∈ S (see [18] for more details).
Finally, for the reader’s convenience we recall [9, Theorems 2.2 and 2.3] in order

to get positive solutions to problem (1.1), i.e. uk > 0 for all k ∈ [1, N ].

Lemma 2.4. Let u ∈ S and assume that one of the following conditions holds:
(A1) −∆(φp(∆uk−1)) + qkφp(uk) ≥ 0 for all k ∈ [1, N ];
(A2) if uk ≤ 0, then −∆(φp(∆uk−1)) + qkφp(uk) = 0.

Then, either u > 0 in [1, N ] or u ≡ 0.

Remark 2.5. If f : [1, N ] × R → R is a non-negative function, then, owing to
Lemma 2.4 part (A1), all solutions of problem (1.1) are either zero or positive.
Now, let f : [1, N ]× R→ R be such that f(k, 0) = 0 for all k ∈ [0, N ]. Put

f∗(k, t) :=

{
f(k, t), if t > 0,
0, if t ≤ 0.

Clearly, f∗ is a continuous function. Owing to Lemma 2.4 part (A2), all solutions
of problem (P f

∗,q
λ ) are either zero or positive, and hence are also solutions for (1.1).

Hence, we emphasize that when (P f
∗,q

λ ) admits non-trivial solutions, then problem
(1.1) admits positive solutions, independently of the sign of f .

3. Main results

In this section we establish an existence result of at least one solution, Theorem
3.1, which is based on Theorem 2.1, and we point out some consequences, Theorems
3.2, 3.3 and Corollary 3.6. Finally, we present an other existence result of at least
one solution, Theorem 3.7, which is based in turn on Theorem 2.2.

Put Q :=
∑N
k=1 qk. For every two non-negative constants γ, δ, with

(2γ)p 6= (2 +Q)(N + 1)p−1δp,

we set

aγ(δ) :=
∑N
k=1 max|t|≤γ F (k, t)−

∑N
k=1 F (k, δ)

(2γ)p − (2 +Q)(N + 1)p−1δp
.
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Theorem 3.1. Assume that there exist three real constants γ1, γ2 and δ, with

0 ≤ γ1 <
(2 +Q)1/p(N + 1)(p−1)/p

2
δ < γ2, (3.1)

such that
aγ2(δ) < aγ1(δ). (3.2)

Then, for each λ ∈ 1
p(N+1)p−1 ] 1

aγ1 (δ) ,
1

aγ2 (δ) [, problem (1.1) admits at least one non-
trivial solution ū ∈ S, such that

2γ1

(N + 1)(p−1)/p
< ‖ū‖ < 2γ2

(N + 1)(p−1)/p
.

Proof. Take the real Banach space S as defined in Section 2, and put Φ,Ψ, Iλ as in
(2.4). Our aim is to apply Theorem 2.1 to function Iλ, since critical points of Iλ are
solutions to our problem. An easy computation ensures the regularity assumptions
required on Φ and Ψ; see Remark 2.3. Therefore, it remains to verify assumption
(2.1). To this end, we put

r1 :=
(2γ1)p

p(N + 1)p−1
, r2 :=

(2γ2)p

p(N + 1)p−1
,

and pick w ∈ S, defined as follows:

wk :=

{
δ, if k ∈ [1, N ],
0, if k = 0, k = N + 1.

Clearly, one has

Φ(w) =
2 +Q

p
δp.

From the condition (3.1), we obtain r1 < Φ(w) < r2. For all u ∈ S such that
Φ(u) < r2, taking (2.3) into account, one has |uk| < γ2 for all k ∈ [1, N ], from
which it follows

sup
u∈Φ−1(]−∞,r2[)

Ψ(u) = sup
u∈Φ−1(]−∞,r2[)

N∑
k=1

F (k, uk) ≤
N∑
k=1

max
|t|≤γ2

F (k, t).

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤
N∑
k=1

max
|t|≤γ1

F (k, t).

Therefore, one has

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤
∑N
k=1 max|t|≤γ2 F (k, t)−

∑N
k=1 F (k, δ)

(2γ2)p

p(N+1)p−1 − 2+Q
p δp

= p(N + 1)p−1

∑N
k=1 max|t|≤γ2 F (k, t)−

∑N
k=1 F (k, δ)

(2γ2)p − (2 +Q)(N + 1)p−1δp

= p(N + 1)p−1aγ2(δ).
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On the other hand, one has

ρ2(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1]) Ψ(u)

Φ(w)− r1

≥
∑N
k=1 F (k, δ)−

∑N
k=1 max|t|≤γ1 F (k, t)

2+Q
p δp − (2γ1)p

p(N+1)p−1

= p(N + 1)p−1

∑N
k=1 max|t|≤γ1 F (k, t)−

∑N
k=1 F (k, δ)

(2γ1)p − (2 +Q)(N + 1)p−1δp

= p(N + 1)p−1aγ1(δ).

Hence, from the assumption (3.2), one has β(r1, r2) < ρ2(r1, r2). Therefore, from
Theorem 2.1, for each λ ∈ 1

p(N+1)p−1 ] 1
aγ1 (δ) ,

1
aγ2 (δ) [, the functional Iλ admits at

least one critical point ū such that

r1 < Φ(ū) < r2,

that is
2γ1

(N + 1)(p−1)/p
< ‖ū‖ < 2γ2

(N + 1)(p−1)/p
,

and the conclusion is achieved. �

Now, we point out an immediate consequence of Theorem 3.1.

Theorem 3.2. Assume that there exist two positive constants γ, δ, with

δ <
2

(2 +Q)1/p(N + 1)(p−1)/p
γ,

for which ∑N
k=1 max|t|≤γ F (k, t)

(2γ)p
<

∑N
k=1 F (k, δ)

(2 +Q)(N + 1)p−1δp
. (3.3)

Then, for each

λ ∈
] (2 +Q)δp

p
∑N
k=1 F (k, δ)

,
(2γ)p

p(N + 1)p−1
∑N
k=1 max|t|≤γ F (k, t)

[
,

problem (1.1) admits at least one non-trivial solution ū ∈ S, such that |ūk| < γ for
all k ∈ [1, N ].

Proof. The conclusion follows from Theorem 3.1, by taking γ1 := 0 and γ2 := γ.
Indeed, owing to the inequality (3.3), one has

aγ(δ) =
∑N
k=1 max|t|≤γ F (k, t)−

∑N
k=1 F (k, δ)

(2γ)p − (2 +Q)(N + 1)p−1δp
<

1
(2γ)p

N∑
k=1

max
|t|≤γ

F (k, t).

On the other hand, one has

a0(δ) =
∑N
k=1 F (k, δ)

(2 +Q)(N + 1)p−1δp
.

Now, inequality (3.3) yields aγ(δ) < a0(δ). Hence, taking (2.3) into account, The-
orem 3.1 ensures the conclusion. �
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Theorem 3.3. Assume that

lim
ξ→0+

∑N
k=1 F (k, ξ)

ξp
= +∞. (3.4)

Furthermore, for each γ > 0, set

λ?γ :=
2p

p(N + 1)p−1

γp∑N
k=1 max|t|≤γ F (k, t)

.

Then, for every λ ∈]0, λ?γ [, problem (1.1) admits at least one non-trivial solution
ū ∈ S, such that |ūk| < γ for all k ∈ [1, N ].

Proof. Fix γ > 0 and λ ∈]0, λ?γ [. From (3.4) there exists a positive constant δ with

δ <
2

(2 +Q)1/p(N + 1)(p−1)/p
γ,

such that

(2 +Q)δp

p
∑N
k=1 F (k, δ)

< λ <
(2γ)p

p(N + 1)p−1
∑N
k=1 max|t|≤γ F (k, t)

.

Hence, owing to Theorem 3.2, for every λ ∈]0, λ?γ [ problem (1.1) admits at least
one non-trivial solution ū ∈ S, such that |ūk| < γ for all k ∈ [1, N ]. The proof is
complete. �

Remark 3.4. We claim that under the above assumptions, the mapping λ 7→ Iλ(ū)
is negative and strictly decreasing in ]0, λ?γ [. Indeed, the restriction of the functional
Iλ to Φ−1(]0, r2[), where r2 := (2γ2)p

p(N+1)p−1 , admits a global minimum, which is a
critical point (local minimum) of Iλ in S. Moreover, since w ∈ Φ−1(]0, r2[) and

Φ(w)
Ψ(w)

=
(2 +Q)δp

p
∑N
k=1 F (k, δ)

< λ,

we have
Iλ(ū) ≤ Iλ(w) = Φ(w)− λΨ(w) < 0.

Next, we observe that

Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
,

for every u ∈ S and fix 0 < λ1 < λ2 < λ?γ . Set

mλ1 :=
(Φ(ū1)

λ1
−Ψ(ū1)

)
= inf
u∈Φ−1(]0,r2[)

(Φ(u)
λ1
−Ψ(u)

)
,

mλ2 :=
(Φ(ū2)

λ2
−Ψ(ū2)

)
= inf
u∈Φ−1(]0,r2[)

(Φ(u)
λ2
−Ψ(u)

)
.

Clearly, as claimed before, mλi < 0 (for i = 1, 2), and mλ2 ≤ mλ1 thanks to
λ1 < λ2. Then the mapping λ 7→ Iλ(ū) is strictly decreasing in ]0, λ?γ [ owing to

Iλ2(ū2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(ū1).

This concludes the proof of our claim.
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Remark 3.5. In other words, Theorem 3.3 ensures that if the asymptotic condition
at zero (3.4) is verified then, for every parameter λ belonging to the real interval
]0, λ?[, where

λ? :=
2p

p(N + 1)p−1
sup
γ>0

γp∑N
k=1 max|t|≤γ F (k, t)

,

problem (1.1) admits at least one non-trivial solution ū ∈ S.

Corollary 3.6. Let α : [1, N ] → R be a non-negative and non-zero function and
let g : [0,+∞)→ R be a continuous function such that g(0) = 0. Assume that there
exist two positive constants γ, δ, with

δ <
2

(2 +Q)1/p(N + 1)(p−1)/p
γ,

for which
max0≤t≤γ G(t)

γp
<
( 2p

(2 +Q)(N + 1)p−1

)G(δ)
δp

, (3.5)

where G(t) :=
∫ t

0
g(ξ)dξ for all t ∈ R. Then, for each

λ ∈ 1

p
∑N
k=1 αk

] (2 +Q)δp

G(δ)
,

(2γ)p

(N + 1)p−1 max0≤t≤γ G(t)
[
,

the problem

−∆(φp(∆uk−1)) + qkφp(uk) = λαkg(uk), k ∈ [1, N ],
u0 = uN+1 = 0,

(3.6)

admits at least one positive solution ū ∈ S, such that ūk < γ for all k ∈ [1, N ].

Proof. Put

f(k, t) :=

{
αkg(t), if t ≥ 0,
0, if t < 0,

for every k ∈ [1, N ] and t ∈ R. The conclusion follows from Theorem 3.2 owing to
(3.5) and taking into account Lemma 2.4 part (A2). �

Finally, we present an application of Theorem 2.2 which we will use in next
section to obtain multiple solutions.

Theorem 3.7. Assume that there exist two real constants γ̄, δ̄, with

0 < γ̄ <
(2 +Q)1/p(N + 1)(p−1)/p

2
δ̄,

such that
N∑
k=1

max
|t|≤γ̄

F (k, t) <
N∑
k=1

F (k, δ̄), (3.7)

and

lim sup
|ξ|→+∞

F (k, ξ)
|ξ|p

≤ 0 uniformly in k. (3.8)

Then, for each λ > λ̃, where

λ̃ :=
(2 +Q)(N + 1)p−1δ̄p − (2γ̄)p

p(N + 1)p−1
(∑N

k=1 F (k, δ̄)−
∑N
k=1 max|t|≤γ̄ F (k, t)

) ,
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problem (1.1) admits at least one non-trivial solution ũ ∈ S, such that ‖ũ‖ >
2γ̄

(N+1)(p−1)/p .

Proof. Take the real Banach space S as defined in Section 2, and put Φ,Ψ, Iλ as
in (2.4). Our aim is to apply Theorem 2.2 to function Iλ. The functionals Φ and
Ψ satisfy all regularity assumptions requested in Theorem 2.2; see Remark 2.3.
Moreover, by standard computations, the assumption (3.8) implies that Iλ, λ > 0,
is coercive. So, our aim is to verify condition (2.2) of Theorem 2.2. To this end, we
put

r :=
(2γ̄)p

p(N + 1)p−1
,

and pick w ∈ S, defined as

wk :=

{
δ̄, if k ∈ [1, N ],
0, if k = 0, k = N + 1.

Arguing as in the proof of Theorem 3.1 we obtain that

ρ(r) ≥ p(N + 1)p−1

∑N
k=1 F (k, δ̄)−

∑N
k=1 max|t|≤γ̄ F (k, t)

(2 +Q)(N + 1)p−1δ̄p − (2γ̄)p
.

So, from our assumption it follows that ρ(r) > 0.
Hence, from Theorem 2.2 for each λ > λ̃, the functional Iλ admits at least

one local minimum ũ such that ‖ũ‖ > 2γ̄/
(
(N + 1)(p−1)/p

)
and the conclusion is

achieved. �

4. Multiplicity results

The main aim of this section is to present multiplicity results. First, as con-
sequence of Theorem 3.1, taking into account the classical theorem of Ambrosetti
and Rabinowitz, we have the following multiplicity result.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Assume also that
f(k, 0) 6= 0 for some k ∈ [1, N ]. Moreover, let

(AR) there exist constants ν > p and R > 0 such that, for all |ξ| ≥ R and for all
k ∈ [1, N ], one has

0 < νF (k, ξ) ≤ ξf(k, ξ). (4.1)

Then, for each λ ∈ 1
p(N+1)p−1 ] 1

aγ1 (δ) ,
1

aγ2 (δ) [, problem (1.1) admits at least two non-
trivial solutions ū1, ū2, such that

2γ1

(N + 1)(p−1)/p
< ‖ū1‖ <

2γ2

(N + 1)(p−1)/p
. (4.2)

Proof. Fix λ as in the conclusion. So, Theorem 3.1 ensures that problem (1.1)
admits at least one non-trivial solution ū1 satisfying the condition (4.2) which is a
local minimum of the functional Iλ.

Now, we prove the existence of the second local minimum distinct from the first
one. To this end, we must show that the functional Iλ satisfies the hypotheses of
the mountain pass theorem. Clearly, the functional Iλ is of class C1 and Iλ(0) = 0.

We can assume that ū1 is a strict local minimum for Iλ in S. Therefore, there
is ρ > 0 such that inf‖u−ū1‖=ρ Iλ(u) > Iλ(ū1), so condition [22, (I1), Theorem 2.2]
is verified.
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Integrating condition (4.1) shows that there exist constants a1, a2 > 0 such that

F (k, t) ≥ a1|t|ν − a2

for all k ∈ [1, N ] and t ∈ R. Now, choosing any u ∈ S \ {0}, one has

Iλ(tu) = (Φ− λΨ)(tu)

=
1
p
‖tu‖p − λ

N∑
k=1

F (k, tuk)

≤ tp

p
‖u‖p − λtνa1

N∑
k=1

|uk|ν + λa2N → −∞

as t → +∞, so condition [22, (I2), Theorem 2.2] is satisfied. So, the functional
Iλ satisfies the geometry of mountain pass. Moreover, by standard computations,
Iλ satisfies the Palais-Smale condition. Hence, the classical theorem of Ambrosetti
and Rabinowitz ensures a critical point ū2 of Iλ such that Iλ(ū2) > Iλ(ū1). So, ū1

and ū2 are two distinct solutions of (1.1) and the proof is complete. �

Next, as a consequence of Theorems 3.7 and 3.2, the following theorem of the
existence of three solutions is obtained and its consequence for the nonlinearity
with separable variables is presented.

Theorem 4.2. Assume that (3.8) holds. Moreover, assume that there exist four
positive constants γ, δ, γ̄, δ̄, with

(2 +Q)1/p(N + 1)(p−1)/p

2
δ < γ ≤ γ̄ < (2 +Q)1/p(N + 1)(p−1)/p

2
δ̄,

such that (3.3), (3.7) and∑N
k=1 max|t|≤γ F (k, t)

(2γ)p
<

∑N
k=1 F (k, δ̄)−

∑N
k=1 max|t|≤γ̄ F (k, t)

(2 +Q)(N + 1)p−1δ̄p − (2γ̄)p
. (4.3)

are satisfied. Then, for each

λ ∈ Λ =
]

max
{
λ̃,

(2 +Q)δp

p
∑N
k=1 F (k, δ)

}
,

(2γ)p

p(N + 1)p−1
∑N
k=1 max|t|≤γ F (k, t)

[
,

problem (1.1) admits at least three solutions.

Proof. First, we observe that Λ 6= ∅ owing to (4.3). Next, fix λ ∈ Λ. Theorem
3.2 ensures a non-trivial solution ū such that ‖ū‖ < 2γ

(N+1)(p−1)/p which is a local
minimum for the associated functional Iλ, as well as Theorem 3.7 guarantees a non-
trivial solution ũ such that ‖ũ‖ > 2γ̄

(N+1)(p−1)/p which is a local minimum for Iλ.
Hence, the mountain pass theorem as given by Pucci and Serrin (see [20]) ensures
the conclusion. �

Theorem 4.3. Assume that g : R→ R is a non-negative continuous function such
that

lim sup
ξ→0+

G(ξ)
ξp

= +∞, (4.4)

lim sup
ξ→+∞

G(ξ)
ξp

= 0. (4.5)



EJDE-2014/35 EXISTENCE AND MULTIPLICITY OF SOLUTIONS 11

Further, assume that there exist two positive constants γ̄, δ̄, with

γ̄ <
(2 +Q)1/p(N + 1)(p−1)/p

2
δ̄,

such that
G(γ̄)
γ̄p

<
( 2p

(2 +Q)(N + 1)p−1

)G(δ̄)
δ̄p

. (4.6)

Then, for each

λ ∈ 1

p
∑N
k=1 αk

] (2 +Q)δ̄p

G(δ̄)
,

(2γ̄)p

(N + 1)p−1G(γ̄)
[
,

problem (3.6) admits at least three non-negative solutions.

Proof. Clearly, (4.5) implies (3.8). Moreover, by choosing δ small enough and γ = γ̄,
simple computations show that (4.4) implies (3.3). Finally, from (4.6) we get (3.7)
and also (4.3). Hence, Theorem 4.2 ensures the conclusion. �

Finally, we present two applications of our results.

Example 4.4. Consider the problem

−∆2uk−1 + qkuk = λ
(1

6
+ |uk|2uk

)
, k ∈ [1, N ],

u0 = uN+1 = 0.
(4.7)

Let g(t) = 1
6 + |t|2t for all t ∈ R. Obviously, g(0) 6= 0. Since

lim
ξ→0+

g(ξ)
ξ

= lim
ξ→0+

( 1
6ξ

+ |ξ|2
)

= +∞,

condition (1.2) holds true. Choose ν = 3 and R = 1, we have

0 < 3G(ξ) ≤ ξg(ξ),

for all |ξ| ≥ 1. Moreover, one has

2
N(N + 1)

sup
γ>0

γ2

max|ξ|≤γ G(ξ)
=

2
N(N + 1)

sup
γ>0

12γ
2 + 3γ3

=
6

N(N + 1)
.

Then, owing to Theorem 1.1, for each λ ∈]0, 6
N(N+1) [, problem (4.7) admits at least

two non-trivial solutions.

Example 4.5. Consider the problem

−∆2uk−1 =
1
10

( u8
k

euk
+ 1
)
, k ∈ [1, 3],

u0 = u4 = 0.

Then, owing to Theorem 1.2, it admits three positive solutions. In fact, one has

lim
ξ→0+

g(ξ)
ξ

= lim
ξ→0+

ξ8

eξ
+ 1
ξ

= +∞,

lim
ξ→+∞

g(ξ)
ξ

= lim
ξ→+∞

ξ8

eξ
+ 1
ξ

= 0.

Moreover, taking into account that

G(t) = t−
∑8
i=0

8!
i! t
i

et
+ 8!, ∀t ∈ R,
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one has G(1) < 1
8G(2) and 4

3G(2) <
1
10 <

1
6G(1) .
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