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HOLDER CONTINUITY FOR A PERIODIC 2-COMPONENT
4-B SYSTEM

XIAOHUAN WANG

ABSTRACT. In this article, we consider the Cauchy problem of a periodic 2-
component u-b system. We show that the date to solution for the periodic
2-component p-b system is Holder continuous from bounded set of Sobolev
spaces with exponent s > 5/2 measured in a weaker Sobolev norm with index
r < s for the periodic case.

1. INTRODUCTION

In this article, we reconsider the Cauchy problem of the following two-component
periodic p-b system
M(u)t — Utgax = buw(,u(u) - uwz) — Ulggpy + PPz, t > va S Rv
ot = (pu)z, t>0 xR,

(1.1)
u(0,2) = uo(x), p(0,2) = po(z), ze€R,
u(t,z +1) =u(t,z), pt,e+1)=ptz), t=20, z€R,
where b € R, p(u) = [yudr and S =R/Z := (0,1).
Recently, Zou [ 3] introduced the system
,u(u)t — Utgx = 2/”’(”)”1 - 2u1u1;v — Ulggy + PPz — MUz, t > Oa MRS Ra
Pt = (pu)’r - 2’)/2p.’167 t> 07 HARS Ra
(1.2)
w(0,2) = up(x), p(0,2) =po(z), z€R,
u(t,z+1) =ult,x), plt,x+1)=ptz), t>0, xR,
where p(u) = [qudz, S = R/Z and v; € R, ¢ = 1,2. By integrating both sides of

the first equatlon in the system (1.2)) over the 01rcle S and using the periodicity of
u, one obtains

plut) = p(u)y =0,
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which implies the following 2-component periodic p-Hunter-Saxton system
—Utze = 20(W) Uy — 2Upllpr — Wage + PPz — NUzzz, t>0, TER,
pt = (pw)e — 272pz, t> 0,7 €R,
u(0,2) =up(x), p(0,2)=po(z), z€R,
u(t,z+1) =u(t,z), plt,x+1)=p(tz), t>0, xR

(1.3)

This system is a 2-component generalization of the generalized Hunter-Saxton equa-
tion obtained in [I0]. Zou [23] shows that this system is both a bi-Hamiltonian
Euler equation and a bi-variational equation. Liu-Yin [14] established the local
well-posedness, precise blow-up scenario and global existence result to the system
3.

If b = 2, then system becomes the system with 77 = 72 = 0. Therefore,
system generalizes system in some sense.

If p = 0, then system becomes the system

w(ug) — Uget + UWgre — bug ((u) —uge) =0, ¢>0, z €S,

u(0,2) = up(z), x€S. (1.4)

The above equation is called u-b equation. If b = 2, then equation becomes
the well-known p-CH equation. Lenells, Misiotek and Tiglay [I3] introduced the
u-CH, the u-DP as well as u-Burgers equations, and the u-b equation (see also [I1]).
In the case b = 3, the p-b equation reduces to the u-DP equations. In addition,
if p(u) = 0, they reduce to the HS and p-Burgers equations, respectively. It is
remarked that the p-Hunter-Saxton equation has a very close relation with the
periodic Hunter-Saxton and Camassa-Holm equations, that is, will reduce to
the Hunter-Saxton equation [9, 19, 21] if p(u) =0 and b = 2.

The local well-posedness of the u-CH and pu-DP Cauchy problems have been
studied in [I0] and [13]. Recently, Fu et. al. [3] described precise blow-up scenarios
for 4-CH and p-DP.

When p # 0 and v; = 0 (i = 1,2), Constanin-Ivanov [2] considered the peakon
solutions of the Cauchy problem of system . In paper [20], Wunsch studied the
the Cauchy problem of 2-component periodic Hunter-Saxton system, see also [12].
The local well-posedness of system was established in our paper [17].

Recently, some properties of solutions to the Camassa-Holm equation have been
studied by many authors. Himonas et al. [5] studied the persistence properties and
unique continuation of solutions of the Camassa-Holm equation, see [4, 22] for the
similar properties of solutions to other shallow water equation. Himonas-Kenig [6]
and Himonas et al. [7] considered the non-uniform dependence on initial data for
the Camassa-Holm equation on the line and on the circle, respectively. Lv et al. [16]
obtained the non-uniform dependence on initial data for u-b equation. Lv-Wang
[15] considered the system with p = v — 7,, and obtained the non-uniform
dependence on initial data. Just recently, Chen et al. [I] and Himonas et al.
[8] studied the Holder continuity of the solution map for shallow water equations.
Thompson [I8] also studied the Hoélder continuity for the CH system, which is
obtained from by replacing the operator u — 92 with the operator 1 — 92.

Our work has been inspired by [Il [§]. In this paper, we shall study the problem
. We remark that there is significant difference between system and CH
system because of the two operators 1 —92 and p— 2. Moreover, the properties of u
and ~y are different, see Proposition So the system will have the properties
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unlike the signal equation, for example, p-b equation. And this is different from
the CH system.

This paper is organized as follows. In section 2, we will recall some known
results about the well-posedness and then state out our main results. Section 3 is
concerned with the proof of the main results.

Notation In this paper, the symbols <, = and 2 are used to denote inequal-
ity /equality up to a positive universal constant. For example, f(z) < g(x) means
that f(z) < cg(x) for some positive universal constant c¢. In the following, we de-
note by x the spatial convolution. Given a Banach space Z, we denote its norm

by || - ||z. Since all space of functions are over S, for simplicity, we drop S in our
notations of function spaces if there is no ambiguity. Let [A, B] = AB— BA denotes
the commutator of linear operator A and B. Set ||z||3;. . o1 = ullFre + o131

where z = (u, p).

2. SOME KNOWN RESULTS AND MAIN RESULT

In this section we first recall the known results, and then state out our main
result.
As p(u); = 0 under spatial periodicity, we can re-write (1.1)) as follows:

Up — Uty = O, A" (bu(u)u + ; u? + %p2>7 t>0, x€8,
Pt — UPy = Ugp, t>0, x €S, (2.1)
u(0,2) = up(x), p(0,2) =po(z), =z €S,
where A = 1 — 02 is an isomorphism between H*(S) and H*~2(S) with the inverse
v = A~u given by

ve) = (5~ 54 o+ @12 [ [ usasay

—/Omu(s)dsdy-i-/ol/oy/os u(r)drdsdy.

Since A~! and 8, commute, the following identities hold:
1 T 1 T
A 0u(z) = (x — 1/2)/ u(z)dr — / u(y)dy +/ / u(y)dydez, (2.2)
0 0 o Jo

AT 0%u(z) = —u(x) —|—/0 u(x)dz. (2.3)

It is easy to show that pu(A=10,u(x)) = 0.

Proposition 2.1 ([I7, Theorem 2.1]). Given zy = (ug,po) € H® x H*™1, s > 2.
Then there exists a mazimal existence time T = T (||zo| gs xgs—1) > 0 and a unique
solution z = (u, p) to system (2.1) such that

z=2(-,2) € C([0,T); H* x H Y nCY([0,T); H*~' x H*™?).
Moreover, the solution depends continuously on the initial data, i.e. the mapping
20— (-, 20) : H x H¥"1 — C([0,T); H® x H"YYnCH([0,T); H*' x H*™?)
18 continuous.

Next, an explicit estimate for the maximal existence time 7T is given.
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Proposition 2.2. Let s > 5. If z = (u, p) is a solution of system (2.1)) with initial
data zg described in Proposition then the mazimal existence time T satisfies
1

T Z TO =
2Cs |[zoll o o1

)

where Cs is a constant depending only on s. Also, we have
2Ol oo < 2Nzolliorses, 0<t <.
Now, we state our main result.

Theorem 2.3. Assume s > 5/2 and 3/2 < r < s. Then the solution map to
with is Holder continuous with exponent o = «a(s,r) as a map from B(0,h)
with H™(S) norm to C([0,To], H"(S)), where Ty is defined as in Proposition 2.2
More precisely, for initial data (u(0),p(0)) and (4(0),p(0)) in a ball B(0,h) =
{u € H®: ||ullgs < h} of H?, the solutions of with (u(z,t), p(x,t) and
u(x,t), p(x,t) satisfy the inequality

[u(®) = @)oo, mo);mm) < €llu(0) = a(0)|%-,

) P « (24)
1o(t) = A1)l 0,70} 7y < €llp(0) = p(O) |+
where « is given by
1 ' Q
= if (sr) €, (2.5)
s—r if (s,r) € Qo

and the regions Q1 and Qs are defined by
O ={(s,r): $>5/2,3/2<r<s—1},
Qo ={(s,7): s>5/2,s—1<r<s}

3. PROOF OF THEOREM [2.3]

In this section, we prove Theorem [2.3] by using energy method. We shall prove

that
12(8) = 2@l c o, m)s <=1y < €ll2(0) = 2(0)|Fr s g1

where [|z(t) | s rr—1 = [Ju(®)l| - + lp(t) [ -1

We note that ||u(0) — @(0)||g» > 0 and ||p(0) — p(0)||zz~—1 > 0. Indeed, due to
r > 3/2, it follows from Sobolev embedding Hz+(S) < C°(S) that

[u(0) = a(0)llco < [[u(0) — a(0) -

Hence u(0) = @(0) if [|[u(0) — @(0)||g» = 0, and it follows from Proposition
that u(x,t) = 4(z,t). Therefore, we will assume that ||u(0) — @(0)||z- > 0 and
[lp(0) — p(0)|| == > 0. To prove Theorem we need the following Lemmas.

Lemma 3.1 ([8, Lemma 1]). Ifr+ 1> 0, then
I[A"Ou, flvll e < ellfllare
provided that s > 3/2 and r +1 < s.

Proof of Theorem[2.3 Let ug(z), p(0),4o(z), p(0) € B(0,h) and (u(z,t), p(z,t))
and (4(x,t), p(x,t)) be the two solutions to (2.1) with initial data (uo(z), p(0)) and
(to(z), p(0)), respectively. Let

’U”Hr

v=u—1, 0=p=p



EJDE-2014/33 HOLDER CONTINUITY 5

then v and o satisfy that

%&v[v(u + )] = =0, A7 [bu(u)v + bu(v)d
+ 30 (vz(u+ 1)) + 1a(p+/3)], t>0,z€S,

2 2 (3.1)
or = (vp+ol)y, t>0,z€S,

v(0,2) = up(x) — to(z), =€S,
0(0,x) = po(x) — po(z), =€S.
Let A = (1—0,)'/2. Applying A" and A"~ to both sides of the first and second

equation of (3.1)), then multiplying both sides by A"v and A"~ 'o, respectively, and
integrating, we obtain

Ve —

1d ,
gl Ol
/AT v(u+4)] - A"vdz — /AT(‘? A~ {bu( Yo + bu(v)d (3.2)
+ 5 (vx(u + 1)) + ia(p—i- ﬁ)} - A"vdz,
and
1
fiﬂa(t)pr,l = /Arfl(vp—i— ol), - A" loda. (3.3)
2 dt A
It follows from Lemma B.1] that
|f/ [v(u+a)] - Avdz|
= 7| /[A’"@w, w+ ajv - A"vdz — /(u + A)A"0pv - Avdz|
s
,S‘/Aag;,u—i—uv Avdx}—i—‘/ W)A"Opv - Avdx’

(3.4)
< ‘/[Arﬁm,u—i—zﬂv - Avdz| + | /ai(u—i—ﬁ) (A"v)?dz|
S S
I[A7 0, u+ ol L2 [|v() | ar + 10 (w + @) || Lo |0 (E) |7+
(lu+ @l + (182 (w + @) o) 0(E) 17
(lu +all g )llo @)1,

where we have used the facts that H2z < L and s > 3/2. It is easy to show that

S
<
S

| - b/SArazAfl[u(u)v + p(v)a) - ATvdx|
S N0z A7 (o + p()dllla- - o) -

By (2.2) and (2.3)), we have
1 1
102 A ul| g = || (2 — 5)/ u(x)dx—/ dy+/ / (y)dydz| ;.
0
1 1
Sl e [ @ @l o+ [ [ )y

(3.5)
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Using the above inequality, we have

10 A~ (o + (0}l
Sl (la =5l [ o@lde+ o+ [ [ oays)
1 1 . . 1 T A
@) (e = gl [ la@ds+ i@l + [ [ latidys)

S (lulles + allz) o@ &,

where we have used the inequality

()| = | / oz, t)da| < / o, )|z < [[o(t)]| -
provided that r > 0. Substituting (3.6) into (3.5), we obtain

=t [ 40,7 fu(wpo -+ )il - A7 vd| S (el + o) o0 -
Similarly, integrating by parts, we have
1
‘5 /Ar(')IA_1 (a(p+p)) - Avdz|
s
S8z A o (p+ p)ar - [lo(®) ]|
S lle@llez(lpllae + 1plla1) - ([0 e
S (ol o= + 1Al - (@I F + o @17-1);

and
|- ?’T_b/ArazA—luI(qua)z - A"vdz|
S

S 00 A" o (u+ @) - [[0(8) || e
S lv@ Nz (lullgz + [@llm2) - lo@)l|a-
S lull s + [lall =) - o)l
provided that s > 2. In the above inequality, we used
’/vw(x,t)uw(x,t)dﬂ = ‘/v(x,t)um(x,t)dﬂ < (@) L2 l|ul|l g2-
s s
It follows from Lemma B.I] that
| /Ar(vp + 0i), - A"odz|
s
< lloplla- ol + 10:A7F, a@lo]| 2 [lo(t)]
S (Nl ze + lplla) o @1+ llo @l F—1),

where we used the fact H" — H*® (r < s) again.

e 8 P2 (oY e

(3.10)

Lipschitz continuous ;. Substituting (3.4)-(3.9) and (3.10) into (3.2)) and (3.3)),

respectively, and adding the resulting equalities, we have

%% (lo(®)12 + o (E)]2—1)

< (lullzs + lallzs + lpllme=r + 11— U@l + llo@)lIF—1)-
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It follows from Proposition [2.2] that

lullgs + 1@llme + ol me-r + 114l s

S Nu©) s + 114(0) [ = + lp(O) -1 + 112(0) | a1 S 1
since ug, po, o, po € B(0,h). Consequently, we obtain

1d
5 g 1F O S ezl -1,

which implies that

Nz mr et < €T 2(0)|| rr s prr1- (3.11)

Or equivalently

lu(t) = a®)llm- + lp(t) = pO] -2 < e ([|u(0) = @(0) ]|z + [|p(0) — ﬁ(O)lllznfl)j

3.12
In the beginning of section 3, we obtain that ||u(0) — @(0)||g~ > 0 and ||p(0) —
p0) ||z~ > 0. Indeed, if ||u(0) — @(0)||g~ = 0 or ||p(0) — p(0)||g» = 0, it follows
from the Sobolev embedding Theorem and Proposition [2.1] that u(z,t) = 4(x,t) or
p(x,t) = p(x,t), respectively. Thus we can assume that

[[u(0) = @(0) [z~ = O(llp(0) — A(O)|| grr=1)-
By , we have
[u(t) — a®)[[g- < C(|u(0) — @(0)]|ur),

which is the desired Lipschitz continuity in 1.

Holder continuous in . Since s — 1 < r < s, by interpolating between H*~!
and H?® norms, we obtain

2@ s < O350 pgee 12O e
Moreover, from the Proposition we have that

12Ol s x a1 < Muollas + (ol s + l|pollzrs=1 + [|Poll -1 < A
and thus we have
12O <=1 S 12O 1 0 o2 (3.13)

We see that (3.11)) is valid for r = s — 1, s > 5/2. Therefore, applying (3.11)) into
(3.13)), we obtain

12O s S N2 550 o

which is the desired Holder continuity (similar to the discussion in €27). The proof
of Theorem is completed. O
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